JPH01157455A - Production of oxide superconducting sintered body - Google Patents

Production of oxide superconducting sintered body

Info

Publication number
JPH01157455A
JPH01157455A JP62314375A JP31437587A JPH01157455A JP H01157455 A JPH01157455 A JP H01157455A JP 62314375 A JP62314375 A JP 62314375A JP 31437587 A JP31437587 A JP 31437587A JP H01157455 A JPH01157455 A JP H01157455A
Authority
JP
Japan
Prior art keywords
sintered body
atmosphere
oxygen
oxide
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62314375A
Other languages
Japanese (ja)
Inventor
Shiyunji Nomura
俊自 野村
Takeshi Ando
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62314375A priority Critical patent/JPH01157455A/en
Publication of JPH01157455A publication Critical patent/JPH01157455A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the title dense sintered body having superior superconducting characteristics by molding specified oxide superconducting powder and sintering the molded product in O2 atmosphere having higher O2 partial pressure than atmospheric air. CONSTITUTION:A mixture of each element constituting an oxygen deficient perovskite type oxide superconductor expressed by the formula (wherein deltais a number of deficient oxygen atom) is crystallized by the calcination at 800-980 deg.C, then, the calcined product is heat-treated at 300-700 deg.C in O2 atmosphere and pulverized. Thus, oxide superconducting powder having 1-5mum length of the largest axis on a C face and 3-5 axial ratio is formed. A molded body is then obtd. by molding this powder or a powder mixture which provides an oxide superconductor by heating. After sintering the molded body at 970-1040 deg.C for 15min-50hr in the atmosphere having an O2 partial pressure by 0.3atm higher than the O2 partial pressure of atmospheric air while feeding gaseous O2 at >=1cc/liter feed rate, the molded body is cooled slowly to near room temp. while feeding O2 sufficiently.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、緻密質で超71導特性に優れた酸化物超電導
焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing an oxide superconducting sintered body that is dense and has excellent superconducting properties.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(2.Phys、B Condensed Mat
ter64、189−193(1986))。その中で
も、Ln8a2Cu3O  (δは酸素欠陥を表わし通
常1以下、Lnは、7−δ Y 、 La、 Sc、 Nd、 Sm、 Eu、 G
d、 Dy、lio%Er、 Tm。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. (2. Phys, B Condensed Mat
ter64, 189-193 (1986)). Among them, Ln8a2Cu3O (δ represents oxygen defect and is usually 1 or less, Ln is 7-δ Y, La, Sc, Nd, Sm, Eu, G
d, Dy, io%Er, Tm.

YbおよびLuから選ばれた少なくとも1種の元素、B
aの一部はsrなどで置換可能。)で示される酸素欠陥
を有する欠陥ペロプスカイト型の酸化物超電導体は、臨
界温度が90に以上と液体窒素の沸点以上の高い温度を
示すため非常に有望な材料として注目されティる(Ph
ys、Rev、Lett、 Vol、58 No、9,
908−970)。
At least one element selected from Yb and Lu, B
Part of a can be replaced with sr, etc. The defective perovskite-type oxide superconductor with oxygen vacancies shown in ) is attracting attention as a very promising material because it exhibits a critical temperature of 90°C or higher, which is higher than the boiling point of liquid nitrogen (Ph
ys, Rev, Lett, Vol, 58 No, 9,
908-970).

このような欠陥ペロブスカイト型のうちでも、希土類元
素としてYを使用したY−Ba−Cu、O系酸化物超電
導体は、90に級の超電導体として当初より注目されて
おり、現状でも安定して超電導特性が得られる酸化物超
電導体として様々な研究が進められている。
Among these defective perovskite types, Y-Ba-Cu, O-based oxide superconductors using Y as the rare earth element have attracted attention from the beginning as 90-grade superconductors, and are currently stable. Various studies are being conducted on oxide superconductors that can exhibit superconducting properties.

このような欠陥べ[1ブスカイト型の酸化物超電導体は
結晶性の酸化物であるため、これらを各種形状の超電導
部材として利用する場合には、次のような方法により製
造することが考えられている。
Since these defect-based oxide superconductors are crystalline oxides, if they are to be used as superconducting members in various shapes, it is possible to manufacture them by the following method. ing.

