JPH02248321A - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JPH02248321A
JPH02248321A JP1065480A JP6548089A JPH02248321A JP H02248321 A JPH02248321 A JP H02248321A JP 1065480 A JP1065480 A JP 1065480A JP 6548089 A JP6548089 A JP 6548089A JP H02248321 A JPH02248321 A JP H02248321A
Authority
JP
Japan
Prior art keywords
oxide superconductor
critical temperature
phase
temperature phase
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1065480A
Other languages
Japanese (ja)
Inventor
Shin Fukushima
福島 伸
Hiromi Nibu
丹生 ひろみ
Izumi Tomeno
留野 泉
Takeshi Ando
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1065480A priority Critical patent/JPH02248321A/en
Publication of JPH02248321A publication Critical patent/JPH02248321A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase the critical temp. of the low critical temp. phase of an oxide superconductor and rapidity at the time of transition and to further improve the superconducting characteristics of the high critical temp. phase by substituting Pb for a specified amt. of Bi in the Bi-Sr-Ca-Cu-O type oxide superconductor. CONSTITUTION:This oxide superconductor contains Bi, Pb, Sr, Ca and Cu in (2-a):a:b:c:d atomic ratio (0.1<=a<=1, 1<=b<=2.5, 0.5<=c<=1.5 and 1.6<=d<=2.5) and is produced as follows: Bi, Pb, Sr, Ca and Cu are mixed in a prescribed molar ratio in the form of powders of simple substances or compds. such as carbonates or oxides, this powdery mixture is calcined and brought into a reaction in an oxygen-contg. atmosphere and the resulting calcined product is pulverized, molded and sintered in an inert atmosphere.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、B1−9r−Ca−Cu−0系の酸化物超電
導体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a B1-9r-Ca-Cu-0 based oxide superconductor.

(従来の技術) 1986年に40に以上の高い臨界温度を有するLa−
Ba−Cu−0系の層状ペロブスカイト型の酸化物系超
電導体が発表されて以来、酸化物系の超電導材料が注目
を集めている。1987年にはY−Ba−Cu−0系で
代表される酸素欠陥を有する欠陥ペロブスカイト型酸化
物超電導体の臨界温度が液体窒素温度(−77K)より
高い、約90にであることが確認され、冷媒として高価
な液体ヘリウムに代えて、より安価な液体窒素を用いた
超電導体の応用が可能となり、各所で盛んに研究が行わ
れている。
(Prior art) In 1986, La-
Since the Ba-Cu-0 layered perovskite type oxide superconductor was announced, oxide superconducting materials have attracted attention. In 1987, it was confirmed that the critical temperature of a defective perovskite oxide superconductor with oxygen defects, represented by the Y-Ba-Cu-0 system, is about 90°C, higher than the liquid nitrogen temperature (-77K). It has become possible to apply superconductors using cheaper liquid nitrogen instead of expensive liquid helium as a refrigerant, and research is being actively conducted in various places.

また、1988年には臨界温度が105に近辺と高いB
1−8r−Ca−Cu−0系の酸化物超電導体が発見さ
れるに至った。このB1系の酸化物超電導体は、上記Y
系の酸化物超電導体に比べて臨界温度が高く、たとえば
液体窒素によって冷却を行う際に実用上充分な熱的マー
ジンがとれるばかりでなく、高価な希土類元素が不要で
ある、水分に対する化学的安定性が高い、酸素が抜けに
くいなどの利点があり、より優れた超電導体として注目
を集めている。
In addition, in 1988, the critical temperature of B was as high as around 105.
A 1-8r-Ca-Cu-0 based oxide superconductor was discovered. This B1-based oxide superconductor is the above-mentioned Y
It has a higher critical temperature than other oxide superconductors, which not only provides a practically sufficient thermal margin when cooling with liquid nitrogen, but also eliminates the need for expensive rare earth elements and is chemically stable against moisture. It is attracting attention as a superior superconductor due to its advantages such as high conductivity and resistance to oxygen escape.

