JPH02120234A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH02120234A
JPH02120234A JP63272459A JP27245988A JPH02120234A JP H02120234 A JPH02120234 A JP H02120234A JP 63272459 A JP63272459 A JP 63272459A JP 27245988 A JP27245988 A JP 27245988A JP H02120234 A JPH02120234 A JP H02120234A
Authority
JP
Japan
Prior art keywords
oxide
oxide superconductor
critical temperature
temperature phase
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63272459A
Other languages
Japanese (ja)
Inventor
Minoru Yamada
穣 山田
Akira Murase
村瀬 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63272459A priority Critical patent/JPH02120234A/en
Publication of JPH02120234A publication Critical patent/JPH02120234A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To efficiently producing high critical temperature phase by using Ca2PbO4 as supply source of Pb and replacing part of Bi with Pb while controlling a composition in a Bi-Sr-Ca-Cu-O based oxide superconductor. CONSTITUTION:One or more kind of substances are selected from a Bi-Sr-Ca-Cu- O based oxide superconductor, raw material powder capable of providing the above-mentioned oxide superconductor by heating, oxide having Ca contact less than that of the above-mentioned superconductor and raw material powder capable of providing the above-mentioned oxide by heating. The selected substances are blended or brought into contact with Ca2PbO4 or mixture of Ca2PbO4 and oxide of Cu and then heat-treated in the above-mentioned state to provide the aimed oxide superconductor.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、Bi−Sr−Ca−Cu−0系の酸化物超電
導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a Bi-Sr-Ca-Cu-0 based oxide superconductor.

(従来の技術) 1986年に40に以上の高い臨界温度を有するLa−
Ba−Cu−0系の層状ペロブスカイト型の酸化物系超
電導体が発表されて以来、酸化物系の超電導材料が注目
を集めた。また、1987年にはY−Ba−Cu−0系
で代表される酸素欠陥を有する欠陥ペロブスカイト型の
酸化物超電導体の臨界温度が液体窒素温度(−77K)
より高い、約90にであることが確認された。この発見
により冷媒として高価な液体ヘリウムに代えて、より安
価な液体窒素を用いた超電導体の応用が可能となり、各
所で盛んに研究が行われている。
(Prior art) In 1986, La-
Since the Ba-Cu-0 layered perovskite type oxide superconductor was announced, oxide superconducting materials have attracted attention. Furthermore, in 1987, the critical temperature of a defective perovskite-type oxide superconductor with oxygen defects represented by the Y-Ba-Cu-0 system was determined to be the liquid nitrogen temperature (-77K).
It was found to be higher, around 90. This discovery has made it possible to apply superconductors using cheaper liquid nitrogen instead of expensive liquid helium as a refrigerant, and research is being actively conducted in various places.

また、1988年には臨界温度が105に近辺と高いB
i−Sr−Ca−Cu−0系の酸化物超電導体が発見さ
れるに至った。このBi−8r−Ca−Cu−0系の酸
化物超電導体は、Y−Ba−Cu−0系の酸化物超電導
体に比べて臨界温度が高く、たとえば液体窒素によって
冷却を行う際に実用上充分な熱的マージンがとれるばか
りでなく、高価な希土類元素が不要であること、水分に
対する化学的安定性が高いこと、酸素が抜けにくいこと
などの利点があり、より優れた超電導体として注目を集
めている。
In addition, in 1988, the critical temperature of B was as high as around 105.
An i-Sr-Ca-Cu-0 based oxide superconductor has been discovered. This Bi-8r-Ca-Cu-0-based oxide superconductor has a higher critical temperature than the Y-Ba-Cu-0-based oxide superconductor, making it difficult to use in practical applications when cooling with liquid nitrogen, for example. It is attracting attention as a superior superconductor because it not only provides a sufficient thermal margin, but also eliminates the need for expensive rare earth elements, has high chemical stability against moisture, and is difficult for oxygen to escape. are collecting.

ところで、このBi−8r−Ca−Cu−0系酸化物超
電導体には、零抵抗を示す臨界温度(以下、Tcend
と記す。)が約80にの化学式 %式%(1) で表される低臨界温度相と、Tcendが約1lOKの
化学式 %式%) で表される高臨界温度相の2種類の超電導相が存在して
いることが確認されている。また、このBi−8r−C
a−Cu−0系酸化物超電導体は、Y−Ba−Cu−0
系酸化物超電導体などと同様に結晶性の酸化物であるた
め、たとえばBi203 、SrCO3、CaCO3、
CuOなどの粉末を原料粉として用いた、通常の焼成法
によって作製することが試みられているが、このような
方法によって得られたBi−3r−Ca−Cu−0系酸
化物超電導焼結体は上記低臨界温度相と高臨界温度相と
が混在したものとして得られるため、Tcendは80
に程度の低いものしか得られていないのが現状である。
By the way, this Bi-8r-Ca-Cu-0 based oxide superconductor has a critical temperature (hereinafter referred to as Tcend) at which it exhibits zero resistance.
It is written as There are two types of superconducting phases: a low critical temperature phase represented by the chemical formula % formula % (1) where Tcend is approximately 80 and a high critical temperature phase represented by the chemical formula % formula %) where Tcend is approximately 1lOK. It has been confirmed that Also, this Bi-8r-C
The a-Cu-0 based oxide superconductor is Y-Ba-Cu-0
Since it is a crystalline oxide like other oxide superconductors, for example, Bi203, SrCO3, CaCO3,
Attempts have been made to produce a Bi-3r-Ca-Cu-0 based oxide superconducting sintered body using a normal sintering method using powder such as CuO as a raw material powder. is obtained as a mixture of the above-mentioned low critical temperature phase and high critical temperature phase, so Tcend is 80
At present, only a low level of results has been obtained.

