JPH01160875A - Setter for calcining oxide superconductor - Google Patents

Setter for calcining oxide superconductor

Info

Publication number
JPH01160875A
JPH01160875A JP62320736A JP32073687A JPH01160875A JP H01160875 A JPH01160875 A JP H01160875A JP 62320736 A JP62320736 A JP 62320736A JP 32073687 A JP32073687 A JP 32073687A JP H01160875 A JPH01160875 A JP H01160875A
Authority
JP
Japan
Prior art keywords
oxide superconductor
setter
firing
fired
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62320736A
Other languages
Japanese (ja)
Inventor
Shunichiro Tanaka
俊一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62320736A priority Critical patent/JPH01160875A/en
Publication of JPH01160875A publication Critical patent/JPH01160875A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a setter having no bad effect such as contamination to an oxide superconductor, by providing a superconductor having same composition as oxide superconductor contained by a material to be calcined on the face putting a material to be calcined. CONSTITUTION:A setter obtained by providing an oxide superconductor having same composition as the above-mentioned superconductor on the face putting a material to be calcined containing the above-mentioned superconductor or a mixture capable of providing the above-mentioned superconductor by heating. The above-mentioned setter contaminates no oxide superconductor which is a material to be calcined in calcining, since the setter consists of oxide superconductor having same composition as the material. When the material becoming same composition as the material to be calcined through same calcination process as that of material to be calcined is used as the setter, the setter gives no strain to side of the material to be calcined because of having same heat shrinkage as the above-mentioned material in calcination and further make it possible to improve the characteristics of the calcined material.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、被焼成物に対して汚染などの悪影響をおよぼ
すことのない酸化物超電導体焼成用セツタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a setter for firing oxide superconductors that does not have any adverse effects such as contamination on objects to be fired.

(従来の技術) 近年、Ba−La−Cu−0系の層状ベロアスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(Z、Phys、B Condensed Mat
ter64、189−193(1986))。その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥ペロブスカイト型((LnBa2Cu3O7−δ型
)(δは酸素欠陥を表し通常1以下、[nは、Y 、 
La、 Sc、 Nd、 Sm、 Eu、 Gd、Dy
、 No、ErlTm、 YbおよびLtlから選ばれ
た少なくとも1種の元素、Baの一部はSrなどで置換
可能))の酸化物超電導体は、臨界温度が90に以上と
液体窒素の沸点以上の高い温度を示すため非常に有望な
材料として注目されている(Phys、 Rev、 L
ett。
(Prior art) In recent years, since it was announced that Ba-La-Cu-0-based layered velorskite oxides may have a high critical temperature, research on oxide superconductors has been conducted in various places. (Z, Phys, B Condensed Mat
ter64, 189-193 (1986)). Among them, a defective perovskite type ((LnBa2Cu3O7-δ type)) having oxygen vacancies represented by the Y-Ba-Cu-0 system (δ represents an oxygen defect and is usually 1 or less, [n is Y,
La, Sc, Nd, Sm, Eu, Gd, Dy
, No., ErlTm, Yb, and Ltl, a part of Ba can be replaced with Sr, etc.) The oxide superconductor has a critical temperature of 90 or higher, which is higher than the boiling point of liquid nitrogen. It is attracting attention as a very promising material because it exhibits high temperatures (Phys, Rev, L
ett.

Vol、58 No、9,908−910)。Vol. 58 No. 9, 908-910).

このような酸化物超電導体は、結晶性の酸化物であるた
め、これらを超電導部材として利用する場合には、通常
のセラミックス部材と同様に、たとえば酸化物超電導体
粉末を用い、プレス成形法などによって作製した成形体
を、あるいは酸化物超電導体粉末に有機系バインダを添
加した混合物を用い、スリツプキせスティング法、削出
成形法、押出し成形法などの各種成形法によって作製し
た成形体を、固相で焼成することによって焼結体を作製
し、この酸化物超電導体焼結体を超電導部材として利用
することが試みられている。
Since such oxide superconductors are crystalline oxides, when they are used as superconducting members, they can be used in the same way as ordinary ceramic members, such as by using oxide superconductor powder and press molding. The molded body produced by the method, or the molded body produced by various molding methods such as the slip-and-sting method, the extrusion molding method, and the extrusion molding method using a mixture of oxide superconductor powder and an organic binder, is hardened. Attempts have been made to produce a sintered body by firing the phase, and to utilize this oxide superconductor sintered body as a superconducting member.

