JPH02129060A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH02129060A
JPH02129060A JP63283441A JP28344188A JPH02129060A JP H02129060 A JPH02129060 A JP H02129060A JP 63283441 A JP63283441 A JP 63283441A JP 28344188 A JP28344188 A JP 28344188A JP H02129060 A JPH02129060 A JP H02129060A
Authority
JP
Japan
Prior art keywords
oxide superconductor
critical temperature
heat treatment
powder
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63283441A
Other languages
Japanese (ja)
Inventor
Tomohisa Yamashita
知久 山下
Shiyunji Nomura
俊自 野村
Hisashi Yoshino
芳野 久士
Takeshi Ando
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63283441A priority Critical patent/JPH02129060A/en
Publication of JPH02129060A publication Critical patent/JPH02129060A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To enable high-efficiency production of oxide superconductor of a high content of the high critical temperature phase or of the single phase of high critical temperature by heat-treating a raw material of Bi-Sr-Ca-Cu-O oxide superconductor in an atmosphere in which Pb and/or Sb are present. CONSTITUTION:The powders of Bi2O3, SrCO3, CaCO3, CuO and the like are weighed and mixed so that the atomic ratio shown in the formula is satisfied. The mixed powder, or its press-molded product, or the powder obtained by calcinating and crushing the mixed powder is used as a starting substance and placed in the heat treatment vessel 4. The starting substance 3 is heated in the electric furnace 6 to effect heat treatment in an atmosphere 5 containing Pb and/or Sb to substitute a part of Bi with Pb or Sb to give an oxide superconductor consisting of the high critical point phase.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) この発明は、8l−Sr−Ca−Cu−0系の酸化物超
電導体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an 8l-Sr-Ca-Cu-0 based oxide superconductor.

(従来の技術) 1986年に40に以上の高い臨界温度を有するLa−
Ba−Cu−0系の層状ペロブスカイト型の酸化物系超
電導体が発表されて以来、酸化物系の超電導材料が注目
を集めた。また、1987年にはY−Ba−Cu−0系
で代表される酸素欠陥を有する欠陥ペロブスカイト型の
酸化物超電導体の臨界温度が液体窒素温度(−77K)
より高い、約90にであることが確認された。この発見
により冷媒として高価な液体ヘリウムに代えて、より安
価な液体窒素を用いた超電導体の応用が可能となり、各
所で盛んに研究が行われている。
(Prior art) In 1986, La-
Since the Ba-Cu-0 layered perovskite type oxide superconductor was announced, oxide superconducting materials have attracted attention. Furthermore, in 1987, the critical temperature of a defective perovskite-type oxide superconductor with oxygen defects represented by the Y-Ba-Cu-0 system was determined to be the liquid nitrogen temperature (-77K).
It was found to be higher, around 90. This discovery has made it possible to apply superconductors using cheaper liquid nitrogen instead of expensive liquid helium as a refrigerant, and research is being actively conducted in various places.

また、1988年には臨界温度が105に近辺と高いB
i−Sr−Ca−Cu−0系の酸化物超電導体が発見さ
れるに至った。このBi−Sr−Ca−Cu−0系の酸
化物超電導体は、Y−Ba−Cu−0系の酸化物超電導
体に比べて臨界温度が高く、たとえば液体窒素によって
冷却を行う際に実用上充分な熱的マージンがとれるばか
りでな(、高価な希土類元素が不要であること、水分に
対する化学的安定性が高いこと、酸素が抜けにくいこと
などの利点があり、より優れた超電導体として注目を集
めている。
In addition, in 1988, the critical temperature of B was as high as around 105.
An i-Sr-Ca-Cu-0 based oxide superconductor has been discovered. This Bi-Sr-Ca-Cu-0 based oxide superconductor has a higher critical temperature than the Y-Ba-Cu-0 based oxide superconductor, which makes it difficult to use in practical applications when cooling with liquid nitrogen, for example. It not only has a sufficient thermal margin (no need for expensive rare earth elements), has high chemical stability against moisture, and is difficult to escape oxygen, and is attracting attention as a superior superconductor. are collecting.