ところで、二のB1−8r−Ca−Cu−0系酸化物超
電導体には、零抵抗を示す臨界温度(以下、Tcend
と記す。)が約80にの化学式 %式%(1) で表される低臨界温度相と、Tcendが約110にの
化学式 %式%) で表される高臨界温度相の2種類の超電導相が存在する
ことが確認されている。
By the way, the second B1-8r-Ca-Cu-0 based oxide superconductor has a critical temperature (hereinafter referred to as Tcend) at which it exhibits zero resistance.
It is written as There are two types of superconducting phases: a low critical temperature phase with a chemical formula of approximately 80 (1) and a high critical temperature phase with a chemical formula of approximately 110. It has been confirmed that

しかし、他の酸化物超電導体と同様に通常の焼成法によ
ってBi系の酸化物超電導体を作製した場合、得られる
B1−8r−Ca−Cu−0系酸化物超電導体は上記低
臨界温度相と高臨界温度相とが混在したものとして得ら
れ、高臨界温度相の合成が容易ではないことから低臨界
温度相の体積率の高いものしか得られていないのが現状
である。
However, when a Bi-based oxide superconductor is produced by a normal sintering method like other oxide superconductors, the resulting B1-8r-Ca-Cu-0-based oxide superconductor has the above-mentioned low critical temperature phase. At present, only those with a high volume fraction of the low critical temperature phase can be obtained because it is not easy to synthesize the high critical temperature phase.

このような問題に対して、B1−8r−Ca−Cu−0
系酸化物超電導体の原料粉末にpbを添加することによ
って、高臨界温度相の体積比を大幅に増加することがで
きるという報告があるが、この方法は再現性に乏しく、
高臨界温度相の単一相を再現性良く得るまでには至って
いない。
For such problems, B1-8r-Ca-Cu-0
There are reports that the volume ratio of the high critical temperature phase can be significantly increased by adding PB to the raw material powder of oxide superconductors, but this method has poor reproducibility;
It has not yet been possible to obtain a single high-critical-temperature phase with good reproducibility.

一方、低臨界温度相は上述したようにTeendが80
に付近と液体窒素温度に近く、常電導状態から超電導状
態への転移も緩かであるため、事実上液体窒素を冷媒と
して安定して超電導特性を得ることは不可能であった。
On the other hand, in the low critical temperature phase, Teend is 80 as mentioned above.
Since the temperature is close to that of liquid nitrogen and the transition from normal to superconducting state is gradual, it has been virtually impossible to stably obtain superconducting properties using liquid nitrogen as a coolant.

(発明が解決しようとする課題) 上述したように、B1−8r−Ca−Cu−0系酸化物
超電導体は、低臨界温度相と高臨界温度相とが混在した
ものとして得られ、Tcendのような臨界的特性は低
臨界温度相によってほぼ決定されるため、高臨界温度相
の特性を充分に生かしきれないという問題があった。そ
こで、安定して得ることができる低臨界温度相自体の超
電導特性の向上が強く望まれている。
(Problems to be Solved by the Invention) As described above, the B1-8r-Ca-Cu-0 based oxide superconductor is obtained as a mixture of a low critical temperature phase and a high critical temperature phase, and the Tcend is Since such critical properties are almost determined by the low critical temperature phase, there is a problem in that the properties of the high critical temperature phase cannot be fully utilized. Therefore, it is strongly desired to improve the superconducting properties of the low critical temperature phase itself, which can be stably obtained.

また、高臨界温度相自体の超電導特性も、実際に使用す
る際の熱的マージンなどから、さらに向上させることが
望まれている。
Furthermore, it is desired that the superconducting properties of the high critical temperature phase itself be further improved in view of the thermal margin during actual use.

本発明は、このような課題に対処するためになされたも
のであり、第1の目的は安定して得ることができるB5
−8r−Ca−Cu−0系酸化物超電導体の低臨界温度
相の臨界温度や転移時の急峻性などの超電導特性を向上
させることであり、また第2の目的は高臨界温度相の超
電導特性をさらに向上させることである。
The present invention was made to deal with such problems, and the first purpose is to provide B5 that can be stably obtained.
-8r-Ca-Cu-0 based oxide superconductor's superconducting properties such as the critical temperature of the low critical temperature phase and the steepness of the transition, and the second purpose is to improve the superconducting properties of the high critical temperature phase of the oxide superconductor. The aim is to further improve the characteristics.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) すなわちtiAlの発明の酸化物超電導体は、B1、P
b、Srs Catp−J−びCuを原子比で2−a 
:  a:b :c :dで含む(ただし、asbsc
sdはそれぞれ以下の式を満足する数である。以下同じ
(Means for solving the problem) That is, the oxide superconductor of the invention of tiAl has B1, P
b, Srs Catp-J- and Cu in atomic ratio 2-a
: a : b : c : d (However, asbsc
Each sd is a number that satisfies the following formula. same as below.