また、Bi−8r−Ca−Cu−0系酸化物超電導体を
溶融凝固法によって作製することにより、高密度の酸化
物超電導体が得られ、臨界電流密度の向上などに効果が
あるものの、このような場合においても上述した焼成法
によって得られる酸化物超電導焼結体と同様に高臨界温
度相と低臨界温度相とが混在するものしか得られていな
い。
In addition, high-density oxide superconductors can be obtained by fabricating Bi-8r-Ca-Cu-0 based oxide superconductors by the melt-solidification method, which is effective in improving critical current density. Even in such a case, only a mixture of a high critical temperature phase and a low critical temperature phase can be obtained, similar to the oxide superconducting sintered body obtained by the above-mentioned sintering method.

このような問題に対して、Bi−Sr−Ca−Cu−0
系酸化物超電導体にPbを添加し、Biの一部をPbて
置換することによって、高臨界温度相の体積比を大幅に
増加することができるという報告がある。
For such problems, Bi-Sr-Ca-Cu-0
There is a report that the volume ratio of the high critical temperature phase can be significantly increased by adding Pb to a system oxide superconductor and substituting a part of Bi with Pb.

しかしながら、上述した焼成法によってBi−8r−C
a−Cu−0系酸化物超電導体を作製する際に、Pbを
たとえば酸化物と添加したとしても、Pbの酸化物は蒸
気圧が高いために熱処理時に揮散しやすく、組成の制御
が非常に難しいという問題がある。よって、酸化物超電
導体の原料粉末にPbの酸化物を添加しただけでは、高
臨界温度相を再現性よくかつ効率よく得ることができな
い。また、溶融凝固法などを使用する場合においては、
特に溶融時にPbが蒸発してしまい、結果的にほぼ低臨
界温度相しか生成しない。
However, by the above-mentioned firing method, Bi-8r-C
Even if Pb is added with an oxide when producing an a-Cu-0-based oxide superconductor, the Pb oxide has a high vapor pressure and easily evaporates during heat treatment, making it extremely difficult to control the composition. The problem is that it is difficult. Therefore, simply by adding Pb oxide to the raw material powder of the oxide superconductor, a high critical temperature phase cannot be obtained with good reproducibility and efficiency. In addition, when using the melt solidification method,
In particular, Pb evaporates during melting, resulting in almost only a low critical temperature phase being generated.

(発明が解決しようとする課題) 上述したように、Bi−8r−Ca−Cu−0系酸化物
超電導体は、低臨界温度相と高臨界温度相とが混在した
ものとして得られるため、高臨界温度相の特性を生かす
ことができないという向題があった。
(Problems to be Solved by the Invention) As mentioned above, the Bi-8r-Ca-Cu-0 based oxide superconductor is obtained as a mixture of a low critical temperature phase and a high critical temperature phase. The problem was that it was not possible to take advantage of the characteristics of the critical temperature phase.

また、Biの一部をPbで置換することによって高臨界
温度相の生成比率を高めるという報告もなされているが
、この方法は焼成時における組成制御が極めて難しく、
再現性に乏しいという問題があった。
It has also been reported that replacing a portion of Bi with Pb increases the production ratio of the high critical temperature phase, but this method is extremely difficult to control the composition during firing;
There was a problem of poor reproducibility.

本発明は、このような従来技術の課題に対処するために
なされたもので、Bi−8r−Ca−Cu−0系酸化物
超電導体の低臨界温度相を高臨界温度相に効率よく変換
し、高臨界温度相の比率が高いBi−8r−Ca−Cu
−0系酸化物超電導体、さらには高臨界温度相単一相の
Bi−8r−Ca−Cu−0系酸化物超電導体を再現性
よく得ることを可能にした酸化物超電導体の製造方法を
提供することを目的としている。
The present invention has been made to address the problems of the prior art, and is a method for efficiently converting the low critical temperature phase of a Bi-8r-Ca-Cu-0 based oxide superconductor into a high critical temperature phase. , Bi-8r-Ca-Cu with a high ratio of high critical temperature phase
A method for producing an oxide superconductor that makes it possible to obtain a Bi-8r-Ca-Cu-0-based oxide superconductor with a high critical temperature single phase with good reproducibility. is intended to provide.

[発明の構成] (課題を解決するための手段) すなわち、本発明の酸化物超電導体の製造方法の第1の
発明は、(A )  Bi−3r−Ca−Cu−0系酸
化物超電導体、加熱により前記Bi−8r−Ca−Cu
−0系酸化物超電導体となる原料粉末、前記酸化物超電
導体よりもCaの含有量が少ない酸化物、加熱により前
記酸化物となる原料粉末から選ばれた少なくとも 1種
と、(B) Ca2 Pb04またはCa2 Pb04
とCuの酸化物との混合物とを混合あるいは接触させ、
その状態で熱処理することを特徴としている。
[Structure of the Invention] (Means for Solving the Problem) That is, the first invention of the method for producing an oxide superconductor of the present invention is (A) Bi-3r-Ca-Cu-0 based oxide superconductor , by heating the Bi-8r-Ca-Cu
- At least one selected from a raw material powder that becomes a 0-based oxide superconductor, an oxide with a lower Ca content than the oxide superconductor, and a raw material powder that becomes the oxide upon heating, and (B) Ca2. Pb04 or Ca2 Pb04
and a mixture of Cu oxide,
It is characterized by being heat-treated in that state.