ところで、このBi−9r−Ca−Cu−0系酸化物超
電導体には、零抵抗を示す臨界温度(以下、Tcend
と記す。)が約80にの化学式 %式%(1) で表される低臨界温度相と、Tcendが約110にの
化学式 %式%() で表される高臨界温度相の2種類の超電導相が存在して
いることが確認されている。また、このBi−Sr−C
a−Cu−0系酸化物超電導体は、Y−Ba−Cu−0
系酸化物超電導体などと同様に結晶性の酸化物であるた
め、たとえばBl203 、SrCO3、CaCO3、
CuOなどの粉末を原料粉として用いた、通常の焼成法
によって゛作製することが試みられているが、このよう
な方法によって得られたBi−Sr−Ca−Cu−0系
酸化物超電導焼結体は上記低臨界温度相と高臨界温度相
とが混在したものとして得られるため、Tcendは8
0に程度の低いものしか得られていないのが現状である
By the way, this Bi-9r-Ca-Cu-0 based oxide superconductor has a critical temperature (hereinafter referred to as Tcend) at which it exhibits zero resistance.
It is written as There are two types of superconducting phases: a low critical temperature phase represented by the chemical formula % formula % (1) where Tcend is approximately 80, and a high critical temperature phase represented by the chemical formula % formula % () where Tcend is approximately 110. It has been confirmed that it exists. Moreover, this Bi-Sr-C
The a-Cu-0 based oxide superconductor is Y-Ba-Cu-0
Since it is a crystalline oxide like other oxide superconductors, for example, Bl203, SrCO3, CaCO3,
Attempts have been made to fabricate the Bi-Sr-Ca-Cu-0 based oxide superconducting method using a powder such as CuO as a raw material powder. Since the solid is obtained as a mixture of the above-mentioned low critical temperature phase and high critical temperature phase, Tcend is 8
At present, only a low level of 0 has been obtained.

このような問題に対して、Bi−Sr−Ca−Cu−0
系酸化物超電導体にPbやSbを添加し、Biの一部を
PbやSbで置換することによって、高臨界温度相の体
積比を大幅に増加することができるという報告がある。
For such problems, Bi-Sr-Ca-Cu-0
There is a report that the volume ratio of the high critical temperature phase can be significantly increased by adding Pb or Sb to the oxide superconductor and replacing part of Bi with Pb or Sb.

しかしながら、上述した通常の焼成法によって8l−S
r−Ca−Cu−0系酸化物超電導体を作製する際に、
PbやSbをたとえば酸化物などの化合物として添加し
たとしても、PbやSbの化合物は蒸気圧が高いために
熱処理時に揮散しやすく、組成の制御が非常に難しいと
いう問題がある。よって、酸化物超電導体の原料粉末に
PbやSbの化合物を単に添加しただけでは、高臨界温
度相を再現性よくかつ効率よく得ることができない。
However, 8l-S by the normal firing method mentioned above.
When producing an r-Ca-Cu-0 based oxide superconductor,
Even if Pb or Sb is added as a compound such as an oxide, the Pb or Sb compound has a high vapor pressure and easily volatilizes during heat treatment, making it extremely difficult to control the composition. Therefore, simply adding a Pb or Sb compound to the raw material powder of an oxide superconductor does not allow a high critical temperature phase to be obtained with good reproducibility and efficiency.

(発明が解決しようとする課題) 上述したように、Bi−Sr−Ca−Cu−0系酸化物
超電導体は、低臨界温度相と高臨界温度相とが混在した
ものとして得られるため、高臨界温度相の特性を生かす
ことができないという問題があった。
(Problems to be Solved by the Invention) As mentioned above, the Bi-Sr-Ca-Cu-0 based oxide superconductor is obtained as a mixture of a low critical temperature phase and a high critical temperature phase. There was a problem that the characteristics of the critical temperature phase could not be utilized.