ところで、このようにして酸化物超電導体の成形体を焼
成する際には、通常のセラミックス焼結体と同様、にセ
ツタ上に成形体を載置し、この状態で焼成炉内に配置し
て焼成している。この警戒用セツタとしては、現状では
アルミナセラミックス焼結体やジルコニアセラミックス
焼結体などの耐熱性に優れた部材が使用されている。
By the way, when firing an oxide superconductor molded body in this way, the molded body is placed on a setter and placed in a firing furnace in the same way as a normal ceramic sintered body. It is being fired. Currently, members with excellent heat resistance such as alumina ceramic sintered bodies and zirconia ceramic sintered bodies are used as the warning setter.

(発明が解決しようとする問題点) しかしながら、−L述したような讐成用セッタを使用し
て作製した酸化物超電導体焼結体においては、焼成中に
酸化物超電導体と焼成用セツタとがその界面で反応し、
19られる酸化物超電導体焼結体が焼成用セツタの構成
成分によって汚染され、充分に超電導特性を発揮できな
いという問題が発生している。
(Problems to be Solved by the Invention) However, in the oxide superconductor sintered body produced using the firing setter as described above, the oxide superconductor and the firing setter are separated during firing. reacts at the interface,
A problem has arisen in that the oxide superconductor sintered body produced in the sintered body is contaminated by the constituent components of the firing setter, and cannot exhibit sufficient superconducting properties.

本発明はこのような従来の問題点を解決するためになさ
れたもので、酸化物超電導体に対して汚染などの悪影響
をおよぼすことのない酸化物超電導体焼成用セツタを提
供することを目的とする。
The present invention was made to solve these conventional problems, and an object of the present invention is to provide a setter for firing oxide superconductors that does not have any adverse effects such as contamination on oxide superconductors. do.

[発明の構成] 〈問題点を解決するための手段) 本発明の酸化物超電導体焼成用セックは、酸化物超電導
体または加熱により前記酸化物超電導体となる混合物を
含有する被焼成物の前記酸化物iI!1電導体と実質的
に同一組成を有する酸化物超電導体が、少なくとも前記
被焼成物の載置面に存在していることを特徴としている
[Structure of the Invention] <Means for Solving the Problems] The SEC for sintering an oxide superconductor of the present invention is a method for firing an oxide superconductor or a mixture that becomes the oxide superconductor by heating. Oxide II! The present invention is characterized in that an oxide superconductor having substantially the same composition as the one conductor is present at least on the mounting surface of the object to be fired.

酸化物超電導体としては、多数のものが知られているが
、臨界温度の高い、希土類元素含有のペロブスカイト型
の酸化物超電導体の使用が実用的効果が高い。ここでい
う希土類元素を含有しペロブスカイト型構造を有する酸
化物超電導体としては、超電導状態を実現できるもので
あればよく、たとえばLnBa2Cu3O7−δ系(L
nはYlLa、 SC。
Although a large number of oxide superconductors are known, the use of perovskite-type oxide superconductors containing rare earth elements, which have a high critical temperature, have a high practical effect. The oxide superconductor containing a rare earth element and having a perovskite structure may be any material as long as it can realize a superconducting state, such as LnBa2Cu3O7-δ (LnBa2Cu3O7-δ system).
n is YlLa, SC.