また、第2の発明は、(C) Bi、 (Sr、Ca)
 、Cuを原子比でおおよそ2:3:2で含有する酸化
物超電導体と、(D)Caの酸化物とPbの酸化物との
混合物またはCaの酸化物とPbの酸化物とCuの酸化
物との混合物とを混合あるいは接触させ、その状態で熱
処理することを特徴としている。
Moreover, the second invention is (C) Bi, (Sr, Ca)
, an oxide superconductor containing Cu in an atomic ratio of approximately 2:3:2, and (D) a mixture of a Ca oxide and a Pb oxide or an oxide of a Ca oxide, a Pb oxide, and a Cu oxide. It is characterized by mixing or contacting a mixture with a substance and heat-treating it in that state.

本発明の第1の酸化物超電導体の製造方法における一方
の出発原料となる(A)成分としては、■ 低臨界温度
相を主とするBi−Sr−Ca−Cu−0系酸化物超電
導体の焼結体や粉末、 ■ 加熱により上記■のBi−8r−Ca−Cu−0系
酸化物超電導体となる原料粉末、 ■ 前記酸化物超電導体よりもCaの含有量が少ない酸
化物の焼結体や粉末、 ■ 加熱により上記■の化合物となる原料粉末の少なく
とも 1種が用いられる。
The component (A), which is one of the starting materials in the first method for producing an oxide superconductor of the present invention, includes (1) a Bi-Sr-Ca-Cu-0 based oxide superconductor mainly having a low critical temperature phase; (1) raw material powder that becomes the Bi-8r-Ca-Cu-0 based oxide superconductor of (2) above by heating; (2) sintered oxide with a lower Ca content than the oxide superconductor; At least one of the following is used: solids, powder, and (1) raw material powder that becomes the compound (2) above when heated.

上記■としては、旧、Srs Ca5Cuの単体または
化合物を所定のモル比で混合したものが用いられる。こ
れら構成元素の化合物としては、炭酸塩や酸化物を用い
ることができる他、炭酸塩以外の加熱により酸化物に転
化する硝酸塩、水酸化物など、さらに有機酸塩や有機金
属などを用いてもよい。
As the above-mentioned (2), a mixture of Srs Ca5Cu alone or a compound at a predetermined molar ratio is used. As compounds of these constituent elements, carbonates and oxides can be used, as well as nitrates and hydroxides that convert into oxides by heating other than carbonates, and organic acid salts and organic metals. good.

これらBj−Sr−Ca−Cu−0系酸化物超電導体の
構成元素は、基本的に超電導体相の原子比を満足するよ
うに混合するが、製造条件との関係で多少、たとえば1
0%程度ずれていても差支えない。
The constituent elements of these Bj-Sr-Ca-Cu-0-based oxide superconductors are basically mixed to satisfy the atomic ratio of the superconductor phase, but depending on the manufacturing conditions, for example, 1
There is no problem even if the difference is about 0%.

そして、上記■としては、上記■を通常の焼成法にした
がって仮焼することによって得られる低臨界温度相の酸
化物超電導焼結体やそれを粉砕した粉末、さらにはこの
酸化物超電導体粉末を用いて溶融凝固させた溶融凝固体
、溶融後の冷却速度を充分に遅くすることによって得ら
れる単結晶体などが用いられる。
As for the above (■), the oxide superconducting sintered body in the low critical temperature phase obtained by calcining the above (2) according to a normal calcination method, the powder obtained by crushing it, and furthermore, the oxide superconducting powder is used. A molten solidified body obtained by melting and solidifying a solidified body using a molten metal, a single crystal body obtained by sufficiently slowing down the cooling rate after melting, etc. are used.

また、上記■は上記■の混合粉末からCaの配合量を減
らしたもの、あるいはCaを除いて混合したものであり
、上記■はこの■の混合粉末を仮焼することによって得
られる酸化物の焼結体やそれを粉砕した粉末である。
In addition, the above ■ is a mixture of the mixed powder of the above ■ with a reduced amount of Ca, or a mixture without Ca, and the above ■ is an oxide obtained by calcining the mixed powder of the above ■. It is a sintered body or a powder obtained by crushing it.

第1の発明における他方の出発原料となる(B)成分と
しては、Ca2 PbO4あるいはCa2 Pb04と
CuOの混合物が用いられる。Ca2 PbO4は、た
とえばCaC03とPbOとを所定のモル比で混合し、
焼成することによって得られ、このCa2 PbO4は
熱処理時においても安定した状態を保ち、高臨界温度相
生成温度においてPbによるBiの置換を促進するとと
もに、CaO倶給源として安定して作用する。
As the component (B) which is the other starting material in the first invention, Ca2PbO4 or a mixture of Ca2Pb04 and CuO is used. Ca2PbO4 is produced by mixing CaC03 and PbO at a predetermined molar ratio, for example.
Obtained by calcination, this Ca2PbO4 remains stable even during heat treatment, promotes the substitution of Bi by Pb at the high critical temperature phase formation temperature, and stably acts as a CaO source.