また、Blの一部をPbやSbで置換することによって
高臨界温度相の生成比率を高めるという報告もなされて
いるが、この方法は焼成時における組成制御が極めて難
しく、再現性に乏しいという問題があった。
It has also been reported that replacing a portion of Bl with Pb or Sb increases the generation ratio of the high critical temperature phase, but this method has the problem of extremely difficult composition control during firing and poor reproducibility. was there.

この発明は、このような従来技術の課題に対処するため
になされたもので、高臨界温度相の生成比率を高めたB
i−Sr−Ca−Cu−0系酸化物超電導体、さらには
高臨界温度相単相の8l−Sr−Ca−Cu−0系酸化
物超電導体を再現性よく得ることを可能にした酸化物超
電導体の製造方法を提供することを目的としている。
This invention was made in order to deal with the problems of the prior art, and it is a B
An oxide that makes it possible to obtain an i-Sr-Ca-Cu-0 based oxide superconductor and furthermore a high critical temperature single phase 8l-Sr-Ca-Cu-0 based oxide superconductor with good reproducibility. The purpose is to provide a method for manufacturing superconductors.

[発明の構成] (課題を解決するための手段) この発明の酸化物超電導体の製造方法は、旧−Sr−C
a−Cu−0系酸化物超電導体または加熱により前記B
i−Sr−Ca−Cu−0系酸化物超電導体となる混合
原料を、Pbおよび/またはSbが存在する雰囲気下で
熱処理することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The method for producing an oxide superconductor of the present invention comprises
a-Cu-0 based oxide superconductor or by heating the B
The method is characterized in that the raw material mixture that becomes the i-Sr-Ca-Cu-0-based oxide superconductor is heat-treated in an atmosphere containing Pb and/or Sb.

この発明において使用される被熱処理体となる出発物は
、たとえば以下のようにして作製される。
The starting material that becomes the object to be heat treated used in this invention is produced, for example, as follows.

まず、Bi、Srs Cas CuのBi−Sr−Ca
−Cu−0系酸化物超電導体の構成元素を充分に混合す
る。これら構成元素の化合物としては、8120 ! 
、SrCO3、CaCO3、CuOなどの酸化物や炭酸
塩を用いることができる他、炭酸塩以外の加熱により酸
化物に転化する硝酸塩、水酸化物などの化合物や、さら
にシュウ酸塩のような有機酸塩や有機金属などを用いて
もよい。これらBi−Sr−Ca−Cu−0系酸化物超
電導体の構成元素は、基本的に高臨界温度相として解明
された、 化学式:Bi25r2Ca2Cu30x   −(II
)の原子比を満足するように混合するが、多少製造条件
などとの関係でずれていても差支えない。たとえば、B
l 2sol lこ対してSr 2± 0.4sol 
、Ca2±0.4+gol 、Cu 3士 0.6so
l程度のずれは問題ない。
First, Bi-Sr-Ca of Bi, Srs Cas Cu
- The constituent elements of the Cu-0 based oxide superconductor are thoroughly mixed. Compounds of these constituent elements include 8120!
In addition to oxides and carbonates such as , SrCO3, CaCO3, and CuO, compounds such as nitrates and hydroxides that are converted to oxides by heating other than carbonates, and organic acids such as oxalates can be used. Salts, organic metals, etc. may also be used. The constituent elements of these Bi-Sr-Ca-Cu-0-based oxide superconductors are basically elucidated as a high critical temperature phase, and have the chemical formula: Bi25r2Ca2Cu30x -(II
), but there may be a slight deviation depending on the manufacturing conditions. For example, B
l 2sol l whereas Sr 2± 0.4sol
, Ca2±0.4+gol, Cu 3 0.6so
A deviation of about l is not a problem.

このようにして得られた各構成元素を所定の比率で含有
する混合粉末を出発物として用いてもよいし、この混合
粉末をプレス成形法や公知の成形手段によって所要形状
の成形体とし、この成形体を出発物として用いてもよい
The thus obtained mixed powder containing each constituent element in a predetermined ratio may be used as a starting material, or this mixed powder may be formed into a molded body of the desired shape by press molding or known molding means. A molded body may be used as a starting material.