Nd15m、 Eu、 Gd1Dy1No、 Er、 
Tm、 YbXLu等の希土類元素から選ばれた少なく
とも1種の元素を、δは酸素欠陥を表し通常1以下の数
、Baの一部はSr、 Caなどで、Cuの一部はTi
、 V 、 Cr、 Hn、 re、Co、 Ni、 
Znなどで置換可能。)などの酸素欠陥を有する欠陥ペ
ロブスカイト型、5r−La−Cu−0系などの層状ペ
ロブスカイト型などの広義にペロブスカイト型を有する
酸化物が例示される。なお希土類元素は広義の定GQと
し、sc、 yおよびLa系をSむものとする。代表的
な系としてY−Ba−Cu−0系のほかに、YをEu、
 Dy、 llo、’Er、 Tm、 Yb、 Luな
どの希土類で置換した系、5c−Ba−Cu−0系、5
r−La−Cu−0系、さらにSrをBa、’Caで置
換した系などが挙げられる。
Nd15m, Eu, Gd1Dy1No, Er,
At least one element selected from rare earth elements such as Tm and YbXLu, δ represents an oxygen defect and is usually a number of 1 or less, a part of Ba is Sr, Ca, etc., and a part of Cu is Ti.
, V, Cr, Hn, re, Co, Ni,
Can be replaced with Zn, etc. Examples include oxides having a perovskite type in a broad sense, such as a defective perovskite type having oxygen defects such as ), and a layered perovskite type such as a 5r-La-Cu-0 system. Note that rare earth elements are defined as GQ in a broad sense, and sc, y, and La systems are defined as S. In addition to the Y-Ba-Cu-0 system, representative systems include Y for Eu,
Dy, llo, 'Er, Tm, Yb, system substituted with rare earth elements such as Lu, 5c-Ba-Cu-0 system, 5
Examples include the r-La-Cu-0 system and systems in which Sr is replaced with Ba or 'Ca.

このような酸化物超電導体は、たとえば以下のようにし
て作製する。
Such an oxide superconductor is produced, for example, as follows.

まず、Y 、 Ba、 Cuなどのペロブスカイト型酸
化物超電導体の構成元素を十分混合する。混合の際には
、Y203 、BaCO3、CuOなどの酸化物や炭酸
塩を原料として用いることができるほか、他の焼成後酸
化物に転化する硝酸塩、水酸化物などの化合物を用いて
もよい。さらには共沈法などで得たシュウ酸塩などを用
いてもよい。次いで、前述の原料を十分に混合した後、
850〜980℃程度の温度で焼成して結晶化させ、こ
の焼成物を粉砕して酸化物超電導体粉末を作製する。
First, the constituent elements of the perovskite oxide superconductor, such as Y, Ba, and Cu, are thoroughly mixed. At the time of mixing, oxides and carbonates such as Y203, BaCO3, and CuO can be used as raw materials, and other compounds such as nitrates and hydroxides that are converted into oxides after firing may also be used. Furthermore, oxalate obtained by a coprecipitation method or the like may also be used. Then, after thoroughly mixing the aforementioned raw materials,
The fired product is crystallized by firing at a temperature of about 850 to 980°C, and the fired product is pulverized to produce an oxide superconductor powder.

次に、この酸化物超電導体粉末または上述した酸化物超
電導体の原料となる混合粉末を用いて、プレス成形法な
どによって成形体を作製するか、あるいはこれらに有機
系バインダを添加・混合し、この混合物に必要に応じて
各種添加剤や分散媒などをさらに加え、プレス成形法、
射出成形法、スリップキャスティング法などの各種成形
手段によって成形体を作製する。
Next, using this oxide superconductor powder or the mixed powder that is the raw material for the oxide superconductor described above, a molded body is produced by a press molding method or the like, or an organic binder is added and mixed therein, Various additives and dispersion media are further added to this mixture as necessary, and press molding is performed.
A molded body is produced by various molding methods such as injection molding and slip casting.

次いで、有機系バインダを含有する成形体は、所定の温
度で脱脂した後に、所定の温度で焼成して酸化物超電導
体焼結体を作製する。さらにこの後、この焼成工程に引
続いて、あるいは別工程として酸素を充分に供給するこ
とが可能な雰囲気中で3O0℃〜700℃程度の温度条
件で数時間程度保持するか、または同様な雰囲気中で3
O0℃程度まで徐冷することにより超電導特性を向上さ
せて、目的とする酸化物超電導体が得られる。
Next, the molded body containing the organic binder is degreased at a predetermined temperature and then fired at a predetermined temperature to produce an oxide superconductor sintered body. Furthermore, following this firing step or as a separate step, the temperature is maintained at a temperature of about 300°C to 700°C for several hours in an atmosphere where oxygen can be sufficiently supplied, or in a similar atmosphere. 3 inside
The superconducting properties are improved by slow cooling to about 00°C, and the desired oxide superconductor can be obtained.

本発明の酸化物超電導体焼成用セツタは、下記の組成物
のいずれかにより形成したもの、あるいは、下記の組成
物のいずれかを、たとえばアルミナセラミックスやジル
コニアセラミックスのような耐熱性部材を母材として、
これらの表面層として有しているものである。
The setter for sintering oxide superconductors of the present invention is made of one of the following compositions, or one of the following compositions is used as a base material of a heat-resistant member such as alumina ceramics or zirconia ceramics. As,
It has as a surface layer of these.

