JPH01164762A - Compound oxide type superconducting sintered body - Google Patents

Compound oxide type superconducting sintered body

Info

Publication number
JPH01164762A
JPH01164762A JP62321704A JP32170487A JPH01164762A JP H01164762 A JPH01164762 A JP H01164762A JP 62321704 A JP62321704 A JP 62321704A JP 32170487 A JP32170487 A JP 32170487A JP H01164762 A JPH01164762 A JP H01164762A
Authority
JP
Japan
Prior art keywords
sintered body
oxide superconductor
oxide
superconducting
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62321704A
Other languages
Japanese (ja)
Inventor
Isao Ikeda
功 池田
Shunichiro Tanaka
俊一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62321704A priority Critical patent/JPH01164762A/en
Publication of JPH01164762A publication Critical patent/JPH01164762A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a compound oxide type superconducting sintered body having improved mechanical properties such as strength, hardness, etc., by dispersing an oxide superconductor continuously into a sintered body of SiC ceramic. CONSTITUTION:A melted oxide superconductor is impregnated into pores of a sintered body of a porous SiC ceramic having continuous pores wherein said pores are formed continuously upto the surface of the sintered body. Then, the impregnated product is heat-treated in an atmosphere capable of supplying a sufficient amt. of O2. Thus, a target compound sintered body of an oxide superconducting material is obtd. by improving the superconducting characteristic of the oxide superconductor. In this case, an appropriate space factor of the oxide superconductor in said sintered body is 5-45vol.%. Examples of representative system of the oxide superconductor are Y-Ba-CUO type one(A), systems obtd. by replacing a rare element such as Y in (A) by Eu, Dy, Ho, Er, Tm, etc., for example, Eu-Ba-Cu-O system, etc.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) 本発明は、強度や硬度などに優れた複合型酸化物超電導
焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a composite oxide superconducting sintered body having excellent strength and hardness.

(従来の技術) 近年、Ba−La−CIJ−0系の層状ペロブスカイト
型の酸化物が高い臨界温度を有する可能性のあることが
発表されて以来、各所で酸化物超電導体の研究が行われ
ている(2.Phys、B Conclensed M
atter64、189−193(1986))。その
中でもY−Ba−Cu−0系で代表される酸素欠陥を有
する欠陥ペロブスカイト型(fLnBa  Cu  O
型)(δは酸素欠陥を表し237−δ 通常1以下、しnは、”/ 、 La、 5cSNdS
Sn+、 Eu、 Gd。
(Prior Art) In recent years, since it was announced that Ba-La-CIJ-0-based layered perovskite oxides may have a high critical temperature, research on oxide superconductors has been carried out in various places. (2. Phys, B Condensed M
atter64, 189-193 (1986)). Among them, defective perovskite type (fLnBa Cu O
type) (δ represents oxygen defect, 237-δ is usually less than 1, and n is “/”, La, 5cSNdS
Sn+, Eu, Gd.

Dy、 Ho、Er、1m、 Ybおよび[Uから選ば
れた少なくとも1種の元素、Baの一部はSrなどで置
換可能))の酸化物超電導体は、臨界温度が90に以上
と液体窒素の沸点以上の高い温度を示すため非常に有望
な材料として注目されている(Phys、 Rev、 
LettVol、58  No、9.908−910)
The oxide superconductor of Dy, Ho, Er, 1m, Yb, and [at least one element selected from U, a part of Ba can be replaced with Sr, etc.) has a critical temperature of 90 or more and liquid nitrogen. It is attracting attention as a very promising material because it exhibits a high temperature exceeding the boiling point of (Phys, Rev.
LettVol, 58 No. 9.908-910)
.

このような酸化物超電導体は、結晶性の酸化物であるた
め、これらを超電導部材として利用する場合には、通常
のセラミックス部材と同様にして焼結体を作製し、この
酸化物超電導体焼結体を超電導部材として利用すること
が試みられている。
Since such oxide superconductors are crystalline oxides, when using them as superconducting members, sintered bodies are prepared in the same manner as ordinary ceramic members, and the oxide superconductors are sintered. Attempts have been made to utilize the aggregate as a superconducting member.