O6l≦a≦ 1゜ l≦b≦2.5. 0.5≦c≦ 1.5. 1.6≦d ≦ 2.5) ことを特徴としている。O6l≦a≦1゜ l≦b≦2.5. 0.5≦c≦1.5. 1.6≦d≦2.5) It is characterized by

また、第2の発明の酸化物超電導体は、旧、pb、5r
SCaおよびCuを原子比で2−e :e :r :g
 :hで含む(ただし、e s r 、g s hはそ
れぞ、れ以下の式を満足する数である。以下同じ。
Further, the oxide superconductor of the second invention is old, pb, 5r
SCa and Cu in atomic ratio 2-e:e:r:g
: Contained by h (however, e s r and g s h are numbers that satisfy the following formulas. The same applies hereinafter.

0.15 e≦ 1゜ 1.5≦f≦ 2.5. 1.5≦g≦ 2.5. 2.5≦h≦3.5) ことを特徴としている。0.15 e≦1゜ 1.5≦f≦2.5. 1.5≦g≦2.5. 2.5≦h≦3.5) It is characterized by

本発明の第1の酸化物超電導体は、基本的に化学式 %式%() (式中、δは酸素欠陥を表し、通常0〜l、0の数であ
る。)で表されるものであり、いわゆる低臨界温度層の
Biの一部をpbで置換することによって超電導特性を
向上させたものであるが、各元素比が上述した範囲内で
あれば目的とする超電導特性を得ることができる。
The first oxide superconductor of the present invention is basically represented by the chemical formula % (in the formula, δ represents an oxygen defect and is usually a number from 0 to l, 0). The superconducting properties are improved by substituting part of the Bi in the so-called low critical temperature layer with PB, but if the ratio of each element is within the above range, the desired superconducting properties cannot be obtained. can.

また、本発明の第2の酸化物超電導体は、基本的に化学
式 %式%() (式中、δは酸素欠陥を表し、通常0〜1.0の数であ
る。)で表されるものであり、いわゆる高臨界温度層の
Blの一部をpbで置換することによって超電導特性を
さらに向上させたものであるが、同様に各元素比が上述
した範囲内であれば目的とする超電導特性を得ることが
できる。
Further, the second oxide superconductor of the present invention is basically expressed by the chemical formula % (in the formula, δ represents an oxygen defect and is usually a number from 0 to 1.0). The superconducting properties are further improved by substituting a part of Bl in the so-called high critical temperature layer with PB, but similarly, if the ratio of each element is within the range mentioned above, the desired superconductivity can be achieved. characteristics can be obtained.

上記第1および第2の発明におけるpbによるBlの置
換量を0.1−1の範囲に規定したのは、Pbによる置
換量が0.1未満であるとpbによる置換効果が充分に
得られず、またlを超えると常電導状態から超電導状態
への転移の急峻性は向上するものの転移温度自体は低下
する傾向を示し、さらに置換量を増加すると超電導状態
が得られなくなるためである。このpbによる置換量の
好ましい範囲は、0.2〜0.8である。
The reason why the amount of substitution of Bl by pb in the first and second inventions is specified in the range of 0.1-1 is because when the amount of substitution by Pb is less than 0.1, a sufficient substitution effect by pb can be obtained. Moreover, when l exceeds 1, although the steepness of the transition from the normal conductive state to the superconducting state improves, the transition temperature itself tends to decrease, and if the amount of substitution is further increased, the superconducting state cannot be obtained. The preferred range of the amount of substitution by pb is 0.2 to 0.8.

上記第1の発明の酸化物超電導体は、たとえば以下に示
す方法によって作製することができる。
The oxide superconductor of the first invention can be produced, for example, by the method shown below.