■ 被焼成物である酸化物超電導体成形体または脱脂体
、あるいは前述した酸化物超電導体の原料となる混合物
の成形体または脱脂体と同一の焼成工程を経て実質的に
同一組成の酸化物超電導体焼結体となる酸化物超電導体
未焼結体。
■ Oxide superconductors with substantially the same composition through the same firing process as the oxide superconductor molded or degreased body that is the object to be fired, or the molded body or degreased body of the mixture that is the raw material for the oxide superconductor mentioned above. An oxide superconductor unsintered body that becomes a sintered body.

■ 被焼成物である酸化物超電導体成形体または脱脂体
、あるいは前述した酸化物超電導体の原料となる混合物
の成形体または脱脂体の焼成後の組成と実質的に同一・
な組成を有する酸化物超電導体焼結体。
■ The composition after firing of the oxide superconductor molded body or degreased body that is the object to be fired, or the molded body or degreased body of the mixture that is the raw material for the oxide superconductor mentioned above.
An oxide superconductor sintered body with a composition of

■ 被焼成物である酸化物超電導体焼結体と実質的に同
一な組成を有する酸化物超電導体焼結体。
■ An oxide superconductor sintered body having substantially the same composition as the oxide superconductor sintered body to be fired.

なお、これらにおいて、たとえば被焼成物がY−Ba−
Cu−0系の酸化物超電導体の場合には、このYの一部
を他の希土類元素で置換したもののような、実質的に性
質や特性が同様なものであれば使用可能である。
In addition, in these, for example, the object to be fired is Y-Ba-
In the case of a Cu-0-based oxide superconductor, it is possible to use one having substantially similar properties and characteristics, such as one in which a portion of Y is replaced with another rare earth element.

前述したように、酸化物超電導体の製造工程においては
、その製造工程の差によっていくつかの焼成処理が存在
しており、その被焼成物の焼成過程と同一の焼成過程を
経て実質的に同一な組成を有する焼成物となる組成物を
使用することが好ましい。たとえば、有機系バインダを
含有する成形体を脱脂・焼成する際には、それと同一の
成形体を用いることが好ましが、酸化物超電導体焼結体
を使用することも可能である。また、焼成時には被焼成
物と焼成用セツタとの間に、同一組成の酸化物超電導体
粉末を敷粉として使用することも好ましい。
As mentioned above, in the manufacturing process of oxide superconductors, there are several firing processes depending on the manufacturing process. It is preferable to use a composition that yields a fired product having a specific composition. For example, when degreasing and firing a molded body containing an organic binder, it is preferable to use the same molded body, but it is also possible to use an oxide superconductor sintered body. Further, during firing, it is also preferable to use oxide superconductor powder of the same composition as a bedding powder between the object to be fired and the setter for firing.

また、本発明の酸化物超電導体焼成用セツタの形状とし
ては、被焼成物が載置可能な形状であればどのような形
状であってもよいが、特に焼成時の雰囲気の通過孔を有
するもの、たとえば貫通孔を有するものや多孔質なもの
が好ましい。これによって、たとえば酸素アニールの際
に被焼成物に対して酸素を均一に供給することができる
などの効果が得られる。
Further, the shape of the setter for sintering an oxide superconductor of the present invention may be any shape as long as the object to be fired can be placed thereon, but in particular, the setter may have any shape as long as the object to be fired can be placed thereon. For example, a material having through holes or a porous material is preferable. As a result, effects such as being able to uniformly supply oxygen to the object to be fired can be obtained during oxygen annealing, for example.