(発明が解決しようどする問題点) しかしながら、このような酸化物超電導焼結体は、機械
的強度が弱く、また硬度も小さいなど、機械的性質に欠
点を有している。このような欠点は、各種超電導部材と
して使用する際に、信頼性が低いという重大な問題とな
る。また、このような酸化物超電導焼結体を磁気遮蔽部
材などの構造部材として応用することも考えられている
が、このような場合には、特に機械的性質が重要となる
(Problems to be Solved by the Invention) However, such oxide superconducting sintered bodies have drawbacks in mechanical properties, such as low mechanical strength and low hardness. Such drawbacks pose a serious problem of low reliability when used as various superconducting members. It is also being considered to apply such an oxide superconducting sintered body as a structural member such as a magnetic shielding member, but in such a case, mechanical properties are particularly important.

本発明はこのような従来の問題点を解決するためになさ
れたもので、強度や硬度などの機械的性質を改善した複
合型酸化物超電導焼結体を提供することを目的とする。
The present invention was made to solve these conventional problems, and it is an object of the present invention to provide a composite oxide superconducting sintered body with improved mechanical properties such as strength and hardness.

[発明の構成] (問題点を解決するための手段) 本発明の複合型酸化物超電導焼結体は、SiCtラミッ
クス焼結体中に、酸化物超電導体が連続的に分散されて
いることを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The composite oxide superconducting sintered body of the present invention has an oxide superconductor continuously dispersed in the SiCt ceramic sintered body. It is characterized by

酸化物超電導体としては、多数のものが知られているが
、臨界温度の高い、希土類元素含有のベロブスカイ1〜
型の酸化物超電導体が実用上好ましい。ここでいう希土
類元素を含有しペロブスカイト型構造を有する酸化物超
電導体は、超電導状態を実現できるものであればよく、
たとえばL n B a 2CLI3O7−δ系(Ll
:  Y、  La、 5cXNd、 Sm、Eu、 
Gd。
Many oxide superconductors are known, including rare earth element-containing Belovskies 1 to 1, which have a high critical temperature.
type oxide superconductors are practically preferred. The oxide superconductor containing a rare earth element and having a perovskite structure may be one that can realize a superconducting state,
For example, L n B a 2CLI3O7-δ system (Ll
: Y, La, 5cXNd, Sm, Eu,
Gd.

Dy、 llo、 Er、 Tm、 Yb、口1等の希
土類元素かう選ハれた少なくとも1種の元素を、δは酸
素欠陥を表し通常1以下の数、Baの一部はSr、 C
aなとで、Cuの一部はTi、 V 、 Cr、Hn、
 Fe、 Co、 Ni、 2nなどで置換可能。)な
どの酸素欠陥を有づ−る欠陥ペロブスカイト型、5r−
La−Cu−0系などの層状ペロブスカイト型などの広
義にペロブスカイト型を有する酸化物が例示される。な
お希土類元素は広義の定義どじ、Sc、 YおよびLa
系を含むものとする。代表的な系としてY−Ba−Cu
−0系のほかに、YをEu、 Dy。
At least one element selected from rare earth elements such as Dy, llo, Er, Tm, Yb, etc., δ represents an oxygen defect and is usually a number of 1 or less, and a part of Ba is Sr, C.
a, part of Cu is Ti, V, Cr, Hn,
Can be replaced with Fe, Co, Ni, 2n, etc. ), 5r-
Examples include oxides having a perovskite type in a broad sense, such as a layered perovskite type such as La-Cu-0 type. Rare earth elements have a broad definition, Sc, Y and La.
It shall include the system. Y-Ba-Cu as a representative system
In addition to the -0 series, Y is Eu or Dy.

110、Er、 Tm、 Yb1Luなどの希土類で置
換した系、5c−Ba−Cu−0系、5r−La−Cu
−0系、さらにSrをBa、 Caで置換した系などが
挙げられる。
110, Er, Tm, system substituted with rare earth elements such as Yb1Lu, 5c-Ba-Cu-0 system, 5r-La-Cu
-0 series, and systems in which Sr is replaced with Ba or Ca.

本発明の複合型酸化物超電導焼結体は、たとえば以下の
ようにして作製する。
The composite oxide superconducting sintered body of the present invention is produced, for example, as follows.