また、上記したBi−3r−Ca−Cu−0系酸化物超
電導体の各構成元素を所定の比率で含有する混合粉末を
800℃程度の温度で仮焼して反応させ、この仮焼物を
ボールミル、サンドグラインダ、その他公知の方法で粉
砕した酸化物超電導体粉末を出発物として用いてもよい
。さらには、この酸化物超電導体粉末をプレス成形法や
公知の成形手段によって成形した成形体や、この成形体
を予め焼成して得た焼結体を出発物として用いてもよい
In addition, a mixed powder containing each constituent element of the Bi-3r-Ca-Cu-0 based oxide superconductor described above in a predetermined ratio is calcined at a temperature of about 800°C to react, and this calcined product is ball milled. An oxide superconductor powder pulverized by a sand grinder or other known method may be used as a starting material. Furthermore, a molded body obtained by molding this oxide superconductor powder by a press molding method or a known molding method, or a sintered body obtained by pre-sintering this molded body may be used as the starting material.

なお、予め反応させた酸化物超電導体を出発物として用
いる際には、単に焼成した焼結体に限らず、相対密度の
高い溶融凝固体や単結晶体を用いることも可能であるし
、またその形状も単にバルク形状に限らず、線材化した
ものや薄膜など各種形態のものを使用することが可能で
ある。
In addition, when using a pre-reacted oxide superconductor as a starting material, it is not only possible to use a simply fired sintered body, but also a molten solidified body or a single crystal body with a high relative density. Its shape is not limited to just a bulk shape, but various shapes such as a wire rod or a thin film can be used.

そして、これら出発物をPbやSbが存在する雰囲気中
で熱処理し、目的とする酸化物超電導体を得る。
These starting materials are then heat treated in an atmosphere containing Pb and Sb to obtain the desired oxide superconductor.

この雰囲気は、PbやSbを含んでいればよく、化合物
でもよい。Pbを含む化合物やSbを含む化合物として
は、PbおよびSbの酸化物、フッ化物、塩化物などが
例示され、これらPbやSbを含む化合物が存在する酸
素含有雰囲気中において熱処理を行う。
This atmosphere only needs to contain Pb and Sb, and may be a compound. Examples of the compound containing Pb and the compound containing Sb include oxides, fluorides, and chlorides of Pb and Sb, and the heat treatment is performed in an oxygen-containing atmosphere where these compounds containing Pb and Sb are present.

この雰囲気中の酸素分圧としては、0.01atm〜1
0ateというように各種の条件を設定することが可能
である。
The oxygen partial pressure in this atmosphere is 0.01 atm to 1
It is possible to set various conditions such as 0ate.

このようなPbやSbの化合物が存在する酸素含有雰囲
気は、熱処理炉中にPbやSbの化合物を直接配置し、
熱処理時に同時に加熱することによって熱処理炉内にP
bやSbの化合物を存在させたり、あるいは別途Pbや
Sbの化合物を加熱してPbやSbの化合物が存在する
酸素含有雰囲気を作製し、この雰囲気を熱処理炉中に導
入するなどによって得られる。
The oxygen-containing atmosphere in which such Pb and Sb compounds exist can be created by placing the Pb and Sb compounds directly in the heat treatment furnace.
P in the heat treatment furnace by heating at the same time during heat treatment.
This can be obtained by creating an oxygen-containing atmosphere in which a Pb or Sb compound is present, or by separately heating a Pb or Sb compound, and introducing this atmosphere into a heat treatment furnace.