まず、Bl、 Pb%Sr、Ca5Cuの単体または化
合物を所定のモル比で混合する。これら構成元素の化合
物としては、炭酸塩や酸化物を用いることができる他、
炭酸塩以外の加熱により酸化物に転化する硝酸塩、水酸
化物など、さらに有機酸塩や有機性金属などを用いても
よい。また、Pbの出発原料としては、比較的安定なC
az pbo 4などを用いることも可能である。これ
ら構成元素は、基本的に上記(m)式の原子比を満足す
るように混合するが、上述した範囲内であればよく、ま
た製造条件などとの関係でさらにlO%程度ずれていて
も差支えない。
First, Bl, Pb%Sr, and Ca5Cu alone or as a compound are mixed at a predetermined molar ratio. As compounds of these constituent elements, carbonates and oxides can be used, as well as
Other than carbonates, nitrates, hydroxides, etc. which are converted into oxides by heating, organic acid salts, organic metals, etc. may also be used. In addition, as a starting material for Pb, relatively stable C
It is also possible to use az pbo 4 or the like. These constituent elements are basically mixed so as to satisfy the atomic ratio of formula (m) above, but it is sufficient as long as it is within the above-mentioned range, and even if there is a deviation of about 10% due to manufacturing conditions etc. No problem.

次いで、この混合粉末を酸素含有雰囲気中において80
0℃程度の温度で仮焼して反応させ、この仮焼物をボー
ルミル、サンドグラインダ、その他公知の方法で粉砕し
、この仮焼粉をプレス成形法や各種公知の成形方法によ
って、所要形状の成形体とする。なお、上記仮焼工程は
必ずしも必要ではない。
Next, this mixed powder was heated to 80% in an oxygen-containing atmosphere.
The calcined product is reacted by calcining at a temperature of about 0°C, and the calcined product is pulverized using a ball mill, sand grinder, or other known method, and the calcined powder is molded into a desired shape using a press molding method or various known molding methods. Body. Note that the above calcination step is not necessarily necessary.

この後、この成形体を窒素雰囲気のような不活性雰囲気
中において700℃〜800℃の範囲で焼成し焼結され
る。焼結時の雰囲気が酸化性雰囲気であると、相変化を
起こし安定して上記(m)式の酸化物超電導体を得るこ
とができない。なお、この不活性雰囲気は、N2 、A
rなどの不活性ガス中にO〜3%程度の酸素を含む雰囲
気である。
Thereafter, this molded body is fired and sintered in an inert atmosphere such as a nitrogen atmosphere at a temperature in the range of 700°C to 800°C. If the atmosphere during sintering is an oxidizing atmosphere, a phase change will occur and the oxide superconductor of formula (m) cannot be stably obtained. Note that this inert atmosphere includes N2, A
The atmosphere contains about 0 to 3% oxygen in an inert gas such as r.

また、第2の発明の酸化物超電導体は、上記第1の発明
の酸化物超電導体と同様に、まず各構成元素の出発原料
を基本的に上記(IV)式の原子比を満足するように混
合する。この第2の発明の酸化物超電導体においても、
上述した範囲内であればよく、また製造条件などとの関
係でさらにlO%程度ずれていても差支えない。そして
、この混合粉末を仮焼したものに対して成形、焼結を施
す。
Further, the oxide superconductor of the second invention, like the oxide superconductor of the first invention, is obtained by first adjusting the starting materials of each constituent element so that the atomic ratio of the above formula (IV) is basically satisfied. Mix with Also in the oxide superconductor of this second invention,
It suffices as long as it is within the above-mentioned range, and there is no problem even if it deviates further by about 10% depending on manufacturing conditions and the like. Then, this mixed powder is calcined and then molded and sintered.

この第2の発明の酸化物超電導体の焼結工程も、不活性
雰囲気中で行うことが好ましく、また焼結温度は700
℃〜880℃とすることが好ましい。焼結温度が700
℃未満ではpbによるB1の置換が充分に進行せず、ま
た8(10℃を超えると生成した高臨界温度相が分解し
てしまう。なお、この不活性雰囲気は、N2 、Arな
どの不活性ガス中にO〜3%程度の酸素を含む雰囲気で
ある。
The sintering step of the oxide superconductor of the second invention is also preferably carried out in an inert atmosphere, and the sintering temperature is 700°C.
It is preferable to set it as ℃~880℃. Sintering temperature is 700
If the temperature is below 10°C, the replacement of B1 by pb will not proceed sufficiently, and if the temperature exceeds 10°C, the high critical temperature phase will decompose. The atmosphere contains about 0 to 3% oxygen in the gas.