第2の発明における一方の出発原料となる(C)成分と
しては、上述した第1の発明における(A)成分のうち
、予め結晶化した上記■の低臨界温度相を主とするBi
−8r−Ca−Cu−0系酸化物超電導体の焼結体やそ
の粉末、あるいは溶融凝固体や単結晶体が用いられる。
As the component (C) which is one of the starting materials in the second invention, among the components (A) in the first invention described above, Bi which is pre-crystallized and mainly has the low critical temperature phase of
A sintered body of a -8r-Ca-Cu-0 based oxide superconductor, a powder thereof, a molten solidified body, or a single crystal body is used.

また、他方の出発原料である(D)成分としては、Ca
の酸化物(熱処理時において酸化物に転化する化合物を
含む。)とPbの酸化物との混合物、あるいはこれにC
uの酸化物をさらに混合したものが用いられ、Caの酸
化物とPbの酸化物とは熱処理過程においてCa2 P
bo 4を形成し、PbによるBiの置換を促進゛し、
高臨界温度相の生成率を高める。
In addition, as the other starting material (D) component, Ca
(including compounds that convert into oxides during heat treatment) and an oxide of Pb, or a mixture of Pb oxide and C
A mixture of oxide of u is used, and the oxide of Ca and the oxide of Pb are converted to Ca2P
form bo 4 and promote the substitution of Bi by Pb,
Increase the production rate of high critical temperature phase.

第1の発明における(A)成分と(B)成分との熱処理
時における存在形態としては、たとえば以下に示すよう
な形態が例示される。
Examples of the forms in which the components (A) and (B) exist during the heat treatment in the first invention include the forms shown below.

(a)  (A)成分および(B)成分それぞれを粉末
として使用する際には、所定の比率で混合し、たとえば
プレス成形などによって成形体を形成する。
(a) When using the components (A) and (B) as powders, they are mixed in a predetermined ratio and formed into a molded body by, for example, press molding.

(b)  焼結体、溶融凝固体、単結晶などのバルク状
の(A)成分を、粉末状の(B)成分中に埋設する。
(b) A bulk component (A) such as a sintered body, a molten solidified body, or a single crystal is embedded in a powdered component (B).

(C)  焼結体、溶融凝固体、単結晶などのバルク状
の(A)成分の表面に、(B)成分を溶剤に溶かしたも
のを塗布したり、あるいはスパッタ法や蒸着法などを使
用し、(A)成分の表面に(B)成分の層を形成して(
A)成分と(B)成分とを充分に接触させる。
(C) Applying a solution of component (B) in a solvent to the surface of component (A) in bulk, such as a sintered body, molten solidified body, or single crystal, or using sputtering or vapor deposition. Then, by forming a layer of component (B) on the surface of component (A),
Component A) and component (B) are brought into sufficient contact.

なお、(A)成分としては、上述した■〜■のいずれの
ものでも使用可能であるが、予め結晶化して低臨界温度
相を主とする酸化物超電導体としたもの(■)を使用す
ることにより、特に本発明の効果が顕著に現れ好ましい
In addition, as component (A), any of the above-mentioned items from ■ to ■ can be used, but one that has been crystallized in advance to form an oxide superconductor mainly having a low critical temperature phase (■) is used. This is particularly preferable because the effects of the present invention are particularly noticeable.

また、第2の発明における(C)成分と(D)成分につ
いても、上記(a)〜(C)のいずれの形態を用いても
よいが、特に上記(b)および(C)と同様に、バルク
状の(C)成分を用いることが好ましい。
Also, for the (C) component and (D) component in the second invention, any of the forms (a) to (C) above may be used, but in particular, similar to the above (b) and (C), , it is preferable to use bulk component (C).

なお、(A)成分および(C)成分は、上述したような
バルクとして用いる以外に、線材化したものや薄膜など
の各種形態のものを用いることが可能である。
In addition to using the component (A) and the component (C) in the bulk form as described above, it is possible to use various forms such as a wire rod or a thin film.

上記(a)の形態を使用する際の(A)成分と(B)成
分、あるいは(C)成分と(D)成分の混合比は、基本
的に得られる熱処理体の組成比がPbを含有するBi−
8r−Ca−Cu−0系酸化物超電導体の高臨界温度相
である、 化学式:  (Bi.Pb)2Sr+ Ca2CLI3
0X   ・= (m)となるように混合することが好
ましいが、必ずしもこれに限定されるものではなく、た
とえばS「やCaは上記(m)式の原子比から±lO%
程度ずれていても高臨界温度相として作用する。また、
(A)成分および(C)成分にPbおよび高臨界温度相
に対して不足しているCaおよびCuを供給しうる程度
の、混合比であっても、高臨界温度相の生成率を高める
ことができる。
When using the form (a) above, the mixing ratio of components (A) and (B) or components (C) and (D) is basically such that the composition ratio of the resulting heat-treated body contains Pb. Bi-
High critical temperature phase of 8r-Ca-Cu-0 based oxide superconductor, chemical formula: (Bi.Pb)2Sr+ Ca2CLI3
It is preferable to mix so that 0X ・= (m), but it is not necessarily limited to this. For example, S' and Ca are mixed by ±lO% from the atomic ratio of formula (m) above.
Even if the degree is different, it acts as a high critical temperature phase. Also,
To increase the production rate of the high critical temperature phase even if the mixing ratio is such that the (A) and (C) components can be supplied with Pb and Ca and Cu that are insufficient for the high critical temperature phase. Can be done.