すなわち、まず目的とする酸化物超電導体の構成元素を
含有する出発原料を所定の比率で混合し、この混合粉末
を一旦仮焼して結晶化させる。次いで、この仮焼物を粉
砕した後にプレス成形などにより所要の形状にする。こ
の後、所定の温度で焼成し、さらに必要に応じて十分に
酸素の供給できる雰囲気中でアニーリングを行い超電導
特性を向上させ、酸化物超電導焼結体を得ている。
That is, first, starting materials containing the constituent elements of the desired oxide superconductor are mixed at a predetermined ratio, and this mixed powder is once calcined to crystallize it. Next, this calcined material is pulverized and then formed into a desired shape by press molding or the like. Thereafter, it is fired at a predetermined temperature, and if necessary, annealed in an atmosphere where sufficient oxygen can be supplied to improve the superconducting properties and obtain an oxide superconducting sintered body.

(発明が解決しようとする問題点) ところで、上述したような酸化物超電導焼結体の製造方
法において、成形体焼成時の温度条件は、800℃〜1
000℃の範囲の温度条件を有力とす、る報告が大半を
占めているが、本発明者らの実験によれば、人気中での
焼結では980℃前後において超電導体相であるYBa
2Cu3O7−δ相以外のY28aCu05などの異相
が生成しはじめるため、焼成中にこの温度以上の雰囲気
にさらすと得られる焼結体中の異相の口が増加し、超電
導特性が低下することが判明している。
(Problems to be Solved by the Invention) By the way, in the method for producing an oxide superconducting sintered body as described above, the temperature conditions during firing of the compact are 800°C to 1.
Most reports claim that temperature conditions in the range of 000°C are effective, but according to experiments by the present inventors, YBa, which is a superconducting phase,
It has been found that since different phases such as Y28aCu05 other than the 2Cu3O7-δ phase begin to form, exposing the material to an atmosphere above this temperature during firing increases the number of different phases in the resulting sintered body, reducing the superconducting properties. ing.

しかしながら、このような温度条件では、得られる焼結
体の密度を充分に高くすることは困難であり、したがっ
て充分実用的な臨界電流密度を有する酸化物超電導焼結
体が得られていないというのが現状である。
However, under such temperature conditions, it is difficult to increase the density of the obtained sintered body to a sufficiently high level, and therefore, it is difficult to obtain an oxide superconducting sintered body with a sufficiently practical critical current density. is the current situation.

本発明は、このような従来の事情に対処するためになさ
れたもので、YBa2Cu3O7−δ相単相で構成され
、焼結体密度が高く、臨界電流密度などの超電導特性に
優れた欠陥ペロプスカイト型構造を有するY−Ba−C
u−0系酸化物超電導体の製造方法を提供することを目
的とする。
The present invention was made in order to deal with such conventional circumstances, and is a defect peropskite that is composed of a single YBa2Cu3O7-δ phase, has a high sintered body density, and has excellent superconducting properties such as critical current density. Y-Ba-C with type structure
An object of the present invention is to provide a method for manufacturing a u-0-based oxide superconductor.

[発明の構成] (問題点を解決するための手段) 本発明の酸化物層′R導焼結体の製造方法は、酸素欠陥
型ペロブスカイト構造を有するY−Ba−Cu−0系酸
化物超電導体粉末あるいは加熱により前記酸化物超電導
体となる混合粉末を所定の形状に成形する工程と、この
成形体に熱処理を施して焼成する工程とを有する酸化物
超電導焼結体の製造方法において、前記焼成工程を、大
気中における酸素分圧より高い酸素分圧を有する雰囲気
中において900℃〜1040℃の温度条件により行う
ことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing an oxide layer'R conductive sintered body of the present invention is a method for producing a Y-Ba-Cu-0 based oxide superconductor having an oxygen-deficient perovskite structure. In the method for producing an oxide superconducting sintered body, the method includes the steps of: molding a body powder or a mixed powder to become the oxide superconductor into a predetermined shape by heating; and heat-treating and firing the molded body. It is characterized in that the firing step is performed at a temperature of 900° C. to 1040° C. in an atmosphere having an oxygen partial pressure higher than that in the atmosphere.

本発明における酸化物超電導体は、下記の一般式で表さ
れる酸素欠陥型ペロブスカイト構造を有するY−Ba−
Cu−0系酸化物超電導体である。
The oxide superconductor in the present invention has an oxygen-deficient perovskite structure represented by the following general formula: Y-Ba-
It is a Cu-0 based oxide superconductor.