(作 用) Bl系酸化物超電導体の結晶構造には、特有の変調構造
が存在することが知られている。Bl系と同様な結晶構
造を有しBl系よりも若干臨界温度が高いTI系酸化物
超電導体(Tl−13a−Ca−Cu−0系)において
は、この変調構造は観測されず、Bl系とTl系の臨界
温度の差は、この変調構造に起因するものと考えられる
。そして、第1の発明においては、81系酸化物超電導
体の低臨界温度相の旧の一部をpbで置換することによ
って、上記変調構造を緩和あるいは消失させている。こ
れにより、低臨界温度相の臨界温度が向上するとともに
、常電導状態から超電導体状態への転移の急峻性も向上
する。
(Function) It is known that the crystal structure of a Bl-based oxide superconductor has a unique modulation structure. This modulation structure is not observed in the TI-based oxide superconductor (Tl-13a-Ca-Cu-0 system), which has a crystal structure similar to that of the Bl-based material and whose critical temperature is slightly higher than that of the Bl-based material. The difference in critical temperature between the Tl system and the Tl system is considered to be due to this modulation structure. In the first invention, the modulation structure is relaxed or eliminated by replacing a part of the old low critical temperature phase of the 81-based oxide superconductor with pb. This improves the critical temperature of the low critical temperature phase and also improves the steepness of the transition from the normal conductor state to the superconductor state.

また、第2の発明におけるpbも第1の発明のpbと同
様な効果をもたらし、高臨界温度相の臨界温度および常
電導状態から超電導体状態への転移の急峻性がさらに向
上する。
Further, pb in the second invention provides the same effect as pb in the first invention, and the critical temperature of the high critical temperature phase and the steepness of the transition from the normal conductive state to the superconducting state are further improved.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1 まず、出発原料としてB120 m 、PbO,5rC
Ox、CaC01、CLIOの各粉末を用意し、これら
を陽イオンの原子比がB1 : Pb:Sr:Ca:C
u−IJ:0.2: 2: l :2となるように所定
量計量し、これを充分に混合した後、この混合粉末を空
気中において700℃×24時間の条件で仮焼し、この
仮焼物をボールミルで充分に粉砕した。
Example 1 First, B120 m , PbO, 5rC as starting materials
Ox, CaC01, and CLIO powders are prepared, and the cation atomic ratio is B1:Pb:Sr:Ca:C.
u-IJ: 0.2: 2: l: After weighing a predetermined amount and mixing it thoroughly, this mixed powder was calcined in the air at 700°C for 24 hours. The calcined product was thoroughly ground using a ball mill.

次に、上記仮焼粉をペレット状にプレス成形した後、こ
の成形体を窒素気流中において740℃×24時間の条
件で焼成してBl系酸化物超電導体を作製した。
Next, the above-mentioned calcined powder was press-molded into a pellet shape, and then the compact was fired at 740° C. for 24 hours in a nitrogen stream to produce a Bl-based oxide superconductor.

このようにして得たBl系酸化物超電導体に対してXI
i回折を行ったところ、低臨界温度相からなるものであ
り、高臨界温度相を含んでいないことを確認した。そし
て、後述する超電導特性の評価に供した。
For the Bl-based oxide superconductor thus obtained,
When i-diffraction was performed, it was confirmed that the material consisted of a low critical temperature phase and did not contain a high critical temperature phase. Then, it was subjected to evaluation of superconducting properties, which will be described later.

実施例2.3 上記実施例1における出発原料の混合比を、原子比でB
i:Pb:Sr:Ca:Cu−1,6:0.4:2:1
:2およびB1:Pb:Sr:Ca:Cu=1.4:0
.8:2:1:2とする以外は、実施例1と同一条件で
Bi系酸化物超電導体をそれぞれ作製した。このように
して得た各旧糸酸化物超電導体体についてもX線回折を
施したところ、それぞれ低臨界温度相の単一相であるこ
とを確認した。
Example 2.3 The mixing ratio of the starting materials in Example 1 above was changed to B in atomic ratio.
i:Pb:Sr:Ca:Cu-1,6:0.4:2:1
:2 and B1:Pb:Sr:Ca:Cu=1.4:0
.. Bi-based oxide superconductors were produced under the same conditions as in Example 1 except that the ratio was 8:2:1:2. When X-ray diffraction was applied to each of the old yarn oxide superconductors obtained in this way, it was confirmed that each had a single phase with a low critical temperature phase.