PbやSbの化合物は、蒸気圧が高く容易に気化するが
、これらPbやSbの化合物の存在率が余り低いと、B
i−Sr−Ca−Cu−0系酸化物超電導体中の81と
の置換が充分に進行しないため、たとえば熱処理炉中に
PbやSbの化合物を直接配置する際には、熱処理雰囲
気空間の容積に対して0.O1g/cc以上(あるいは
2X 10”’ mol/cc以上)存在させることが
好ましく、別途これらPbやSbの化合物が存在する雰
囲気を熱処理炉中に導入する際にも、この値を基準にし
て導入量を設定することが好ましい。
Pb and Sb compounds have high vapor pressure and easily vaporize, but if the abundance of these Pb and Sb compounds is too low, B
Since the substitution with 81 in the i-Sr-Ca-Cu-0 based oxide superconductor does not proceed sufficiently, for example, when directly placing a Pb or Sb compound in a heat treatment furnace, the volume of the heat treatment atmosphere space is 0. It is preferable to have O1g/cc or more (or 2X 10"' mol/cc or more) exist, and when separately introducing an atmosphere in which these Pb and Sb compounds exist into the heat treatment furnace, it is introduced based on this value. It is preferable to set the amount.

また、この熱処理の温度条件は、810℃〜880℃の
範囲で行うことが好ましい。熱処理温度が810℃未満
では反応が充分に進まず、高臨界温度相が充分に生成し
ない。また、860℃を超えると生成した高臨界温度相
が分解してしまう。そして、このような温度条件の下で
lO時間〜lXl0”時間程度熱処理を行った後、徐冷
して目的とする高臨界温度相を主とするBi−Sr−C
a−Cu−0系酸化物超電導体、さらには高臨界温度相
単相の酸化物超電導体を得る。
Further, the temperature conditions for this heat treatment are preferably in the range of 810°C to 880°C. If the heat treatment temperature is less than 810° C., the reaction will not proceed sufficiently and a high critical temperature phase will not be sufficiently generated. Furthermore, if the temperature exceeds 860°C, the generated high critical temperature phase will decompose. After heat treatment is performed for approximately 10 hours to 1X10'' hours under such temperature conditions, it is slowly cooled to produce the desired Bi-Sr-C mainly having a high critical temperature phase.
An a-Cu-0 based oxide superconductor and further a high critical temperature single phase oxide superconductor are obtained.

得られるBi−Sr−Ca−Cu−0系酸化物超電導体
としては、 ■ 上記酸化物超電導体粉末や混合粉末を上記条件下で
焼成し、得られた焼成物を粉砕することによって得られ
る高臨界温度相の比率が高い8l−Sr−Ca−Cu−
0系酸化物超電導体粉末。
The resulting Bi-Sr-Ca-Cu-0 based oxide superconductor is: 8l-Sr-Ca-Cu- with a high ratio of critical temperature phase
0 series oxide superconductor powder.

■ 上記酸化物超電導体粉末や混合粉末の成形体を上記
条件下で焼成することによって得られる高臨界温度相の
比率が高いBi−Sr−Ca−Cu−0系酸化物超電導
体の焼結体。
■ A sintered body of Bi-Sr-Ca-Cu-0 based oxide superconductor with a high ratio of high critical temperature phase obtained by firing a compact of the above-mentioned oxide superconductor powder or mixed powder under the above-mentioned conditions. .

■ 上記酸化物超電導体の焼結体や溶融凝固体などを上
記条件下で熱処理することによって得られる高臨界温度
相の比率が高いBi−Sr−Ca−Cu−0系酸化物超
電導体。
(2) A Bi-Sr-Ca-Cu-0 based oxide superconductor having a high ratio of high critical temperature phase obtained by heat treating a sintered body, a molten solidified body, etc. of the above-mentioned oxide superconductor under the above-mentioned conditions.

などである。etc.