YBa2Cu3O7−δ (δは酸素欠陥を表し、通常は1以下。)また、このY
−8a−Cu−0系において、Yの一部はYb、Tm、
 Er1Dy、Ho、 La、 Sc、 Nd、 Sm
、 Eu、 Gdなどの他の希土類元素で、Baの一部
はsr、 caなとの他のアルカリ土類元素で、Cuの
一部はTi、 V SCr、 Hn。
YBa2Cu3O7-δ (δ represents an oxygen defect and is usually 1 or less.) Also, this Y
-8a-Cu-0 system, part of Y is Yb, Tm,
Er1Dy, Ho, La, Sc, Nd, Sm
, Eu, Gd and other rare earth elements, part of Ba is other alkaline earth elements such as sr, ca, and part of Cu is Ti, V SCr, Hn.

Fe1Co、Ni、 Znから選ばれた少なくとも1種
で置換可能である。
It can be replaced with at least one selected from Fe1Co, Ni, and Zn.

本発明に使用されるY−Ba−Cu−0系酸化物超電導
体粉末は、たとえば以下のようにして製造される。
The Y-Ba-Cu-0 based oxide superconductor powder used in the present invention is manufactured, for example, as follows.

、まず、Y、Ba、 Cuなどの構成元素を十分混合す
る。混合の際には、’l/203、BaCO3、CuO
などの酸化物や炭酸塩を原料として用いることができる
ほか、他の焼成後酸化物に転化する硝酸塩、水酸化物な
どの化合物を用いてもよい。さらには、共沈法などで得
たシュウ酸塩などを用いてもよい。
First, constituent elements such as Y, Ba, and Cu are sufficiently mixed. When mixing, 'l/203, BaCO3, CuO
In addition to using oxides and carbonates such as nitrates and carbonates as raw materials, other compounds such as nitrates and hydroxides that are converted to oxides after firing may also be used. Furthermore, oxalate obtained by a coprecipitation method or the like may also be used.

Y−Ba−Cu−0系酸化物超電導体を構成する元素は
、基本的に化学量論比の組成となるように混合するが、
多少製造条件などとの関係でずれていても差支えない。
The elements constituting the Y-Ba-Cu-0-based oxide superconductor are basically mixed to have a stoichiometric composition, but
There is no problem even if there is a slight deviation due to manufacturing conditions.

たとえば、Y Imolに対しBa 2mof、Cu 
3molが標準組成であるが、実用上はY Imolに
対して、Ba Z±0.6mol 、Cu a±0.4
mol程度のずれは問題ない。
For example, for Y Imol, Ba 2mof, Cu
3 mol is the standard composition, but in practice, for Y Imol, Ba Z ± 0.6 mol, Cu a ± 0.4
A deviation of about mol is not a problem.

そして、前述の原料を充分に混合した後、800℃〜9
80℃程度の温度条件で仮焼して結晶化させる。この後
、必要に応じて酸素含有雰囲気中、好ましくは酸素雰囲
気中で熱処理するか、または同様な雰囲気中で3O0℃
程度まで徐冷することにより、酸素欠陥δに酸素を導入
し超、ii導時特性向上させることができる。この熱処
理は、通常3O0〜700℃程度で行う。
After thoroughly mixing the above-mentioned raw materials,
It is calcined and crystallized at a temperature of about 80°C. After this, heat treatment may be performed in an oxygen-containing atmosphere, preferably an oxygen atmosphere, or at 300°C in a similar atmosphere.
By slow cooling to a certain degree, oxygen can be introduced into the oxygen defects δ and the super- and II-conducting characteristics can be improved. This heat treatment is usually performed at about 300 to 700°C.

次に、この仮焼物をボールミル、サンドグラインダ、そ
の他公知の手段により粉砕する。このとき、ペロブスカ
イト型の酸化物超電導体は、へき開面から分割されて微
粉末となる。この粉砕は、平均粒径(C面上の最大の軸
の長さ)が1〜5μm1軸比(粒径対厚さの比)が3〜
5程度となるように行うことが好ましい。
Next, this calcined product is pulverized using a ball mill, a sand grinder, or other known means. At this time, the perovskite-type oxide superconductor is split from the cleavage plane and becomes fine powder. This pulverization has an average particle size (the length of the largest axis on the C-plane) of 1 to 5 μm and a uniaxial ratio (ratio of particle size to thickness) of 3 to 5 μm.
It is preferable to perform this so that it becomes about 5.