まず、連続的な空孔を有し、かつこの空孔が表面部まで
連続して形成されている多孔質なSiCセラミックス焼
結体のこの空孔中に、酸化物超電導体の溶融物を含浸さ
せる。次いで、この含浸体を充分に酸素を供給すること
が可能な雰囲気中で熱処理し、酸化物超電導体の超電導
特性を向上させ、目的とする複合型酸化物超電導焼結体
を得る。
First, a molten oxide superconductor is impregnated into the pores of a porous SiC ceramic sintered body that has continuous pores and these pores are formed continuously up to the surface. let Next, this impregnated body is heat-treated in an atmosphere capable of supplying sufficient oxygen to improve the superconducting properties of the oxide superconductor and obtain the desired composite oxide superconducting sintered body.

このような酸化物超電導体とSiCセラミックスとの複
合部材である複合型酸化物超電導焼結体中の酸化物超電
導体の占有率は、SiCセラミックス焼結体の空孔率で
決定されるわけであるが、あまり少ないと超電導特性が
低下し、またあまり高くとも強度や硬度の向上効果が充
分に得られず、さらに母体となるSiCセラミックス焼
結体の作製も困難となるため、5体積%〜45体積%程
度が適当である。
The occupancy of the oxide superconductor in a composite oxide superconducting sintered body, which is a composite member of such an oxide superconductor and SiC ceramics, is determined by the porosity of the SiC ceramic sintered body. However, if the amount is too low, the superconducting properties will deteriorate, and if the amount is too high, the effect of improving strength and hardness will not be obtained sufficiently, and furthermore, it will be difficult to produce the SiC ceramic sintered body that will be the base material, so it should be set at 5% by volume or more. Approximately 45% by volume is appropriate.

また、上述した酸化物超電導体の溶融物は、たとえば以
下のようにして作製する。
Further, the above-mentioned melt of the oxide superconductor is produced, for example, as follows.

まず、Y 、 Ba、、Cuなとのペロブスカイト型酸
化物超電導体の構成元素を十分混合する。混合の際には
、Y、03、BaCO3、CuOなどの酸化物や炭酸塩
を原料として用いることができるほか、他の焼成後酸化
物に転化する硝酸塩、水酸化物などの化合物を用いても
よい。さらには共沈法などで得たシュウ酸塩などを用い
てもよい。ペロブスカイト型酸化物超電導体を構成する
元素は、基本的に化学量論比の組成となるように混合す
るが、多少製造条件などとの関係でずれていても差支え
ない。
First, the constituent elements of the perovskite oxide superconductor, such as Y, Ba, and Cu, are thoroughly mixed. When mixing, oxides and carbonates such as Y, 03, BaCO3, and CuO can be used as raw materials, as well as other compounds such as nitrates and hydroxides that are converted to oxides after firing. good. Furthermore, oxalate obtained by a coprecipitation method or the like may also be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there may be a slight deviation depending on the manufacturing conditions.

たとえば、Y−Ba−Cu−0系ではY 1molに対
しBa2mol 、Cu 3molが標準組成であるが
、実用上はY 1m01 に対して、Ba 2± 0.
6mol 、Cu 3± 0.4mo1程度のずれは問
題ない。
For example, in the Y-Ba-Cu-0 system, the standard composition is 2 mol of Ba and 3 mol of Cu for 1 mol of Y, but in practice, Ba 2±0.
A deviation of approximately 6 mol and Cu 3±0.4 mol is not a problem.

次いで、前述の原料を十分に混合した後、850°C〜
980℃程度の温度で仮焼した後、るつぼ中に収容し、
この酸化物超電導体の分解温度以上に加熱して溶融させ
る。なお、仮焼は必ずしも必要ではない。
Next, after thoroughly mixing the above-mentioned raw materials, the mixture was heated to 850°C~
After calcining at a temperature of about 980°C, it is placed in a crucible,
This oxide superconductor is heated to a temperature higher than its decomposition temperature to melt it. Note that calcination is not necessarily necessary.