(作 用) 本発明の酸化物超電導体焼成用セツタは、被焼成物と実
質的に同一組成の酸化物超電導体からなるものであるこ
とから、焼成時に被焼成物である酸化物超電導体を汚染
することがない。また、特に被焼成物の焼成過程と同一
の焼成過程を経て実質的に同一組成となるものであれば
、焼成時における加熱収縮率が同一であるため、被焼成
物側に歪みを生じさせることもなく、さらに焼成物の特
性を向上させることが可能である。
(Function) The setter for firing an oxide superconductor of the present invention is made of an oxide superconductor having substantially the same composition as the object to be fired. No contamination. In addition, especially if the material has substantially the same composition through the same firing process as the firing process, the heat shrinkage rate during firing will be the same, so distortion will not occur in the fired product. Therefore, it is possible to further improve the properties of the fired product.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1 まず、それぞれ粒径1〜5μmとしたBaC03粉末2
m01、Y2O3粉末0.5mof 、CuO粉末3m
olを十分混合して大気中900℃で48時間焼成した
後に粉砕して、欠陥ペロブスカイト型の酸化物超電導体
粉末を得た。
Example 1 First, BaC03 powder 2 each having a particle size of 1 to 5 μm was prepared.
m01, Y2O3 powder 0.5mof, CuO powder 3m
The mixture was thoroughly mixed with 100 ml of ol, fired at 900° C. for 48 hours in the air, and then pulverized to obtain a defective perovskite-type oxide superconductor powder.

次に、この酸化物超電導体粉末91重量%とバインダ成
分としてパラフィン3重量%とを充分に混合し、この混
合物を成形材料として用い、プレス成形法によって50
+u+x 50mn+x厚さ5mmの板状成形体を作製
し、これに直径5mmの貫通孔を多数形成して焼成用セ
ックとした。
Next, 91% by weight of this oxide superconductor powder and 3% by weight of paraffin as a binder component were thoroughly mixed, this mixture was used as a molding material, and a 50%
+u+x A plate-shaped molded body having a thickness of 50 mm and a thickness of 5 mm was prepared, and a large number of through holes each having a diameter of 5 mm were formed therein to obtain a firing stock.

一方、前述の酸化物超電導体粉末を用いて、この酸化物
超電導体粉末97重量%とバインダ成分としてパラフィ
ン3重量%とを充分に混合し、この混合物を成形材料と
して用い、射出成形法によって外径29IIIIB×内
径10111111 X厚さ5+nmの被焼成物となる
円管状の成形体を作製した。
On the other hand, using the above-mentioned oxide superconductor powder, 97% by weight of this oxide superconductor powder and 3% by weight of paraffin as a binder component were thoroughly mixed, and this mixture was used as a molding material and extruded by injection molding. A cylindrical molded body having a diameter of 29IIIB×inner diameter of 10111111×thickness of 5+nm was prepared to serve as an object to be fired.

次に、この成形体を、上記焼成用セツタ上に前述の酸化
物超電導体粉末を介して載置し、これを焼成炉内に設置
して、この焼成炉内に2℃/分〜3β/分で空気を供給
しながら、550℃まで10℃/分で昇温し、この温度
で1時間保持して脱脂処理を行った。続いて93O℃ま
で昇温し、この温度で酸素ガスを供給しながら3O時間
保持して焼結させた。この後、3O0℃まで酸素ガスを
供給しながら徐冷し、目的とする酸化物超電導体を得た
Next, this molded body was placed on the above-mentioned firing setter with the oxide superconductor powder interposed therebetween, and this was placed in a firing furnace where it was heated at 2°C/min to 3β/min. The temperature was raised to 550° C. at a rate of 10° C./min while supplying air at a rate of 10° C./min, and this temperature was maintained for 1 hour to perform a degreasing treatment. Subsequently, the temperature was raised to 930° C., and sintering was carried out by maintaining this temperature for 30 hours while supplying oxygen gas. Thereafter, the mixture was slowly cooled to 300° C. while supplying oxygen gas to obtain the desired oxide superconductor.

このようにして得た酸化物超電導体をE PMAおよび
ICP発光分光分析したところ、汚染もなく、また歪み
の発生も認められなかった。また、この酸化物超電導焼
結体の超電導特性を測定したところ、臨界温度93K、
臨界電流密度500A/c7と良好な結果が得られた。
When the oxide superconductor thus obtained was subjected to EPMA and ICP emission spectroscopic analysis, no contamination and no distortion was observed. In addition, when we measured the superconducting properties of this oxide superconducting sintered body, we found that the critical temperature was 93K,
Good results were obtained with a critical current density of 500 A/c7.

実施例2 実施例1で作製した未焼結の焼成用セツタを、550℃
× 1時間+93O℃×3O時間の条件で焼成して、こ
の実施例の焼成用セツタとした。
Example 2 The unsintered firing setter produced in Example 1 was heated to 550°C.
The setter for firing of this example was obtained by firing under the conditions of × 1 hour + 930° C. × 30 hours.