本発明の酸化物超電導焼結体の製造方法についてさらに
詳述すると、まず上述したような方法により作製した酸
化物超電導体粉末、あるいは前述した酸化物超電導体の
原料となる混合粉末を用いて、プレス成形法、射出成形
法、スリップキャスティング法などの各種成形手段によ
りブ1コック状、線状、管状などの各種形状の成形体を
作製する。
To explain in more detail the method for producing the oxide superconducting sintered body of the present invention, first, using the oxide superconductor powder produced by the method described above or the mixed powder serving as the raw material for the oxide superconductor described above, Molded bodies of various shapes, such as block-shaped, linear, and tubular, are produced by various molding methods such as press molding, injection molding, and slip casting.

次いで、このようにして得たY−Ba−Cu−0系酸化
物超電導体の成形体を大気中の酸素分圧より高い酸素分
圧を有する雰囲気中において900℃〜1040℃の温
度条件、好ましくは970℃〜1040℃の温度条件に
よって加熱処理を施し焼成する。
Next, the molded body of the Y-Ba-Cu-0-based oxide superconductor obtained in this way is heated at a temperature of 900° C. to 1040° C., preferably in an atmosphere having an oxygen partial pressure higher than that of the atmosphere. is subjected to heat treatment and fired under temperature conditions of 970°C to 1040°C.

このように酸素分圧の高い雰囲気中において焼成するこ
とにより、超電導相である YBa2Cu3a 07−δ相以外のYBa2u35相
のような異相の析出を防止することが可能となり、YB
a2Cu3O7−δ相の分解温度である1040℃近傍
まで焼成温度を高めることが可能となる。
By firing in an atmosphere with a high oxygen partial pressure in this way, it is possible to prevent the precipitation of different phases such as the YBa2u35 phase other than the superconducting YBa2Cu3a 07-δ phase, and the YB
It becomes possible to raise the firing temperature to around 1040°C, which is the decomposition temperature of the a2Cu3O7-δ phase.

この焼成時の雰囲気は、酸素分圧が0.3atm以上で
あることが好ましい。この雰囲気中の酸素分圧が0.3
atm未満では異相の析出防止効果が充分に得られない
。また、この焼成雰囲気は、酸素ガスを1cc/ J2
・分収上で供給することによっても同等な効果が得られ
る。
The atmosphere during this firing preferably has an oxygen partial pressure of 0.3 atm or more. The oxygen partial pressure in this atmosphere is 0.3
If it is less than atm, a sufficient effect of preventing precipitation of foreign phases cannot be obtained. In addition, this firing atmosphere contains oxygen gas at 1 cc/J2
・Equivalent effects can be obtained by supplying in installments.

なお、上述したように1040℃を超える条件下では、
超電導相の分解が生じるため、製造工程中は1040℃
を超える温度雰囲気にはさらさないことが好ましい。ま
た、この焼成は15分〜50時間の範囲で行うことが好
ましい。
In addition, as mentioned above, under conditions exceeding 1040°C,
During the manufacturing process, the temperature is 1040℃ due to decomposition of the superconducting phase.
It is preferable not to expose it to an atmosphere with a temperature exceeding . Moreover, it is preferable to perform this baking for 15 minutes to 50 hours.

この後、必要に応じて充分に酸素を供給しながら室温近
傍まで徐冷するか、あるいは酸素の十分に供給可能な雰
囲気中で3O0℃〜700℃程度の温度でアニールを行
うことが好ましい。これにより、酸素欠陥δへの酸素導
入が行え、超電導特性が向上する。
Thereafter, it is preferable to slowly cool the film to near room temperature while supplying sufficient oxygen as necessary, or to perform annealing at a temperature of about 300° C. to 700° C. in an atmosphere where oxygen can be sufficiently supplied. This allows oxygen to be introduced into the oxygen defects δ, improving superconducting properties.