(作 用) 本発明の複合型酸化物超電導焼結体は、前述したように
SiCセラミックスを骨格とし、その空孔中に酸化物超
電導体が連続的に分散している複合部材であるため、こ
のSiCセラミックスが強度向上因子となり、飛躍的に
強度が向上する。
(Function) As described above, the composite oxide superconducting sintered body of the present invention is a composite member in which the skeleton is SiC ceramics and the oxide superconductors are continuously dispersed in the pores. This SiC ceramic becomes a strength improving factor, and the strength is dramatically improved.

また、硬度や耐摩耗性も向上する。一方、超電導特性に
ついては、SiCセラミックスが酸化物超電導体に対し
て安定であるため、臨界温度や臨界電流密度の低下もほ
とんどない。
In addition, hardness and wear resistance are also improved. On the other hand, regarding superconducting properties, since SiC ceramics are stable compared to oxide superconductors, there is almost no decrease in critical temperature or critical current density.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例 まず、それぞれ粒径1〜5μmとしたBaC03粉末、
Y2O3粉末およびCuO粉末を、モル比で0.5:2
:3となるように所定量坪量し、これを十分混合して大
気中900℃で48時間焼成した後に粉砕して、Y−B
a−Cu−0系の酸化物超電導体粉末を得た。
Example First, BaC03 powder with a particle size of 1 to 5 μm,
Y2O3 powder and CuO powder in a molar ratio of 0.5:2
Y-B
An a-Cu-0 based oxide superconductor powder was obtained.

次に、この酸化物超電導体粉末をるつぼ中に収容し、誘
導加熱により1200 ’Cまで加熱して酸化物超電導
体の溶融物を作製した。
Next, this oxide superconductor powder was placed in a crucible and heated to 1200'C by induction heating to produce a melt of the oxide superconductor.

一方、表面まで連続的に形成された空孔を有する3Om
mx 3Ommx 5mmの多孔質SiCセラミックス
焼結体を用意した。なお、このSiCセラミックス焼結
体の空孔率は35%であった。
On the other hand, 3Om with pores continuously formed up to the surface
A porous SiC ceramic sintered body of mx 30mmx 5mm was prepared. Note that the porosity of this SiC ceramic sintered body was 35%.

そして、この多孔質SiCセラミックス焼結体を、上記
酸化物超電導体の溶融物中に浸漬し、このSiCセラミ
ックス焼結体中の空孔内に酸化物超電導体の溶融物を含
浸させた。次いで、このSiCセラミックス焼結体を引
上げた後、酸素雰囲気中において900℃×2時間+6
00℃×200時間の条件で熱処理し、目的とするSi
Cセラミックスと酸化物超電導体との複合部材を得た。
Then, this porous SiC ceramic sintered body was immersed in the melt of the oxide superconductor, and the pores in the SiC ceramic sintered body were impregnated with the melt of the oxide superconductor. Next, after pulling this SiC ceramic sintered body, it was heated at 900°C for 2 hours + 6 hours in an oxygen atmosphere.
Heat treated under the conditions of 00°C x 200 hours to obtain the desired Si
A composite member of C ceramics and an oxide superconductor was obtained.

このようにして得た複合型酸化物超電導焼結体の超電導
特性を測定しljところ、臨界温度90に1臨界電流密
度400AΔ〕イと良好な結果が得られた。
The superconducting properties of the composite oxide superconducting sintered body thus obtained were measured, and good results were obtained, with a critical temperature of 90 and a critical current density of 400 AΔ.

また、この複合型酸化物超電導焼結体の機械的性質を測
定したところ、4点曲げ強度10K(lf/■イ、ビッ
カーズ硬度・Hv1500と、それぞれ酸化物超電導体
単体の焼結体に比べて格段に向上していた。
In addition, when the mechanical properties of this composite oxide superconducting sintered body were measured, the four-point bending strength was 10K (lf/■), and the Vickers hardness was 1500 Hv, which were both higher than that of the sintered body of the oxide superconductor alone. It had improved significantly.

[発明の効果] 以上の実施例からも明らかなように、本発明の複合型酸
化物超電導焼結体は、超電導特性をあまり低下させるこ
となく、弾痕や硬度などの機械的性質が格段に向上した
ものであるため、各種超電導部材として信頼性に優れた
ものとなる。
[Effects of the Invention] As is clear from the above examples, the composite oxide superconducting sintered body of the present invention has significantly improved mechanical properties such as bullet holes and hardness without significantly reducing superconducting properties. Therefore, it has excellent reliability as a variety of superconducting members.