次いで、この焼成用セック上に実施例1で作製した被焼
成物となる酸化物超電導体の成形体を載置し、実施例1
と同一条件で焼成して酸化物超電導体を作製した。
Next, the molded body of the oxide superconductor produced in Example 1 to be the object to be fired was placed on this baking sheet, and the molded body of Example 1 was placed.
An oxide superconductor was produced by firing under the same conditions as above.

このようにして得た酸化物超電導体についても、汚染も
なく、超電導特性に優れたものであった。
The oxide superconductor thus obtained was also free of contamination and had excellent superconducting properties.

[発明の効果] 以上の説明したように本発明の酸化物超電導体焼成用セ
ックによれば、焼成時にセックの構成成分による酸化物
超電導体の汚染もなく、また特に被焼成物と同一工程を
経て実質的に同一組成の焼成物となるものを使用するこ
とによって、焼成時における加熱収縮による歪みの発生
もなく、超電導特性に優れた酸化物超電導体が得られる
[Effects of the Invention] As explained above, according to the SEC for firing an oxide superconductor of the present invention, there is no contamination of the oxide superconductor by the constituent components of the SEC during firing, and in particular, the same process as that of the object to be fired is performed. By using a fired product that has substantially the same composition over time, an oxide superconductor with excellent superconducting properties can be obtained without distortion due to heat shrinkage during firing.

出願人      株式会社 東芝 代理人 弁理士  須 山 佐 −Applicant: Toshiba Corporation Agent Patent Attorney Suyama Sa

Claims (8)

【特許請求の範囲】[Claims] (1)酸化物超電導体または加熱により前記酸化物超電
導体となる混合物を含有する被焼成物の前記酸化物超電
導体と実質的に同一組成を有する酸化物超電導体が、少
なくとも前記被焼成物の載置面に存在している酸化物超
電導体焼成用セツタ。
(1) An oxide superconductor having substantially the same composition as the oxide superconductor of the to-be-fired object containing an oxide superconductor or a mixture that becomes the oxide superconductor by heating is at least A setter for firing oxide superconductor located on the mounting surface.
(2)前記被焼成物である前記酸化物超電導体成形体ま
たは脱脂体、あるいは前記酸化物超電導体となる混合物
の成形体または脱脂体と同一の焼成工程を経て実質的に
同一組成の酸化物超電導体焼結体となる酸化物超電導体
未焼結体が、少なくとも前記被焼成物の載置面に存在し
ている特許請求の範囲第1項記載の酸化物超電導体焼成
用セッタ。
(2) An oxide having substantially the same composition through the same firing process as the oxide superconductor molded body or degreased body that is the article to be fired, or the molded body or degreased body of the mixture that becomes the oxide superconductor. The setter for sintering an oxide superconductor according to claim 1, wherein the oxide superconductor unsintered body that becomes the superconductor sintered body is present at least on the mounting surface of the object to be fired.
(3)前記被焼成物である前記酸化物超電導体成形体ま
たは脱脂体、あるいは前記酸化物超電導体となる混合物
の成形体または脱脂体の焼成後の組成と実質的に同一な
組成を有する酸化物超電導体焼結体が、少なくとも前記
被焼成物の載置面に存在している特許請求の範囲第1項
記載の酸化物超電導体焼成用セッタ。
(3) Oxidation having a composition that is substantially the same as the composition after firing of the oxide superconductor molded body or degreased body that is the object to be fired, or the molded body or degreased body of the mixture that becomes the oxide superconductor. The setter for firing an oxide superconductor according to claim 1, wherein the sintered body of the oxide superconductor is present at least on the mounting surface of the object to be fired.
(4)前記被焼成物である前記酸化物超電導体焼結体と
実質的に同一な組成を有する酸化物超電導体焼結体が、
少なくとも前記被焼成物の載置面に存在している特許請
求の範囲第1項記載の酸化物超電導体焼成用セッタ。
(4) An oxide superconductor sintered body having substantially the same composition as the oxide superconductor sintered body that is the object to be fired,
The setter for firing an oxide superconductor according to claim 1, wherein the setter is present at least on the mounting surface of the object to be fired.
(5)空気の通過孔を有する特許請求の範囲第1項ない
し第4項のいずれか1項記載の酸化物超電導体焼成用セ
ッタ。
(5) A setter for firing an oxide superconductor according to any one of claims 1 to 4, which has air passage holes.
(6)前記酸化物超電導体は、希土類元素を含有するペ
ロブスカイト型の酸化物超電導体である特許請求の範囲
第1項ないし第5項のいずれか1項記載の酸化物超電導
体焼成用セッタ。
(6) The setter for firing an oxide superconductor according to any one of claims 1 to 5, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
(7)前記酸化物超電導体は、希土類元素、Baおよび
Cuを原子比で実質的に1:2:3の割合で含有する特
許請求の範囲第1項ないし第5項のいずれか1項記載の
酸化物超電導体焼成用セッタ。
(7) The oxide superconductor according to any one of claims 1 to 5, wherein the oxide superconductor contains rare earth elements, Ba and Cu in an atomic ratio of substantially 1:2:3. A setter for firing oxide superconductors.
(8)前記酸化物超電導体は、LnBa_2Cu_3O
_7_−_δ(Lnは希土類元素から選ばれた少なくと
も1種の元素を、δは酸素欠陥を表す。)で示される酸
素欠陥型ペロブスカイト構造を有する特許請求の範囲第
1項ないし第5項のいずれか1項記載の酸化物超電導体
焼成用セッタ。
(8) The oxide superconductor is LnBa_2Cu_3O
Any one of claims 1 to 5 having an oxygen-deficient perovskite structure represented by _7_-_δ (Ln represents at least one element selected from rare earth elements, and δ represents an oxygen defect). The setter for firing an oxide superconductor according to item 1.
JP62320736A 1987-12-18 1987-12-18 Setter for calcining oxide superconductor Pending JPH01160875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320736A JPH01160875A (en) 1987-12-18 1987-12-18 Setter for calcining oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320736A JPH01160875A (en) 1987-12-18 1987-12-18 Setter for calcining oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01160875A true JPH01160875A (en) 1989-06-23