(作 用) Y−Ba−Cu−0系酸化物超電導焼結体の製造にあた
って、酸化物超電導体の成形体の加熱処理を大気中の酸
素分圧より高い酸素分圧を有する雰囲気中において行う
ことにより、超電導相の分解が開始する1040℃近傍
まで加熱しても、大気中における焼成のような異相の析
出は防止することができる。そして、このように高温ま
で加熱することが可能となることによって、得られる焼
結体は充分に緻密質なものとなり、よって臨界電流密度
のような超電導特性に優れたY−Ba−Cu−0系酸化
物超電導焼結体が得られる。
(Function) In producing the Y-Ba-Cu-0-based oxide superconducting sintered body, heat treatment of the oxide superconductor molded body is performed in an atmosphere having an oxygen partial pressure higher than the oxygen partial pressure in the atmosphere. As a result, even if the material is heated to around 1040.degree. C., at which point decomposition of the superconducting phase begins, precipitation of foreign phases, which occurs during sintering in the atmosphere, can be prevented. By making it possible to heat to high temperatures in this way, the resulting sintered body becomes sufficiently dense, making it possible to produce Y-Ba-Cu-0 with excellent superconducting properties such as critical current density. A system oxide superconducting sintered body is obtained.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1、比較例1 粒径2〜5μmのBaC0、粉末20101、Y2O3
粉末0.51110+ 、CuO粉末3m01を、充分
混合して大気中900℃で48時間焼成して反応させた
後、この焼成物をさらに酸素中で800℃で24時間焼
成して反応させ、酸素空位に酸素を導入した後、ボール
ミルを用いて粉砕し、分級して、平均粒径2μm、直径
対厚さの比が3〜5の欠陥ペロブスカイト型構造を有す
るY−Ba−Cu−0系酸化物超電導体粉末を得た。
Example 1, Comparative Example 1 BaC0, powder 20101, Y2O3 with a particle size of 2 to 5 μm
Powder 0.51110+ and CuO powder 3m01 were thoroughly mixed and fired at 900°C in the atmosphere for 48 hours to cause a reaction.The fired product was further fired at 800°C in oxygen for 24 hours to cause a reaction. After introducing oxygen into the oxide, it was crushed using a ball mill and classified to produce a Y-Ba-Cu-0 based oxide having a defective perovskite structure with an average particle size of 2 μm and a diameter-to-thickness ratio of 3 to 5. A superconductor powder was obtained.

次に、この酸化物超電導体粉末をプレス成形により直径
20+111X厚さ5IlllIlのベレット状に成形
し、次いで酸素分圧が0.5atllの雰囲気下におい
て、980℃の温度条件で約40時間焼成し、室温まで
1.5℃/分の冷却速度により徐冷して酸化物超電導焼
結体を得た。
Next, this oxide superconductor powder was press-molded into a pellet shape with a diameter of 20+111×thickness of 5 Illl Il, and then fired at a temperature of 980° C. for about 40 hours in an atmosphere with an oxygen partial pressure of 0.5 atll, The mixture was slowly cooled to room temperature at a cooling rate of 1.5° C./min to obtain an oxide superconducting sintered body.

このようにして得た酸化物超電導焼結体について、焼結
体密度(理論密度に対する相対密度)、臨界温度、臨界
電流密度の測定、および粉末X線回折法による結晶相の
同定を行った。これらの結果を第1表に示す。
Regarding the oxide superconducting sintered body thus obtained, the sintered body density (relative density to the theoretical density), critical temperature, and critical current density were measured, and the crystal phase was identified by powder X-ray diffraction. These results are shown in Table 1.

一方、本発明との比較のために、実施例1で作製したペ
レット状成形体を用いて、焼成条件を大気中、950℃
とする以外は実施例1と同一条件で焼成したもの(比較
例1)と、焼成条件を大気中、980℃とする以外は実
施例1と同一条件で焼成したもの(比較例2)とをそれ
ぞれ作製し、これらについても実施例と同様にしてその
特性を測定した。その結果も合せて第1表に示す。
On the other hand, for comparison with the present invention, the pellet-shaped molded body produced in Example 1 was used, and the firing conditions were changed to 950°C in the atmosphere.
One was fired under the same conditions as Example 1 (Comparative Example 1), and the other was fired under the same conditions as Example 1 (Comparative Example 2), except that the firing conditions were 980°C in the air. Each was prepared and their properties were measured in the same manner as in the examples. The results are also shown in Table 1.