(作 用) この発明においては、PbまたはSbの供給源として熱
処理雰囲気中にPbを含む化合物やSbを含む化合物を
存在させているため、これらPbやSbの化合物の雰囲
気中の存在率を制御することによって、8l−Sr−C
a−Cu−0系酸化物超電導体のBlの一部を充分に組
成制御しつつPbやSbで置換することができる。これ
によって、Bi−Sr−Ca−Cu−0系酸化物超電導
体の混合原料を高臨界温度相として結晶化させたり、B
i−Sr−Ca−Cu−0系酸化物超電導体の低臨界温
度相を高臨界温度相に効率よくかつ充分に組成制御しつ
つ変換することができる。したがって、得られるBi−
Sr−Ca−Cu−0系酸化物超電導体は、高臨界温度
相の比率が高い酸化物超電導体や高臨界温度相Qi相の
酸化物超電導体となる。
(Function) In this invention, since a compound containing Pb or a compound containing Sb is present in the heat treatment atmosphere as a supply source of Pb or Sb, the abundance rate of these Pb or Sb compounds in the atmosphere is controlled. By doing so, 8l-Sr-C
A part of Bl in the a-Cu-0 based oxide superconductor can be replaced with Pb or Sb while sufficiently controlling the composition. This allows the mixed raw material of the Bi-Sr-Ca-Cu-0 based oxide superconductor to be crystallized as a high critical temperature phase, and the B
The low critical temperature phase of the i-Sr-Ca-Cu-0 based oxide superconductor can be converted into the high critical temperature phase efficiently and with sufficient composition control. Therefore, the obtained Bi-
The Sr-Ca-Cu-0-based oxide superconductor becomes an oxide superconductor with a high proportion of the high critical temperature phase or an oxide superconductor with a high critical temperature phase Qi phase.

(実施例) 次に、この発明の実施例について説明する。(Example) Next, embodiments of the invention will be described.

実施例l Bi−9r−Ca−Cu−0系酸化物超電導体の出発原
料としてBi2O3、SrCO3、CaCO3、CuO
の各粉末を、酸化物換算でl/2Bi20322.2モ
ル%、SrO22,2モル%、Ca022.2モル%3
 、Cu033.3モル%となるように所定量秤量し、
これをボールミルで充分に混合した後、この混合粉末を
アルミナルツボに収容し、空気中において800℃× 
8時間の条件で仮焼して固相反応させた。次いで、この
仮焼物を再びボールミルで充分粉砕混合してBi−Sr
−Ca−Cu−〇系酸化物超電導体粉末を得た。この粉
末の陽イオン比は、BI:Sr:Ca:Cu=2:2:
2:Sであった。
Example 1 Bi2O3, SrCO3, CaCO3, CuO as starting materials for Bi-9r-Ca-Cu-0 based oxide superconductor
Each of the powders was converted into oxides: l/2Bi20322.2 mol%, SrO222.2 mol%, Ca022.2 mol%3
, weighed a predetermined amount so that Cu0 was 33.3 mol%,
After thoroughly mixing this with a ball mill, this mixed powder was placed in an aluminum crucible and heated to 800°C in the air.
A solid phase reaction was performed by calcining for 8 hours. Next, this calcined product was sufficiently ground and mixed in a ball mill again to form Bi-Sr.
-Ca-Cu-〇-based oxide superconductor powder was obtained. The cation ratio of this powder is BI:Sr:Ca:Cu=2:2:
2:S.

次に、上記酸化物超電導体粉末を5g秤量し、これを約
Non/c(の条件でプレス成形して成形体を作製した
。一方、PbO粉末を2g秤量し、第1図に示すように
、PbO粉末1を耐熱性容器2中に配置し、その上方に
上記酸化物超電導体粉末の成形体3をPbO粉末1と連
続空間内に存在するように配置し、これらをアルミナ製
容器で覆って熱処理雰囲気空間5を設定した。なお、こ
の熱処理雰囲気空間5の容積は50ccとした。そして
、これらを電気炉で850℃X  100時間の条件で
熱処理し、室温まで徐冷して8l−Sr−Ca−Cu−
0系酸化物超電導焼結体を作製した。
Next, 5 g of the above oxide superconductor powder was weighed, and this was press-molded under conditions of approximately Non/c to produce a molded body.Meanwhile, 2 g of PbO powder was weighed, and as shown in Fig. , PbO powder 1 is placed in a heat-resistant container 2, above which the compact 3 of the oxide superconductor powder is placed so as to exist in a continuous space with the PbO powder 1, and these are covered with an alumina container. A heat treatment atmosphere space 5 was set up.The volume of this heat treatment atmosphere space 5 was 50cc.Then, these were heat treated in an electric furnace at 850°C for 100 hours, and slowly cooled to room temperature to form 8l-Sr. -Ca-Cu-
A 0-type oxide superconducting sintered body was produced.