比較例1 出発原料としてB1203.5rC(h 、CaCO3
、CuOの各粉末を用意し、これらを陽イオンの原子比
がB1:Sr:Ca:Cu=2:2:1:2となるよう
に所定量計量し、これを充分に混合した後、実施例1と
同一条件で仮焼し、この仮焼物をボールミルで充分に粉
砕した。次に、この仮焼粉をペレット状にプレス成形し
た後、この成形体を酸素気流中において840℃X4g
時間の条件で焼成してBl系酸化物超電導体を作製した
Comparative Example 1 B1203.5rC(h, CaCO3
, CuO powders were prepared, and a predetermined amount was weighed so that the atomic ratio of cations was B1:Sr:Ca:Cu=2:2:1:2, and after thoroughly mixing, the Calcination was carried out under the same conditions as in Example 1, and the calcined product was sufficiently ground in a ball mill. Next, after press-molding this calcined powder into a pellet shape, this molded body was placed in an oxygen stream at 840°C
A Bl-based oxide superconductor was produced by firing under the following conditions.

この比較例のB1系酸化物超電導体もX線回折によって
低臨界温度相の単一相であることを確認した。
It was confirmed by X-ray diffraction that the B1-based oxide superconductor of this comparative example was also a single phase with a low critical temperature phase.

これら各実施例および比較例のB1系酸化物超電導体の
超電導特性を、それぞれ5QtllD磁化率計を用いて
評価した。その結果を第1図に示す。
The superconducting properties of the B1-based oxide superconductors of each of these Examples and Comparative Examples were evaluated using a 5QtllD magnetometer. The results are shown in FIG.

1111図からも明らかなように、比較例の81系酸化
物超電導体は転移温度が低いばかりでなく、超電導状態
への変化も非常に緩かであるのに対し、上記各実施例の
旧系酸化物超電導体は超電導状態への転移がシャープに
なり、また臨界温度の向上も認められる。
As is clear from Figure 1111, the 81-series oxide superconductor of the comparative example not only has a low transition temperature but also changes very slowly to the superconducting state, whereas the old system of each of the above examples In oxide superconductors, the transition to the superconducting state becomes sharper, and an improvement in the critical temperature is also observed.

実施例4〜6 実施例1で使用した各出発原料を、原子比が旧:Pb:
Sr:Ca:Cu−111:0.2:2:2:3 (実
施例4)、Bi:Pb:Sr:Ca:Cu−1,6:0
.4:2:2:3 (実施例5)およびBi:Pb:S
r:Ca:Cu=1.4:0.6:2:2:3 (実施
例6)となるようにそしてれ混合し、この混合粉末を空
気中において700℃×48時間の条件で仮焼し、この
仮焼物をボールミルで充分に粉砕した。
Examples 4 to 6 Each starting material used in Example 1 had an atomic ratio of old:Pb:
Sr:Ca:Cu-111:0.2:2:2:3 (Example 4), Bi:Pb:Sr:Ca:Cu-1,6:0
.. 4:2:2:3 (Example 5) and Bi:Pb:S
The mixture was then mixed so that r:Ca:Cu=1.4:0.6:2:2:3 (Example 6), and this mixed powder was calcined in air at 700°C for 48 hours. Then, this calcined product was thoroughly ground in a ball mill.

次に、上記仮焼粉をペレット状にプレス成形した後、こ
の成形体を02 : Ar= 0.5: 99.5の混
合ガス中において780℃X24時間の条件で焼成して
Bi系酸化物超電導体をそれぞれ作製した。
Next, after press-molding the above calcined powder into a pellet shape, this molded body was fired at 780°C for 24 hours in a mixed gas of 02:Ar=0.5:99.5 to form a Bi-based oxide. Each superconductor was fabricated.