(以下余白) 第  1  表 第1表の各測定結果からも明らかなように、この実施例
による酸化物超電導焼結体は、980℃と高温まで加熱
しているにも拘らず、超電導相単相の焼結体であり、ま
た焼結体密度も高く、したがって臨界電流密度のような
超電導特性の優れたものであった。一方、比較例1によ
る酸化物超電導焼結体は、超電導相を生成しているが、
焼結体密度が低く、超電導特性が劣っており、また比較
例2による酸化物超電導焼結体は、超電導相が分解し、
異相が形成されている。
(Leaving space below) Table 1 As is clear from the measurement results in Table 1, the oxide superconducting sintered body according to this example did not exhibit a single superconducting phase even though it was heated to a high temperature of 980°C. It was a phase sintered body, and the sintered body density was high, so it had excellent superconducting properties such as critical current density. On the other hand, the oxide superconducting sintered body according to Comparative Example 1 generates a superconducting phase, but
The sintered body density is low and the superconducting properties are poor, and in the oxide superconducting sintered body according to Comparative Example 2, the superconducting phase decomposes,
A different phase is formed.

実施例2〜5、比較例3〜4 実施例1で作製した酸化物超電導体のペレット状成形体
を用いて、酸素ガスを第2表に示した条件で供給し、第
2表に示す焼成温度条件とする以外は実施例1と同一条
件として、それぞれ酸化物超電導焼結体を作製した。
Examples 2 to 5, Comparative Examples 3 to 4 Using the pellet-shaped compact of the oxide superconductor produced in Example 1, oxygen gas was supplied under the conditions shown in Table 2, and the sintering was performed as shown in Table 2. Oxide superconducting sintered bodies were produced under the same conditions as in Example 1 except for the temperature conditions.

このようにして得た各酸化物超電導焼結体についても、
実施例1と同様にして各特性を測定した。
Regarding each oxide superconducting sintered body obtained in this way,
Each characteristic was measured in the same manner as in Example 1.

その結果も合せて第2表に示す。The results are also shown in Table 2.

(以下余白) 第2表 [発明の効果1 以上の実施例からも明らかなように、本発明の酸化物超
電導焼結体の製造方法によれば、Y−Ba−Cu−0系
酸化物超電導体の成形体の加熱処理を大気中の酸素分圧
より高い酸素分圧を有する雰囲気中において行っている
ので、超電導相の分解温度である1040℃近傍まで加
熱しても異相の析出がなく、YBa2Cu3O□−δ相
単相の酸化物超電導体焼結体となり、このように高温で
の焼結を可能としているので、得られる酸化物用!fs
焼結体は高密度のものとなる。よって、臨界電流密度の
ような超電導特性に優れた酸化物超電導焼結体が得られ
る。
(The following is a blank space) Table 2 [Effects of the Invention 1 As is clear from the above examples, according to the method for producing an oxide superconducting sintered body of the present invention, Y-Ba-Cu-0 based oxide superconducting Since the heat treatment of the molded body is performed in an atmosphere with a higher oxygen partial pressure than the oxygen partial pressure in the atmosphere, there is no precipitation of foreign phases even when heated to around 1040°C, which is the decomposition temperature of the superconducting phase. It is a single-phase oxide superconductor sintered body of YBa2Cu3O□-δ phase, and it is possible to sinter at such high temperatures, so the resulting oxide can be used! fs
The sintered body has a high density. Therefore, an oxide superconducting sintered body having excellent superconducting properties such as critical current density can be obtained.

出願人      株式会社 東芝 代理人 弁理士  須 山 佐 −Applicant: Toshiba Corporation Agent Patent Attorney Suyama Sa

Claims (5)