このようにして得られたBf−9r−Ca−Cu−0系
酸化物超電導焼結体にX線回折を施したところ、高臨界
温度相の単一相であることが確認された。また、この酸
化物超電導焼結体の電気抵抗の温度依存性を4端子法に
よって測定した。その結果を第2図に示す。同図からも
明らかなように、約109Kから急激に電気抵抗が減少
し、105にで電気抵抗が零となった。また、電気抵抗
の急激な降下開始温度と電気抵抗が零となる値との差Δ
Tcは4にであり、優れた超電導特性を有していた。
When the Bf-9r-Ca-Cu-0-based oxide superconducting sintered body thus obtained was subjected to X-ray diffraction, it was confirmed that it was a single phase with a high critical temperature phase. Furthermore, the temperature dependence of the electrical resistance of this oxide superconducting sintered body was measured by a four-terminal method. The results are shown in FIG. As is clear from the figure, the electrical resistance suddenly decreased from about 109K and reached zero at 105K. Also, the difference Δ between the temperature at which the electrical resistance starts to drop rapidly and the value at which the electrical resistance becomes zero
Tc was 4, and it had excellent superconducting properties.

実施f12 実施例1と同一条件でBi−Sr−Ca−Cu−0系酸
化物超電導体粉末の成形体を作製した。一方、l/2S
b2 o 3を2g秤量し、この5b2o3粉末と上記
酸化物超電導体粉末の成形体を実施例1と同様に熱処理
炉中に配置し、同一条件で熱処理を行い、Bi−Sr−
Ca−Cu−0系酸化物超電導焼結体を作製した。
Implementation f12 A molded body of Bi-Sr-Ca-Cu-0 based oxide superconductor powder was produced under the same conditions as in Example 1. On the other hand, l/2S
Weighed 2g of b2o3, placed this 5b2o3 powder and the molded body of the oxide superconductor powder in a heat treatment furnace in the same manner as in Example 1, and heat-treated it under the same conditions to form a Bi-Sr-
A Ca-Cu-0 based oxide superconducting sintered body was produced.

このようにして得た酸化物超電導焼結体の超電導特性を
実施例1と同様に測定したところ、Tczerom 1
00K、ΔTc−4にと良好な値が得られた。
The superconducting properties of the oxide superconducting sintered body thus obtained were measured in the same manner as in Example 1, and it was found that Tczerom 1
Good values were obtained for 00K and ΔTc-4.

実施例3 実施例1と同一条件でBi−Sr−Ca−Cu−0系酸
化物超電導体粉末の成形体を作製するとともに、PbO
粉末を実施例1と同量秤量し、これらを実施例1と同様
に電気炉中に配置した。ただし、アルミナ製容器によっ
て形成される熱処理雰囲気空間内は、酸素分圧が1/1
3atsとなるように、アルゴンガスを充填した。この
状態で、850℃×8時間の条件で熱処理し、室温まで
徐冷してBi−Sr−Ca−Cu−0系酸化物超電導焼
結体を得た。
Example 3 A molded body of Bi-Sr-Ca-Cu-0 based oxide superconductor powder was produced under the same conditions as in Example 1, and PbO
The same amount of powder as in Example 1 was weighed and placed in an electric furnace in the same manner as in Example 1. However, in the heat treatment atmosphere space formed by the alumina container, the oxygen partial pressure is 1/1
Argon gas was filled to a level of 3 ats. In this state, it was heat treated at 850° C. for 8 hours and slowly cooled to room temperature to obtain a Bi-Sr-Ca-Cu-0 based oxide superconducting sintered body.