出願人      株式会社 東芝 代理人 弁理士  須 山 佐 −Applicant: Toshiba Corporation Agent Patent Attorney Suyama Sa

Claims (4)

【特許請求の範囲】[Claims] (1)SiCセラミックス焼結体中に、酸化物超電導体
が連続的に分散されていることを特徴とする複合型酸化
物超電導焼結体。
(1) A composite oxide superconducting sintered body characterized in that an oxide superconductor is continuously dispersed in a SiC ceramic sintered body.
(2)前記酸化物超電導体は、希土類元素を含有するペ
ロブスカイト型の酸化物超電導体であることを特徴とす
る特許請求の範囲第1項記載の複合型酸化物超電導焼結
体。
(2) The composite oxide superconducting sintered body according to claim 1, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
(3)前記酸化物超電導体は、希土類元素、Baおよび
Cuを原子比で実質的に1:2:3の割合で含有するこ
とを特徴とする特許請求の範囲第1項記載の複合型酸化
物超電導焼結体。
(3) The composite oxidation according to claim 1, wherein the oxide superconductor contains rare earth elements, Ba and Cu in an atomic ratio of substantially 1:2:3. Superconducting sintered body.
(4)前記酸化物超電導体は、LnBa_2Cu_3O
_7_−_δ(Lnは希土類元素から選ばれた少なくと
も1種の元素を、δは酸素欠陥を表す。)で示される酸
素欠陥型ペロブスカイト構造を有することを特徴とする
特許請求の範囲第1項記載の複合型酸化物超電導焼結体
(4) The oxide superconductor is LnBa_2Cu_3O
Claim 1, characterized by having an oxygen-deficient perovskite structure represented by _7_-_δ (Ln represents at least one element selected from rare earth elements, and δ represents an oxygen defect). composite oxide superconducting sintered body.
JP62321704A 1987-12-19 1987-12-19 Compound oxide type superconducting sintered body Pending JPH01164762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62321704A JPH01164762A (en) 1987-12-19 1987-12-19 Compound oxide type superconducting sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62321704A JPH01164762A (en) 1987-12-19 1987-12-19 Compound oxide type superconducting sintered body

Publications (1)

Publication Number Publication Date
JPH01164762A true JPH01164762A (en) 1989-06-28

Family

ID=18135495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62321704A Pending JPH01164762A (en) 1987-12-19 1987-12-19 Compound oxide type superconducting sintered body

Country Status (1)

Country Link
JP (1) JPH01164762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006905A1 (en) * 1988-12-22 1990-06-28 The Boeing Company Whisker-reinforced ceramic and superconductor fibers from preceramic sol-gel, liquid mix, and polymer precursors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006905A1 (en) * 1988-12-22 1990-06-28 The Boeing Company Whisker-reinforced ceramic and superconductor fibers from preceramic sol-gel, liquid mix, and polymer precursors

Similar Documents

Publication Publication Date Title
EP0495677A1 (en) Oxide superconducting material and process for producing the same
JPS63291817A (en) Oxide superconductor
JPH013015A (en) Superconducting materials and their manufacturing methods
JPH01164762A (en) Compound oxide type superconducting sintered body
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JP2593475B2 (en) Oxide superconductor
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
JPS63270317A (en) Oxide superconductor
KR970001258B1 (en) Super conducting material
JPS63307110A (en) Oxide superconductor
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JPH01160860A (en) Production of sintered material of oxide superconductor
JPS63279513A (en) Superconductor wire rod and its manufacture
JP2854338B2 (en) Copper oxide superconductor
JPH01157452A (en) Fiber reinforced superconductor
JPH0459654A (en) Oxide superconductor
JPH01160875A (en) Setter for calcining oxide superconductor
JPH01160858A (en) Sintered material of oxide superconductor
JPS63274027A (en) Manufacture of superconductive material
JPS63291816A (en) Oxide superconductor
JPH01134809A (en) Superconductive wire material
JPH01164752A (en) Oxide superconductor
JPS63291818A (en) Oxide superconductor
JPH01153518A (en) Oxide superconductor and production thereof