Family

ID=18124730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320736A Pending JPH01160875A (en) 1987-12-18 1987-12-18 Setter for calcining oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01160875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744715A1 (en) * 1996-01-05 1997-08-14 Univ Princeton PROCESS FOR PRODUCING CERAMIC SUPERCONDUCTING MONOCRYSTALS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744715A1 (en) * 1996-01-05 1997-08-14 Univ Princeton PROCESS FOR PRODUCING CERAMIC SUPERCONDUCTING MONOCRYSTALS

Similar Documents

Publication Publication Date Title
US5306700A (en) Dense melt-based ceramic superconductors
US5292716A (en) Oxide superconducting material and process for producing the same
EP0493007A1 (en) Rare earth oxide superconducting material and process for producing the same
JPH01160875A (en) Setter for calcining oxide superconductor
US5932524A (en) Method of manufacturing superconducting ceramics
JPH01160860A (en) Production of sintered material of oxide superconductor
JPH0345301A (en) Manufacture of oxide superconductive tape wire
KINGON et al. Processing and Microstructures of YBa2Cu307-0
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPH01164762A (en) Compound oxide type superconducting sintered body
Koshy et al. The structural and superconducting properties of the YBa2Cu3O7− δ‐HfO2 system
JPH01160858A (en) Sintered material of oxide superconductor
JP2760999B2 (en) Oxide superconducting sintered body and method for producing the same
Kingon et al. Processing and Microstructures of YBa2Cu3O7-α
JPS63279513A (en) Superconductor wire rod and its manufacture
JPH01163914A (en) Manufacture of oxide superconductive wire
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof
JP2597578B2 (en) Superconductor manufacturing method
JPH01157455A (en) Production of oxide superconducting sintered body
JPH01161627A (en) Manufacture of oxide superconducting wire
KINGON et al. RICHARD L. PORTER, THOMAS M. HARE, and HAYNE PALMOUR III Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907 DAVID G. HAASE Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202
JPS63307110A (en) Oxide superconductor
JPH01164776A (en) Oxide superconductor and its production
JPH01308602A (en) Manufacture of oxide super conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040614

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060118

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060126

A02 Decision of refusal

Effective date: 20060525

Free format text: JAPANESE INTERMEDIATE CODE: A02