また、上記(b)および(C)の形態を使用する際には
、(B)成分および(D)成分の層中から(A)成分お
よび(C)成分にPbおよび不足しているCaおよびC
uを充分に供給できるように、接触面積および(A)成
分および(C)成分の体積を考慮する。
In addition, when using the above embodiments (b) and (C), Pb and insufficient Ca and C
The contact area and the volumes of component (A) and component (C) are considered so that u can be sufficiently supplied.

そして、上述したような各形態により(A)成分と(B
)成分、および(C)成分と(D)成分とを混合または
接触させて熱処理を施す。
Then, the (A) component and (B
), and the components (C) and (D) are mixed or brought into contact and subjected to heat treatment.

この熱処理は、800℃〜900℃の範囲で行うことが
好ましい。熱処理温度が800℃未満では、(A)成分
と(B)成分、および(C)成分と(D)成分との反応
が充分に進まず、高臨界温度相が充分に生成しない。ま
た、900℃を超えると生成した高臨界温度相が分解し
てしまう。
This heat treatment is preferably performed at a temperature of 800°C to 900°C. If the heat treatment temperature is less than 800°C, the reactions between components (A) and (B) and between components (C) and (D) will not proceed sufficiently, and a high critical temperature phase will not be sufficiently generated. Furthermore, if the temperature exceeds 900°C, the generated high critical temperature phase will decompose.

また、この熱処理時の酸素分圧は、たとえば1/100
〜1Oata+というように、各種の条件下で行うこと
が可能である。
Further, the oxygen partial pressure during this heat treatment is, for example, 1/100
It is possible to carry out under various conditions such as ~1 Oata+.

(作 用) 第1の発明においては、Pbの供給源として熱処理時に
おいて安定なCa2 PbO4を用いているため、低臨
界温度相を主とする酸化物超電導体あるいはこれからC
aの含有量を減じた酸化物中のBiの一部を充分に組成
制御しつつPbで置換することができる。これによって
、Ca2 Pb04やCuの酸化物がCaやCuの供給
源となって、低臨界温度相を高臨界温度相に効率よくか
つ充分に組成制御しつつ変換することができる。この第
1の発明においては、Pbの供給源としてCa2 Pb
O4を用いているため、酸化物超電導体側の出発原料と
して、予め結晶化した低臨界温度相を主とする酸化物超
電導体やこれからCaの含有量を減じた酸化物以外に、
それらの原料粉末を用いても、熱処理時においてBlの
一部をPbで置換しつつ酸化物超電導体を結晶化するこ
とができるため、高臨界温度相の生成率が充分に高まる
(Function) In the first invention, since Ca2PbO4, which is stable during heat treatment, is used as a Pb source, it is possible to use an oxide superconductor mainly having a low critical temperature phase or a C
A part of Bi in the oxide with a reduced content of a can be replaced with Pb while sufficiently controlling the composition. Thereby, the oxides of Ca2Pb04 and Cu become sources of Ca and Cu, and the low critical temperature phase can be converted into the high critical temperature phase efficiently and with sufficient composition control. In this first invention, Ca2Pb is used as a Pb supply source.
Since O4 is used, as a starting material for the oxide superconductor side, in addition to pre-crystallized oxide superconductors mainly consisting of a low critical temperature phase and oxides with a reduced Ca content,
Even if these raw material powders are used, the oxide superconductor can be crystallized while replacing a portion of Bl with Pb during heat treatment, so the production rate of the high critical temperature phase can be sufficiently increased.

また、第2の発明においては、酸化物超電導体側の出発
原料として予め結晶化した低臨界温度相を主とする酸化
物超電導体を用い、かつ他方の出発原料とし−てPbの
酸化物とCaの酸化物との混合物を用いているので、P
bの酸化物とCaの酸化物とが熱処理過程において充分
に反応してCa2 PbO4が生成し、このCa2 P
bO4がPbおよびCaの供給源となって、高臨界温度
相を効率よくかつ充分に組成制御して形成することがで
きる。
Further, in the second invention, an oxide superconductor mainly consisting of a pre-crystallized low critical temperature phase is used as the starting material for the oxide superconductor side, and an oxide of Pb and Ca are used as the other starting material. Since a mixture of P and oxide is used,
The oxide of b and the oxide of Ca react sufficiently during the heat treatment process to generate Ca2PbO4, and this Ca2P
bO4 serves as a source of Pb and Ca, and a high critical temperature phase can be formed efficiently and with sufficient composition control.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例l Bi−8r−Ca−Cu−0系酸化物超電導体の出発原
料としてBi 203 、SrCO3、CaCO3、C
uOの各粉末をモル比で1:2:2:4または1:3:
1:4となるように所定量計量し、これを充分に混合し
た後、この混合粉末を空気中において850℃X50時
間の条件で焼成して結晶化させ、Bi−Sr−Ca−C
u−0系酸化物超電導体焼結体を作製した。この焼結体
に対してX線回折を行ったところ、低臨界温度相がほと
んどであった。
Example 1 Bi203, SrCO3, CaCO3, C as starting materials for Bi-8r-Ca-Cu-0 based oxide superconductor
The molar ratio of each powder of uO is 1:2:2:4 or 1:3:
After weighing a predetermined amount so that the ratio is 1:4 and thoroughly mixing it, this mixed powder is fired in the air at 850°C for 50 hours to crystallize Bi-Sr-Ca-C.
A u-0 based oxide superconductor sintered body was produced. When this sintered body was subjected to X-ray diffraction, it was found that most of the sintered body contained a low critical temperature phase.