このようにして得たBi系酸化物超電導体に対してX線
回折を行ったところ、それぞれ高臨界温度相からなるも
のであることを確認した。そして、上記実施例1と同様
に磁化率をΔ−1定し超電導特性を評価した。
When the Bi-based oxide superconductors thus obtained were subjected to X-ray diffraction, it was confirmed that each of them consisted of a high critical temperature phase. Then, as in Example 1 above, the magnetic susceptibility was set at Δ-1 and the superconducting properties were evaluated.

比較例2 出発原料として81203 、SrCO3、CaCO3
、CuOの各粉末を用意し、これらを陽イオンの原子比
がB1:Sr:Ca:Cu=2:2:2:3となるよう
に所定量評ユし、これを充分に混合した後、実施例4と
同一条件で仮焼し、この仮焼物をボールミルで充分に粉
砕した。次に、この仮焼粉をペレット状にプレス成形し
た後、この成形体を02 : Ar−0,5: 99.
5の混合ガス中において780℃×48時間の条件で焼
成してBi系酸化物超電導体を作製した。この比較例の
Bi系酸化物超電導体もX線回折によって高臨界温度相
の単一相であることを確認した。
Comparative Example 2 81203, SrCO3, CaCO3 as starting materials
, CuO powders are prepared, and a predetermined amount of these are weighed so that the atomic ratio of cations is B1:Sr:Ca:Cu=2:2:2:3, and after thoroughly mixing, Calcination was carried out under the same conditions as in Example 4, and the calcined product was thoroughly ground in a ball mill. Next, after press-molding this calcined powder into a pellet shape, this molded body was heated to 02: Ar-0,5: 99.
A Bi-based oxide superconductor was produced by firing in a mixed gas of No. 5 at 780° C. for 48 hours. It was confirmed by X-ray diffraction that the Bi-based oxide superconductor of this comparative example was also a single phase with a high critical temperature phase.

この比較例2のBi系酸化物超電導体の磁化率111J
定結果を合せて第2図に示す。
The magnetic susceptibility of the Bi-based oxide superconductor of Comparative Example 2 was 111 J.
The results are shown in Figure 2.

第2図から明らかなように、Blの一部をpbで置換す
ることによって、高臨界温度相の臨界温度や超電導状態
への転移時の急峻性も向上している。
As is clear from FIG. 2, by substituting a part of Bl with Pb, the critical temperature of the high critical temperature phase and the steepness of the transition to the superconducting state are also improved.

[発明の効果] 以上説明したように本発明によれば、Blの一部をpb
で置換することによって、安定して得ることができる低
臨界温度相の臨界温度や常電導状態への転移時の急峻性
を向上させることができ、よって液体窒素を冷媒として
用いて、安定して超電導特性を得ることが可能となる。
[Effect of the invention] As explained above, according to the present invention, a part of Bl is converted into pb
By substituting with liquid nitrogen, the critical temperature of the low critical temperature phase that can be stably obtained and the steepness of the transition to the normal conducting state can be improved. It becomes possible to obtain superconducting properties.

また、低臨界温度相に関しては窒素雰囲気中での焼結が
可能となることから、酸化されやすい金属をたとえばシ
ース材などとして用いることが可能になるという利点も
ある。
Furthermore, since the low critical temperature phase can be sintered in a nitrogen atmosphere, there is an advantage that a metal that is easily oxidized can be used as a sheath material, for example.

また、高臨界温度相についても、さらに超電導特性、が
向上し、さらに熱的マージンなどが増大して各種超電導
部材として用いる際の安定性が向上する。
Furthermore, in the high critical temperature phase, the superconducting properties are further improved, the thermal margin etc. are further increased, and the stability when used as various superconducting members is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るBi系酸化物超電導体の低臨界温
度相および従来の低臨界温度相の反磁性磁化率の温度依
存性を示すグラフ、第2図は本発明に係るBi系酸化物
超電導体の高臨界温度相および従来の高臨界温度相の反
磁性磁化率の温度依存性を示すグラフである。 出願人      株式会社 東芝
FIG. 1 is a graph showing the temperature dependence of diamagnetic magnetic susceptibility in the low critical temperature phase of the Bi-based oxide superconductor according to the present invention and the conventional low critical temperature phase, and FIG. 2 is a graph showing the temperature dependence of the diamagnetic susceptibility in the Bi-based oxide superconductor according to the present invention. 1 is a graph showing the temperature dependence of diamagnetic magnetic susceptibility in a high critical temperature phase of a physical superconductor and a conventional high critical temperature phase. Applicant: Toshiba Corporation

