JPS63297213A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPS63297213A
JPS63297213A JP62133951A JP13395187A JPS63297213A JP S63297213 A JPS63297213 A JP S63297213A JP 62133951 A JP62133951 A JP 62133951A JP 13395187 A JP13395187 A JP 13395187A JP S63297213 A JPS63297213 A JP S63297213A
Authority
JP
Japan
Prior art keywords
oxide superconductor
oxygen
fluorine
producing
ammonium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62133951A
Other languages
Japanese (ja)
Inventor
Masaaki Tamaya
正昭 玉谷
Shin Fukushima
福島 伸
Motomasa Imai
今井 基真
Hisami Ochiai
落合 久美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62133951A priority Critical patent/JPS63297213A/en
Publication of JPS63297213A publication Critical patent/JPS63297213A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having a high critical temperature in production of an oxide superconductor of perovskite type containing an Ln element, an AE element and Cu, by blending the elements with a fluorine- containing ammonium salt as a raw material. CONSTITUTION:In producing an oxide superconductor of perovskite structure containing a Ln element (Ln is at least one of Y, La, Sc, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu), an AE element (at least one of Ba, Ca and Sr) and Cu, the elements are blended with a fluorine-containing ammonium salt as a raw material and oxygen is partially replaced with nitrogen. The amount of fluoride replaced is <=about 90atom. wt.% oxygen. For example, NH4F, NH4BF or (NH4)2SiF6, etc., may be cited as the fluorine-containing ammonium salt.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は酸化物超電導体の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing an oxide superconductor.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
酸化物が高い臨界温度を有する可能性のあることが発表
されて以来、各所で酸化物超電導体の研究が行なわれて
いる(Z、Phys、B Condensed Mat
te’r 84゜189−193(198B) 。その
中でもY−Ba−Cu−0系に代表される酸素欠陥を有
する欠陥ペロブスカイト型(AB  CO型)の酸化物
超電導体は、Tc237−δ が90に以上と液体窒素以上の′高い温度を示す′ため
非常に有望な材料である(P’hys、Rev、Le−
tt、vor、5’8No、9.p908−910)。
(Prior art) In recent years, since it was announced that layered perovskite oxides based on Ba-La-Cu-0 may have a high critical temperature, research on oxide superconductors has been conducted in various places. There is (Z, Phys, B Condensed Mat
te'r 84°189-193 (198B). Among these, defective perovskite type (AB CO type) oxide superconductors with oxygen defects, represented by the Y-Ba-Cu-0 system, exhibit Tc237-δ of 90 or higher, which is higher than liquid nitrogen. ', it is a very promising material (P'hys, Rev, Le-
tt, vor, 5'8No, 9. p908-910).

(発明が解決しようとする間居点) この様にペロブスカイト型の酸化物類1導□体は前述の
如く非常に有望な材料であるが、より高い臨界温度への
発展が望まれている。
(The problem to be solved by the invention) Although the perovskite type oxide type 1 conductor is a very promising material as mentioned above, it is desired to develop it to a higher critical temperature.

本発病はこの様な画題点を解決するためになされたもの
であり、臨界温度の高い酸化物超電導体を得ることを目
的としてなされたものである。
The present invention was made to solve this problem, and was made with the aim of obtaining an oxide superconductor with a high critical temperature.

[発明の構成] (問題点を解決するための手段及び作用)本発明は、L
n元素(LnはY 、 La 、 Sc 、 Nd 、
 5I11. Eu 、 Cd 。
[Structure of the invention] (Means and effects for solving the problems) The present invention is based on L
n element (Ln is Y, La, Sc, Nd,
5I11. Eu, Cd.

Dy、Ho、Er、Tm、Yb、Luの少なくとも一種
) 、AE元素(Ba、Ca及びSrの少なくとも一種
)及びCuを含有するペロブスカイト構造の酸化物超電
導体の製造方法に於いて、原料として弗化アンモニウム
等の弗素含有のアンモニウム塩を混合し酸素の一部を弗
素で置換することを特徴とする酸化物超電導体の製造方
法である。
Dy, Ho, Er, Tm, Yb, Lu), AE element (at least one of Ba, Ca and Sr) and Cu. This method of producing an oxide superconductor is characterized by mixing a fluorine-containing ammonium salt such as ammonium chloride and replacing a portion of oxygen with fluorine.

本発明でいうペロブスカイト型構造の酸化物超電導体は
La−(Ba、!3r、Ca)−Cu−0系の層状ペロ
ブスカイト型酸化物超電導体、Y−Ba−Cu−0系の
酸素欠陥を有する欠陥ペロブスカイト型酸化物超電導体
などの広義のペロブスカイト型構造の酸化物超電導体を
さす。
The oxide superconductor having a perovskite structure in the present invention is a layered perovskite oxide superconductor based on La-(Ba,!3r,Ca)-Cu-0, and has oxygen defects based on Y-Ba-Cu-0. Refers to oxide superconductors with a broad perovskite structure, such as defective perovskite oxide superconductors.