次いで、CaC03とPbOとをモル比で2=1となる
ように所定量計量し、これを充分に混合した後、この混
合粉末を空気中において7(10’c X 12時間の
条件で焼成して結晶化させ、Ca−Pb−0系の酸化物
焼結体を作製した。この焼結体についてもX線回折を行
ったところ、Ca2 PbO4がほとんどであった。
Next, predetermined amounts of CaC03 and PbO were weighed so that the molar ratio was 2=1, and after thoroughly mixing them, this mixed powder was fired in the air under the conditions of 7 (10'c x 12 hours). A Ca--Pb-0-based oxide sintered body was produced by crystallization. When this sintered body was also subjected to X-ray diffraction, it was found that most of the sintered body was composed of Ca2PbO4.

次に、上記Bi−8r−Ca−Cu−0系酸化物超電導
体焼結体を粉砕して得た低臨界温度相を主とする酸化物
超電導体粉末と、上記Ca−Pb−0系の酸化物焼結体
を粉砕して得たCa2 Pbo 4を主とする酸化物粉
末と、CuO粉末とをモル比でl:1:lとなるように
所定世評量し、これを充分に混合し、この混合粉末をペ
レット状にプレス成形した後、この成形体に対して空気
中において850℃×12時間の条件で熱処理を施して
焼成した。
Next, oxide superconductor powder mainly containing a low critical temperature phase obtained by pulverizing the Bi-8r-Ca-Cu-0-based oxide superconductor sintered body and the Ca-Pb-0-based oxide superconductor powder The oxide powder mainly composed of Ca2Pbo4 obtained by crushing the oxide sintered body and the CuO powder were weighed in a predetermined amount so that the molar ratio was 1:1:1, and these were thoroughly mixed. After this mixed powder was press-molded into a pellet shape, the molded body was heat-treated and fired in air at 850° C. for 12 hours.

このようにして得たBi−8r−Ca−Cu−0系酸化
物超電導体焼結体についてX線回折を施したところ、第
1図(a)に示すように、高臨界温度相が多量に生成さ
れ、低臨界温度相は大幅に減少していることを確認した
。なお、第1図(b)はCa2 Pb04を主とする酸
化物粉末とCuO粉末とともに焼成する以前の酸化物超
電導体のX線回折結果を示す図であり、第1図(c)は
CaC03とPboとの混合物を焼成して得たCa−P
b−0系の酸化物焼結体のX線回折結果を示す図である
When the Bi-8r-Ca-Cu-0-based oxide superconductor sintered body thus obtained was subjected to X-ray diffraction, a large amount of high critical temperature phase was observed, as shown in Figure 1(a). It was confirmed that the low critical temperature phase produced was significantly reduced. Furthermore, Fig. 1(b) shows the X-ray diffraction results of the oxide superconductor before firing with oxide powder mainly composed of Ca2Pb04 and CuO powder, and Fig. 1(c) shows the results of X-ray diffraction of the oxide superconductor with CaC03 and CuO powder. Ca-P obtained by firing a mixture with Pbo
It is a figure which shows the X-ray diffraction result of a b-0 type|system|group oxide sintered compact.

また、この酸化物超電導体の臨界温度を磁化測定から求
めたところ、第2図に示すように、108Kからマイス
ナー効果が確認された。
Furthermore, when the critical temperature of this oxide superconductor was determined from magnetization measurements, the Meissner effect was confirmed from 108 K, as shown in FIG.

次に、Ca2 PbO、を主とする酸化物粉末とCuO
粉末ととともに熱処理して得たBi−8r−Ca−Cu
−0系酸化物超電導体焼結体に対して、さらに空気中で
850℃X  10(1時間の条件で熱処理を施した。
Next, oxide powder mainly composed of Ca2PbO and CuO
Bi-8r-Ca-Cu obtained by heat treatment with powder
The -0-based oxide superconductor sintered body was further heat-treated in air at 850° C. for 1 hour.

このようにして得たBi−3r−Ca−Cu−0系酸化
物超電導体に対してX線回折を行ったところ、第3図に
示すように、はぼ高臨界温度相単一相の酸化物超電導体
であることを確認した。
When X-ray diffraction was performed on the Bi-3r-Ca-Cu-0-based oxide superconductor obtained in this way, as shown in Figure 3, it was found that the oxidation of a single phase with a high critical temperature phase was observed. It was confirmed that it is a physical superconductor.

また、この酸化物超電導体に対して4端子法によって臨
界温度を測定したところ、抵抗零を示す温度’t 10
8にであった。また、77K 、 OTの条件下で臨界
電流密度を測定したところ、t000A/cTIと良好
な値が得られた。
In addition, when the critical temperature of this oxide superconductor was measured using the four-terminal method, the temperature at which resistance was zero was 't 10
It was on 8th. Further, when the critical current density was measured under the conditions of 77K and OT, a good value of t000A/cTI was obtained.