【特許請求の範囲】[Claims] (1)酸素欠陥型ペロブスカイト構造を有するY−Ba
−Cu−O系酸化物超電導体粉末あるいは加熱により前
記酸化物超電導体となる混合粉末を所定の形状に成形す
る工程と、この成形体に熱処理を施して焼成する工程と
を有する酸化物超電導焼結体の製造方法において、 前記焼成工程を、大気中における酸素分圧より高い酸素
分圧を有する雰囲気中において900℃〜1040℃の
温度条件により行うことを特徴とする酸化物超電導焼結
体の製造方法。
(1) Y-Ba with oxygen-deficient perovskite structure
- Oxide superconducting sintering comprising the steps of molding a Cu-O based oxide superconductor powder or a mixed powder that becomes the oxide superconductor by heating into a predetermined shape, and a step of heat-treating and firing the molded body. A method for producing an oxide superconducting sintered body, characterized in that the firing step is carried out at a temperature of 900°C to 1040°C in an atmosphere having an oxygen partial pressure higher than that in the atmosphere. Production method.
(2)前記焼成工程における酸素分圧が、0.3atm
以上であることを特徴とする特許請求の範囲第1項記載
の酸化物超電導焼結体の製造方法。
(2) The oxygen partial pressure in the firing step is 0.3 atm
A method for producing an oxide superconducting sintered body according to claim 1, which is characterized in that the above is described above.
(3)前記焼成工程における雰囲気中に、1cc/分・
l以上で酸素を供給することを特徴とする特許請求の範
囲第1項記載の酸化物超電導焼結体の製造方法。
(3) In the atmosphere in the firing process, 1cc/min.
The method for manufacturing an oxide superconducting sintered body according to claim 1, characterized in that oxygen is supplied at a rate of 1 or more.
(4)前記焼成工程を、970℃〜1040℃の温度条
件により行うことを特徴とする特許請求の範囲第1項記
載の酸化物超電導焼結体の製造方法。
(4) The method for producing an oxide superconducting sintered body according to claim 1, wherein the firing step is performed under a temperature condition of 970°C to 1040°C.
(5)前記酸化物超電導体は、YBa_2Cu_3O_
7_−_δ(δは酸素欠陥を表す。)で示される酸素欠
陥型ペロブスカイト構造の酸化物超電導体であることを
特徴とする特許請求の範囲第1項記載の酸化物超電導焼
結体の製造方法。
(5) The oxide superconductor is YBa_2Cu_3O_
The method for producing an oxide superconducting sintered body according to claim 1, wherein the oxide superconductor has an oxygen-deficient perovskite structure represented by 7_-_δ (δ represents an oxygen defect). .
JP62314375A 1987-12-11 1987-12-11 Production of oxide superconducting sintered body Pending JPH01157455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314375A JPH01157455A (en) 1987-12-11 1987-12-11 Production of oxide superconducting sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314375A JPH01157455A (en) 1987-12-11 1987-12-11 Production of oxide superconducting sintered body

Publications (1)

Publication Number Publication Date
JPH01157455A true JPH01157455A (en) 1989-06-20

Family

ID=18052583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314375A Pending JPH01157455A (en) 1987-12-11 1987-12-11 Production of oxide superconducting sintered body

Country Status (1)

Country Link
JP (1) JPH01157455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927486B2 (en) 1999-10-07 2005-08-09 Rohm Co., Ltd. Photo-interrupter and semiconductor device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927486B2 (en) 1999-10-07 2005-08-09 Rohm Co., Ltd. Photo-interrupter and semiconductor device using the same

Similar Documents

Publication Publication Date Title
EP0303249B1 (en) Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
JP2609944B2 (en) Oxide material showing superconductivity and method for producing the same
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
KR20020031394A (en) A pb-bi-sr-ca-cu-oxide powder mix with enhanced reactivity and process for its manufacture
JPH01157455A (en) Production of oxide superconducting sintered body
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JP2840349B2 (en) High Tc superconductor and method of manufacturing the same
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPH01126259A (en) Production of oxide superconductor
JP2597578B2 (en) Superconductor manufacturing method
JPH01160860A (en) Production of sintered material of oxide superconductor
JPS63279512A (en) Superconductor wire rod and its manufacture
JP2554659B2 (en) Composite oxide superconductor wire connection
JP2590157B2 (en) Manufacturing method of superconductor wire
JP2597579B2 (en) Superconductor manufacturing method
JP2783559B2 (en) Oxide-based composite sintered body, method for producing the same, and resistor using the same
JPH01157451A (en) Production of oxide superconducting sintered body
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH04202046A (en) Production of superconducting ceramic sintered body
JPH01157453A (en) Production of oxide superconductor
JPH01161627A (en) Manufacture of oxide superconducting wire
JPS63303851A (en) Sintered body of superconducting ceramic
JPH02120234A (en) Production of oxide superconductor
JPH01157454A (en) Production of oxide superconducting sintered body
JPH0459654A (en) Oxide superconductor