本発明に用いる酸化物超電導体は、例えば以下に示す製
造方法により得ることができる。
The oxide superconductor used in the present invention can be obtained, for example, by the manufacturing method shown below.

Y 、 Cu 、 Ba等の酸化物超電導体の構成元素
を含をする原料を十分混合する。混合の際にはY2O3
゜Bad、CuO等の酸化物を原料として用いることが
できる。また、これらの酸化物のほかに、焼成後酸化物
に転化する炭酸塩、硝酸塩、水酸化物また弗化イツトリ
ウム、弗化バリウム、弗化鋼等の弗化物等の化合物を用
いてもよい。さらには共沈法等で得たしゅう酸塩等を用
いても良い。
Raw materials containing constituent elements of the oxide superconductor, such as Y, Cu, and Ba, are thoroughly mixed. Y2O3 when mixing
Oxides such as Bad and CuO can be used as raw materials. In addition to these oxides, compounds such as carbonates, nitrates, hydroxides, and fluorides such as yttrium fluoride, barium fluoride, and steel fluoride, which are converted into oxides after firing, may be used. Furthermore, oxalate obtained by a coprecipitation method or the like may also be used.

本発明ではこの原料にさらに弗化アンモニウム(NHF
)等を混合する。またNH4Fの代わりにNHBF、(
NH)  SIF  、(NH)  GcP e等を用
いても良い。
In the present invention, ammonium fluoride (NHF) is added to this raw material.
) etc. Also, instead of NH4F, NHBF, (
NH) SIF, (NH) GcP e, etc. may also be used.

前述の原料を混合した後、仮焼・粉砕し所望の形状に成
形した後、930−1000℃程度で焼成する。
After mixing the above raw materials, they are calcined and pulverized to form a desired shape, and then fired at about 930-1000°C.

仮焼は必ずしも必要ではない。焼成・仮焼は十分な酸素
が供給できるような酸素含有雰囲気で行なうことが好ま
しい。所望の形状に焼成した後、酸素中で加熱処理する
ことにより超電導特性を向上することができる。この加
熱処理は通常600−%0℃程度である。
Calcining is not necessarily necessary. Firing and calcination are preferably carried out in an oxygen-containing atmosphere where sufficient oxygen can be supplied. After firing into a desired shape, the superconducting properties can be improved by heat treatment in oxygen. This heat treatment is usually about 600-%0°C.

この様にして得られた酸化物超電導体はLn 、 AE
 。
The oxide superconductor obtained in this way is Ln, AE
.

Cuを原子比で実質的にl:2:3の比率で含有する酸
素欠陥δを有するLnBa  Cu  O(δは2 3
7−δ 通常1以下)の酸素欠陥型ペロブスカイト構造となる。
LnBa Cu O (δ is 2 3
7-δ (usually 1 or less), resulting in an oxygen-deficient perovskite structure.

Cu元元素Ba元素の置換元素はそれぞれのサイトに置
換した形で入る。なおF元素はO元素を置換する形で入
る。弗素の置換量は超電導特性を低下しない範囲で適宜
設定でき、るが、実用上は90原子%以下、好ましくば
50原子%以下程度である。また少量の置換量で臨界温
度の上昇の効果を得ることができるが0.01原子%以
上の置換量で顕著である。
Substituting elements for the Cu element and the Ba element enter the respective sites in a substituted form. Note that the F element replaces the O element. The amount of fluorine substitution can be appropriately set within a range that does not deteriorate the superconducting properties, but in practice it is about 90 atomic % or less, preferably about 50 atomic % or less. Further, the effect of increasing the critical temperature can be obtained with a small amount of substitution, but it becomes noticeable when the amount of substitution is 0.01 atomic % or more.

ペロブスカイト型酸化物超電導体を構成する元素は、基
本的に化学量論比の組成となるように混合するが、多少
製造条件等との関係等でずれていても構わない。例えば
Y−Ba−Cu−Q系ではYlmolに対しB a 2
  l101% Cu 3  molが、標準組成であ
るが、実用上はY1a+olに対し、Ba2±0.6 
mol 。
The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there may be a slight deviation depending on the manufacturing conditions, etc. For example, in the Y-Ba-Cu-Q system, B a 2 for Ylmol
The standard composition is 101% Cu 3 mol, but in practice Ba2 ± 0.6 for Y1a + ol.
mol.

Cu3±0.21101程度のずれは問題ない。A deviation of approximately Cu3±0.21101 is not a problem.