実施例2 Bi003 、SrCO3、CaCO3、CuOの各粉
末をモル比でl:2:1:2となるように所定量評ヱし
、これを充分に混合した後、この混合粉末を800℃×
24時間の条件で仮焼し、この仮焼物を粉砕した後、9
50℃で溶融した。この後、室温まで徐冷して相対密度
90%の緻密質な8l−8r−Ca−Cu−0系酸化物
超電導体の溶融凝固体を得た。
Example 2 A predetermined amount of each powder of Bi003, SrCO3, CaCO3, and CuO was weighed at a molar ratio of 1:2:1:2, and after thoroughly mixing, the mixed powder was heated at 800°C.
After calcining for 24 hours and crushing this calcined product,
It melted at 50°C. Thereafter, it was slowly cooled to room temperature to obtain a molten solidified body of a dense 8l-8r-Ca-Cu-0 based oxide superconductor with a relative density of 90%.

次に、この溶融凝固体を実施例1で作製したCa−Pb
−0系の酸化物焼結体を粉砕して得たCa2 PbO4
を主とする酸化物粉末とCuO粉末との混合粉末(モル
比−1+1 )中に埋設し、この状態で空気中で850
℃X12時間の条件で熱処理を施した。
Next, this molten solidified body was converted into the Ca-Pb produced in Example 1.
Ca2 PbO4 obtained by crushing -0 series oxide sintered body
It was buried in a mixed powder (molar ratio -1+1) of oxide powder mainly consisting of
Heat treatment was performed at ℃ for 12 hours.

このように熱処理をして得たBi−8r−Ca−Cu−
0系酸化物超電導体についてもX線回折を行ったところ
、高臨界温度相が多量に生成しており、高臨界温度相の
体積占有率が95%まで向上していた。
Bi-8r-Ca-Cu- obtained by heat treatment in this way
When X-ray diffraction was also performed on the 0-type oxide superconductor, it was found that a large amount of high critical temperature phase was generated, and the volume occupancy of the high critical temperature phase had increased to 95%.

実施例3 実施例2で作製したBi−Sr−Ca=Cu−0系酸化
物超電導体の溶融凝固体を、CaC03粉末とPbO粉
末とCuO粉末との混合粉末(モル比−2:1:1 )
中に埋設し、空気中で850℃×12時間の条件で熱処
理を施した。
Example 3 The molten solidified body of the Bi-Sr-Ca=Cu-0 based oxide superconductor produced in Example 2 was mixed with a mixed powder of CaC03 powder, PbO powder and CuO powder (molar ratio -2:1:1). )
The specimen was buried in the container and heat treated in air at 850° C. for 12 hours.

このように熱処理をして得たBi−3r−Ca−CI−
0系酸化物超電導体についてもX線回折を行ったところ
、高臨界温度相が多量に生成しており、高臨界温度相の
体積占有率が90%まで向上していた。
Bi-3r-Ca-CI- obtained by heat treatment in this way
When X-ray diffraction was also performed on the 0-type oxide superconductor, a large amount of high critical temperature phase was generated, and the volume occupancy of the high critical temperature phase was increased to 90%.

実施例4 Bfz 03.SrCO3s CaC01、CuOの各
粉末をモル比でl:2:l:2となるように所定量評ユ
し、これを充分に混合した後、この混合粉末を1300
℃× 1時間の条件で熱処理し、次いで500℃まで2
℃/分の徐冷し、この後室温まで放冷して1mmX2a
+mX 0.03 mmの大きさの低臨界温度相のBi
−3r−Ca−Cu−0系酸化物超電導体の単結晶体を
得た。
Example 4 Bfz 03. A predetermined amount of each powder of SrCO3s CaC01 and CuO was weighed at a molar ratio of 1:2:1:2, and after thoroughly mixing, the mixed powder was heated to 1300 molar ratios.
Heat treated at ℃×1 hour, then heated to 500℃ for 2 hours.
Slowly cooled at ℃/min, then left to cool to room temperature to form a 1mm x 2a
Bi in the low critical temperature phase with a size of +mX 0.03 mm
A single crystal of a -3r-Ca-Cu-0 based oxide superconductor was obtained.

次に、このBi−8r−Ca−Cu−0系酸化物超電導
体の単結晶体を実施例2と同様にCa2 PbO4を主
とする酸化物粉末とCuO粉末との混合粉末(モル比−
1:l )中に埋設して同一条件で熱処理を行った。
Next, the single crystal of this Bi-8r-Ca-Cu-0-based oxide superconductor was transformed into a mixed powder (molar ratio -
1:l) and heat-treated under the same conditions.

このようにして熱処理を施した単結晶体についてもX線
回折を行ったところ、高臨界温度相に変換していた。
When X-ray diffraction was performed on the single crystal that had been heat-treated in this way, it was found that it had been converted to a high critical temperature phase.