Claims (1)

【特許請求の範囲】 (1)Bi、Pb、Sr、CaおよびCuを原子比で2
−a:a:b:c:dで含む(ただし、a、b、c、d
はそれぞれ以下の式を満足する数である。 0.1≦a≦1、 1≦b≦2.5、 0.5≦c≦1.5、 1.6≦d≦2.5) ことを特徴とする酸化物超電導体。 (2)Bi、Pb、Sr、CaおよびCuを原子比で2
−e:e:f:g:hで含む(ただし、e、f、g、h
はそれぞれ以下の式を満足する数である。 0.1≦e≦1、 1.5≦f≦2.5、 1.5≦g≦2.5、 2.5≦h≦3.5) ことを特徴とする酸化物超電導体。
[Claims] (1) Bi, Pb, Sr, Ca and Cu in an atomic ratio of 2
-a: a: b: c: d (including a, b, c, d
are numbers that satisfy the following formulas. 0.1≦a≦1, 1≦b≦2.5, 0.5≦c≦1.5, 1.6≦d≦2.5). (2) Bi, Pb, Sr, Ca and Cu in an atomic ratio of 2
-e:e:f:g:h (including e, f, g, h
are numbers that satisfy the following formulas. 0.1≦e≦1, 1.5≦f≦2.5, 1.5≦g≦2.5, 2.5≦h≦3.5).
JP1065480A 1989-03-17 1989-03-17 Oxide superconductor Pending JPH02248321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1065480A JPH02248321A (en) 1989-03-17 1989-03-17 Oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1065480A JPH02248321A (en) 1989-03-17 1989-03-17 Oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02248321A true JPH02248321A (en) 1990-10-04

Family

ID=13288303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1065480A Pending JPH02248321A (en) 1989-03-17 1989-03-17 Oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02248321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265522A (en) * 1990-03-15 1991-11-26 Rikagaku Kenkyusho Bi-containing high-temperature superconductor having monoclinic system and production thereof
US5324712A (en) * 1991-08-16 1994-06-28 Gte Laboratories Incorporated Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265522A (en) * 1990-03-15 1991-11-26 Rikagaku Kenkyusho Bi-containing high-temperature superconductor having monoclinic system and production thereof
US5324712A (en) * 1991-08-16 1994-06-28 Gte Laboratories Incorporated Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding

Similar Documents

Publication Publication Date Title
EP0354537B1 (en) Method of manufacturing a powder of bi-based superconductive oxide containing lead and method of manufacturing of a sintered body therefrom
JPH02248321A (en) Oxide superconductor
EP0371453A2 (en) Bismuth system oxide superconductors and preparation thereof
EP0869563B1 (en) Superconductor; current lead and method of manufacturing the superconductor
JP3034267B2 (en) Oxide superconductor
JP3163122B2 (en) Manufacturing method of oxide superconductor
JPH04124032A (en) Superconductor and its synthesis
EP0446552B1 (en) Superconductive compounds and process for producing said compounds
JPH02120234A (en) Production of oxide superconductor
JP2648524B2 (en) Ceramics and their manufacturing method
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JP2760999B2 (en) Oxide superconducting sintered body and method for producing the same
JP2637617B2 (en) Manufacturing method of superconducting material
JP2854338B2 (en) Copper oxide superconductor
JP2748943B2 (en) Oxide superconductor
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
US5244871A (en) N-type oxide superconductor represented by the formula (Ndx (Cey Lz)2 CuO4-d where L is La, Mg or a mixture of alakaline earth elements
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JPH0393627A (en) Oxide superconductor
JPH05166425A (en) Manufacture of superconductive oxide conductor
JPH02149426A (en) Oxide superconducting material and its production
JPH02129060A (en) Production of oxide superconductor
JPH0459654A (en) Oxide superconductor
JPH03295816A (en) Superconductor and method for synthesizing same
JPH02157154A (en) Ceramics electrical conductive material