また上述の粉末焼結に限らず、蒸着法、スパッタリング
法、CVD法などの方法による膜状の酸化物超電導体を
形成することもできる。更に酸化物超電導体ペーストを
用いたスクリーン印刷法、ゾル・ゲル法等を用いての製
造もできる。更に金属管等のシース材を用いての線材化
、溶湯急冷法を用いての線材化等も可能である。
In addition to the powder sintering described above, a film-like oxide superconductor can also be formed by a method such as a vapor deposition method, a sputtering method, or a CVD method. Furthermore, it can also be manufactured using a screen printing method using an oxide superconductor paste, a sol-gel method, or the like. Furthermore, it is also possible to make a wire using a sheath material such as a metal tube, or to make a wire using a molten metal quenching method.

なお本発明に用いる酸化物超電導体ではBa元素をSr
、Caの少なくとも一種で置換することができる。この
様な置換量よっても臨界電流密度を向上することかで・
きる。置換は少量でその効果を発揮するが、0.01m
ol、%以上の添加でその効果が顕著となる。置換量は
超電導特性を低下させない程度の範囲で適宜設定可能で
あるが1、あまり多量の置換は超電導特性を低下してし
まうため80mo1%以下、さらに実用上は一20mo
1%以下程度の添加含有量が好ましい。さらにCuの一
部をTi、V、Cr、Mn、Fa、Co、Ni。
In addition, in the oxide superconductor used in the present invention, Ba element is replaced with Sr.
, Ca. Is it possible to improve the critical current density by such a substitution amount?
Wear. Replacement is effective in small amounts, but 0.01 m
The effect becomes remarkable when it is added in an amount of 1% or more. The amount of substitution can be set as appropriate within a range that does not reduce the superconducting properties1, but too much substitution will reduce the superconducting properties, so it should be less than 80 mo1%, and more practically -20 mo.
The added content is preferably about 1% or less. Furthermore, a part of Cu is Ti, V, Cr, Mn, Fa, Co, and Ni.

Zn等で置換して臨界電流密度を向上することもできる
。置換は少量でその効果を発揮するが、0.01so1
%以上の添加でその効果が顕著となる。置換量は超電導
特性を低下させない程度の範囲で適宜設定可能であるが
、あまり多量の置換は超電導特性を低下してしまうため
80io1%以下、さらに実用上は20mo1%以下程
度の添加量を量が好ましい。
The critical current density can also be improved by substituting with Zn or the like. Substitution exhibits its effect in small amounts, but 0.01so1
The effect becomes remarkable when the addition amount is more than %. The amount of substitution can be set as appropriate within a range that does not reduce the superconducting properties, but too much substitution will reduce the superconducting properties, so the addition amount should be 80io1% or less, and more practically 20mo1% or less. preferable.

(実施例) 以下に本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例−1 原子比でY:Ba:Cu=1 : 2 : 3となるよ
うに、Y  O、BaC0、CuOを秤量し、さらに弗
化アンモニウムを前記原料全体に対し30重量%添加し
た原料を十分混合した後900℃で仮焼した後、粉砕し
た。この混合原料を%0℃、12H1酸素中の条件で焼
成した。次いで860℃、 IOHの条件で加熱処理を
施した。
Example-1 A raw material was prepared in which Y2O, BaC0, and CuO were weighed so that the atomic ratio was Y:Ba:Cu=1:2:3, and 30% by weight of ammonium fluoride was added to the total raw material. After thorough mixing, the mixture was calcined at 900°C and then pulverized. This mixed raw material was fired under conditions of 0° C. and 12H1 oxygen. Next, heat treatment was performed under the conditions of 860°C and IOH.

得られた酸化物超電導体の超電導特性を調べたところ、
臨界温度Tcは一50℃と優れたものであった。
When we investigated the superconducting properties of the obtained oxide superconductor, we found that
The critical temperature Tc was excellent at -50°C.

実施例−2 YをYbに変え、実施例−1と同様にして酸化物超電導
体を製造した。
Example 2 An oxide superconductor was produced in the same manner as in Example 1 except that Y was replaced with Yb.

この酸化物超電導体の超電導特性を調べたところ、Tc
−−50℃と非常に優れたものであった。
When we investigated the superconducting properties of this oxide superconductor, we found that Tc
--50°C, which was very excellent.

実施例−3 弗化アンモニウムの添加量を40%に変え、実施例−1
と同様にして酸化物超電導体を製造した。
Example-3 The amount of ammonium fluoride added was changed to 40%, and Example-1
An oxide superconductor was produced in the same manner.

この酸化物超電導体の超電導特性を調べたところ、Tc
−−60℃と非常に優れたものであった。
When we investigated the superconducting properties of this oxide superconductor, we found that Tc
--60°C, which was very excellent.