[発明の効果コ 以上説明したように本発明によれば、Biの一部を充分
に組成制御しつつPbで置換することができ、これによ
って高臨界温度相を効率よく生成することが可能になる
[Effects of the Invention] As explained above, according to the present invention, it is possible to replace a part of Bi with Pb while fully controlling the composition, thereby making it possible to efficiently generate a high critical temperature phase. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の熱処理を施したBi
−8r−Ca−Cu−0系酸化物超電導体のX線回折結
果を示す図、第1図(b)は熱処理を施す前のB i 
−S r−Ca−Cu−0系酸化物超電導体のX線回折
結果を示す図、第1図(c)はCaC03とPboとの
焼成物のX線回折結果を示す図、第2図は第1図(a)
に示したBi−8r−Ca−Cu−0系酸化物超電導体
の磁化測定の結果を示す図、第3図は第1図(a)に示
したBi−Sr−Ca−Cu−0系酸化物超電導体にさ
らに本発明の熱処理を施した酸化物超電導体のX線回折
結果を示す図である。 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − −M(Xlσ2emu )
FIG. 1(a) shows Bi heat treated according to an embodiment of the present invention.
A diagram showing the X-ray diffraction results of -8r-Ca-Cu-0 based oxide superconductor, Figure 1(b) is B i before heat treatment.
-S A diagram showing the X-ray diffraction results of r-Ca-Cu-0 based oxide superconductor, Figure 1 (c) is a diagram showing the X-ray diffraction results of the fired product of CaC03 and Pbo, and Figure 2 is Figure 1(a)
Figure 3 shows the results of magnetization measurements of the Bi-8r-Ca-Cu-0 based oxide superconductor shown in Figure 1(a). FIG. 3 is a diagram showing the results of X-ray diffraction of an oxide superconductor obtained by further subjecting the oxide superconductor to the heat treatment of the present invention. Applicant Toshiba Corporation Representative Patent Attorney Suyama Sa - -M (Xlσ2emu)

Claims (2)

【特許請求の範囲】[Claims] (1)(A)Bi−Sr−Ca−Cu−O系酸化物超電
導体、加熱により前記Bi−Sr−Ca−Cu−O系酸
化物超電導体となる原料粉末、前記酸化物超電導体より
もCaの含有量が少ない酸化物、加熱により前記酸化物
となる原料粉末から選ばれた少なくとも1種と、(B)
Ca_2PbO_4またはCa_2PbO_4とCuの
酸化物との混合物とを 混合あるいは接触させ、その状態で熱処理することを特
徴とする酸化物超電導体の製造方法。
(1) (A) Bi-Sr-Ca-Cu-O-based oxide superconductor, raw material powder that becomes the Bi-Sr-Ca-Cu-O-based oxide superconductor by heating, and more than the oxide superconductor. (B) at least one selected from oxides with low Ca content and raw material powders that become the oxides upon heating;
A method for producing an oxide superconductor, comprising mixing or contacting Ca_2PbO_4 or a mixture of Ca_2PbO_4 and an oxide of Cu, and heat-treating in that state.
(2) (C)Bi、(Sr,Ca)、Cuを原子比で
おおよそ2:3:2で含有する酸化物超電導体と、(D
)Caの酸化物とPbの酸化物との混合物またはCaの
酸化物とPbの酸化物とCuの酸化物との混合物とを 混合あるいは接触させ、その状態で熱処理することを特
徴とする酸化物超電導体の製造方法。
(2) (C) An oxide superconductor containing Bi, (Sr, Ca), and Cu in an atomic ratio of approximately 2:3:2, and (D
) An oxide characterized by mixing or contacting a mixture of a Ca oxide and a Pb oxide or a mixture of a Ca oxide, a Pb oxide, and a Cu oxide, and heat-treating the mixture in that state. Method for manufacturing superconductors.
JP63272459A 1988-10-28 1988-10-28 Production of oxide superconductor Pending JPH02120234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63272459A JPH02120234A (en) 1988-10-28 1988-10-28 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63272459A JPH02120234A (en) 1988-10-28 1988-10-28 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02120234A true JPH02120234A (en) 1990-05-08

Family

ID=17514208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63272459A Pending JPH02120234A (en) 1988-10-28 1988-10-28 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02120234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300486A (en) * 1993-05-27 1994-04-05 The United States Of America As Represented By The United States Department Of Energy Synthesis of BiPbSrCaCuO superconductor
US5324712A (en) * 1991-08-16 1994-06-28 Gte Laboratories Incorporated Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324712A (en) * 1991-08-16 1994-06-28 Gte Laboratories Incorporated Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding
US5300486A (en) * 1993-05-27 1994-04-05 The United States Of America As Represented By The United States Department Of Energy Synthesis of BiPbSrCaCuO superconductor

Similar Documents

Publication Publication Date Title
KR910002310B1 (en) Superconductor of oxidation material and the manufacturing method
EP0303249B1 (en) Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
JPH10101336A (en) Production of superconductor
US5140000A (en) Metal oxide 247 superconducting materials
EP0284438B1 (en) Superconducting materials and methods of manufacturing the same
JPH02120234A (en) Production of oxide superconductor
US5242896A (en) Superconductor crystal and process for preparing the same
KR20020031394A (en) A pb-bi-sr-ca-cu-oxide powder mix with enhanced reactivity and process for its manufacture
JP3034267B2 (en) Oxide superconductor
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
JP2783559B2 (en) Oxide-based composite sintered body, method for producing the same, and resistor using the same
JPH01157499A (en) Production of single crystal of oxide superconductor
JPH01278449A (en) Production of oxide superconductor
JP3157183B2 (en) Manufacturing method of oxide superconductor
JPH02129060A (en) Production of oxide superconductor
JP2760999B2 (en) Oxide superconducting sintered body and method for producing the same
JPH02248321A (en) Oxide superconductor
JPH0238359A (en) Production of superconductor
JP2765138B2 (en) Preparation method of high quality oxide superconducting thin film
JPH01275493A (en) Method for growing oxide superconductor single crystal
JP2545443B2 (en) Method for manufacturing oxide superconductor
JP3444930B2 (en) Manufacturing method of oxide superconductor
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JPH01157455A (en) Production of oxide superconducting sintered body
JPS63315572A (en) Production of superconductor