このようにして得た酸化物超電導焼結体の超電導特性を
実施例1と同様に!111定したところ、Tczero
 −109KsΔTc −3にと良好な値が得られた。
The superconducting properties of the oxide superconducting sintered body thus obtained were the same as in Example 1! 111, Tczero
A good value of -109KsΔTc -3 was obtained.

[発明の効果] 以上説明したようにこの発明によれば、Biの一部を充
分に組成制御しつつPbやSbで置換することができ、
これによって高臨界温度相のBl−!3r−Ca−Cu
−0系酸化物超電導体を効率よく生成することが可能に
なる。
[Effects of the Invention] As explained above, according to the present invention, a part of Bi can be replaced with Pb or Sb while sufficiently controlling the composition,
This results in a high critical temperature phase of Bl-! 3r-Ca-Cu
-0 series oxide superconductor can be efficiently produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の熱処理状態を示す図、第
2図はこの発明の一実施例で製造したBi−Sr−Ca
−Cu−0系酸化物超電導体の電気抵抗の温度依存性を
示すグラフである。 1・・・・・・PbO粉末(またはSbO粉末)、3・
・・・・・酸化物超電導体粉末の成形体、5・・・・・
・熱処理雰囲気空間。 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − を截無九乎CmΩ・蝿) 〜
FIG. 1 is a diagram showing the heat treatment state of an embodiment of the present invention, and FIG. 2 is a diagram showing the state of heat treatment of an embodiment of the present invention.
It is a graph showing the temperature dependence of electrical resistance of a -Cu-0 based oxide superconductor. 1...PbO powder (or SbO powder), 3.
...Molded body of oxide superconductor powder, 5...
・Heat treatment atmosphere space. Applicant Toshiba Corporation Patent Attorney Suyama Sa

Claims (1)

【特許請求の範囲】[Claims] (1)Bi−Sr−Ca−Cu−O系酸化物超電導体ま
たは加熱により前記Bi−Sr−Ca−Cu−O系酸化
物超電導体となる混合原料を、Pbおよび/またはSb
が存在する雰囲気下で熱処理することを特徴とする酸化
物超電導体の製造方法。
(1) Pb and/or Sb
1. A method for producing an oxide superconductor, comprising heat treatment in an atmosphere in which
JP63283441A 1988-11-09 1988-11-09 Production of oxide superconductor Pending JPH02129060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63283441A JPH02129060A (en) 1988-11-09 1988-11-09 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63283441A JPH02129060A (en) 1988-11-09 1988-11-09 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02129060A true JPH02129060A (en) 1990-05-17

Family

ID=17665585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63283441A Pending JPH02129060A (en) 1988-11-09 1988-11-09 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02129060A (en)

Similar Documents

Publication Publication Date Title
JPH10101336A (en) Production of superconductor
HUT52645A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JP2609944B2 (en) Oxide material showing superconductivity and method for producing the same
JPH02129060A (en) Production of oxide superconductor
JPH02120234A (en) Production of oxide superconductor
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
KR970001258B1 (en) Super conducting material
JPH02248321A (en) Oxide superconductor
JP2783559B2 (en) Oxide-based composite sintered body, method for producing the same, and resistor using the same
JPH01157455A (en) Production of oxide superconducting sintered body
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JP2597578B2 (en) Superconductor manufacturing method
JP2760999B2 (en) Oxide superconducting sintered body and method for producing the same
JPH01278449A (en) Production of oxide superconductor
JP2545443B2 (en) Method for manufacturing oxide superconductor
JPH01246131A (en) Production of oxide superconductor
JP2597579B2 (en) Superconductor manufacturing method
JP2859283B2 (en) Oxide superconductor
JPH0292826A (en) Oxide superconductor
JPH0264018A (en) Oxide superconducting substance and production thereof
JPH0859342A (en) Production of high temperature superconductor
JPH01157451A (en) Production of oxide superconducting sintered body
JPH02258665A (en) Production of superconductive material
JPH03223118A (en) Production of oxide superconductor