比較例−1 弗化アンモニウムを添加することなく、実施例−1と同
様にして酸化物超電導体を製造した。
Comparative Example-1 An oxide superconductor was produced in the same manner as in Example-1 without adding ammonium fluoride.

得られた酸化物超電導体の超電導特性を調べたところ、
臨界温度はTc−−180℃と低いものであった。
When we investigated the superconducting properties of the obtained oxide superconductor, we found that
The critical temperature was as low as Tc--180°C.

[発明の効果] 以上説明したように本発明によれば臨界温度の高い酸化
物超電導体を得ることができる。従って工業上寄与する
こと大である。
[Effects of the Invention] As explained above, according to the present invention, an oxide superconductor with a high critical temperature can be obtained. Therefore, it will make a great contribution to industry.

Claims (4)

【特許請求の範囲】[Claims] (1)Ln元素(LnはY、La、Sc、Nd、Sm、
Eu、Gd、Dy、Ho、Er、Tm、Yb、Luの少
なくとも一種)、AE元素(Ba、Ca及びSrの少な
くとも一種)及びCuを含有するペロブスカイト構造の
酸化物超電導体の製造方法に於いて、原料として弗素含
有のアンモニウム塩を混合し酸素の一部を弗素で置換す
ることを特徴とする酸化物超電導体の製造方法。
(1) Ln element (Ln is Y, La, Sc, Nd, Sm,
In a method for producing an oxide superconductor with a perovskite structure containing at least one of Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu), an AE element (at least one of Ba, Ca, and Sr), and Cu. A method for producing an oxide superconductor, which comprises mixing a fluorine-containing ammonium salt as a raw material and replacing a portion of oxygen with fluorine.
(2)酸化物超電導体はLn、AE、Cuを原子比で実
質的に1:2:3の比率で含有することを特徴とする特
許請求の範囲第1項記載の酸化物超電導体の製造方法。
(2) Production of an oxide superconductor according to claim 1, wherein the oxide superconductor contains Ln, AE, and Cu in an atomic ratio of substantially 1:2:3. Method.
(3)酸化物超電導体はLnBa_2Cu_3O_7_
−_δ(δは酸素欠陥を表わす)で表わされる酸素欠陥
型ペロブスカイト構造を有することを特徴とする特許請
求の範囲第1項記載の酸化物超電導体の製造方法。
(3) The oxide superconductor is LnBa_2Cu_3O_7_
2. The method for producing an oxide superconductor according to claim 1, wherein the oxide superconductor has an oxygen-deficient perovskite structure represented by -_δ (δ represents an oxygen defect).
(4)弗素の置換量は酸素の90原子%以下であること
を特徴とする特許請求の範囲第1項記載の酸化物超電導
体の製造方法。
(4) The method for producing an oxide superconductor according to claim 1, wherein the amount of fluorine substituted is 90 atomic % or less of oxygen.
JP62133951A 1987-05-29 1987-05-29 Production of oxide superconductor Pending JPS63297213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62133951A JPS63297213A (en) 1987-05-29 1987-05-29 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62133951A JPS63297213A (en) 1987-05-29 1987-05-29 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPS63297213A true JPS63297213A (en) 1988-12-05

Family

ID=15116886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62133951A Pending JPS63297213A (en) 1987-05-29 1987-05-29 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPS63297213A (en)

Similar Documents

Publication Publication Date Title
JPS63291817A (en) Oxide superconductor
JP2593475B2 (en) Oxide superconductor
JPS63297213A (en) Production of oxide superconductor
JP2752969B2 (en) Oxide superconductor
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
CA1335327C (en) Oxide superconductor and manufacturing method thereof
JPS63297217A (en) Production of oxide superconductor
JPS63297214A (en) Production of oxide superconductor
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPS63297216A (en) Production of oxide superconductor
JP2588200B2 (en) Manufacturing method of oxide superconductor
JPS63270317A (en) Oxide superconductor
JPS63297215A (en) Production of oxide superconductor
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPS63307110A (en) Oxide superconductor
JPS63291818A (en) Oxide superconductor
JPH01122922A (en) Oxide superconductor
JPH01153518A (en) Oxide superconductor and production thereof
JPH01192758A (en) Superconducting ceramic
JPH01179722A (en) Production of oxide superconductor
JPH01126260A (en) Oxide superconductor
JPH01164762A (en) Compound oxide type superconducting sintered body
US5244871A (en) N-type oxide superconductor represented by the formula (Ndx (Cey Lz)2 CuO4-d where L is La, Mg or a mixture of alakaline earth elements
JPS63291377A (en) Connecting method for oxide superconductor
JP2748943B2 (en) Oxide superconductor