JPH0459654A - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JPH0459654A
JPH0459654A JP2171407A JP17140790A JPH0459654A JP H0459654 A JPH0459654 A JP H0459654A JP 2171407 A JP2171407 A JP 2171407A JP 17140790 A JP17140790 A JP 17140790A JP H0459654 A JPH0459654 A JP H0459654A
Authority
JP
Japan
Prior art keywords
oxide superconductor
oxide
superconductor
superconductors
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2171407A
Other languages
Japanese (ja)
Inventor
Hiromi Nibu
丹生 ひろみ
Shin Fukushima
福島 伸
Takeshi Ando
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2171407A priority Critical patent/JPH0459654A/en
Publication of JPH0459654A publication Critical patent/JPH0459654A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having good superconductivity and excellent durability and reliability by forming CuO2 plane in a crystal structure of oxide of Ca, RE, Sr and Cu as constitutional elements. CONSTITUTION:The aimed oxide superconductor having CuO2 plane in the crystal structure of oxide of Ca, RE (RE is at least one kind of La, Y, Nd and Eu), Sr and Cu as constitutional elements and substantially expressed by the general formula (Ca1-x REx)1-y Sry CuOz (X is 0.3-0.7, Y is 0.01-0.2 and Z is 2-3). The oxide superconductor is obtained by blending elements of Ca, RE, Sr and Cu or compound thereof at a prescribed ratio and sintering the blend at about 1000-1100 deg.C. Thereby the oxide superconductor having supercon ductivity equivalent to that of a conventional oxide superconductor, high density and excellent durability is obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to oxide superconductors.

(従来の技術) 1986年にLa−Ba−Cu−0系の層状ペロブスカ
イト型の酸化物か40に以上の高い臨界温度を有するこ
とか発表されて以来、ペロブスカイト構造を基本とし、
Cuを含む酸化物系の超電導体か注目を集め、精力的に
研究か進められ、その結果、数多くの酸化物超電導体が
発見されるに至った。
(Prior art) Since it was announced in 1986 that La-Ba-Cu-0 layered perovskite oxides have a high critical temperature of over 40°C, the perovskite structure has been used as the basis.
Oxide-based superconductors containing Cu have attracted attention, and research has been carried out vigorously, resulting in the discovery of numerous oxide superconductors.

なかでも、臨界温度か液体窒素の沸点以上のY−Ba−
Cu−Q系で代表される酸素欠損ペロブスカイト型の酸
化物超電導体や、B+−3r−Ca−Cu−0系、Tl
Ba−Ca−Cu−0系の酸化物超電導体は、冷媒とし
て高価な液体ヘリウムに代えて、安価な液体窒素を利用
することかできるため、工業的にも重要な価値を有して
いる。
Among them, Y-Ba- at a critical temperature or above the boiling point of liquid nitrogen.
Oxygen-deficient perovskite type oxide superconductors represented by Cu-Q system, B+-3r-Ca-Cu-0 system, Tl
Ba-Ca-Cu-0-based oxide superconductors have important industrial value because they can use inexpensive liquid nitrogen as a coolant instead of expensive liquid helium.

上記したような酸化物超電導体を使用して、例えばバル
ク状の超電導部材を作製する場合には、−船釣に固相反
応法が適用されている。
When producing, for example, a bulk superconducting member using the above-mentioned oxide superconductor, a solid phase reaction method is applied to boat fishing.

すなわち、まず目的とする酸化物超電導体の構成元素を
含む酸化物や炭酸塩等の化合物を所定の比率で混合し、
この混合物を一旦仮焼して結晶化させる。次に、上記仮
焼粉を所定の形状に成形した後、酸化物超電導体に応じ
た温度、例えば800℃〜900°C程度の温度で焼成
することにより、焼結させてバルク体を得る。
That is, first, compounds such as oxides and carbonates containing the constituent elements of the desired oxide superconductor are mixed in a predetermined ratio,
This mixture is once calcined to crystallize it. Next, the calcined powder is formed into a predetermined shape, and then sintered to obtain a bulk body by firing at a temperature depending on the oxide superconductor, for example, about 800° C. to 900° C.

ところで、上述したような酸化物超電導体は、融点の関
係から比較的低温で焼結させる必要があり、焼結体密度
をあまり高くすることかできす、また水分に対して不安
定である等という欠点を有していることから、耐久性や
信頼性に欠けるという難点かあった。
By the way, the oxide superconductor mentioned above needs to be sintered at a relatively low temperature due to its melting point, and the density of the sintered body cannot be made too high, and it is unstable with respect to moisture. Because of this drawback, it had the disadvantage of lacking durability and reliability.

(発明が解決しようとする課題) 上述したように、今までに発見された酸化物系の超電導
体は、焼結体を高密度化することが困難である、水分に
弱く不安定である等といった物性上の種々の欠点を有し
ており、また所望とする超電導特性を付与するための作
製時の雰囲気制御が難しく、単一相か得られにくいとい
うような欠点も有していた。このようなことから、さら
に新たな超電導体の開発か望まれている。
(Problems to be Solved by the Invention) As mentioned above, the oxide-based superconductors discovered so far have problems such as difficulty in making sintered bodies into high-density materials, weak resistance to moisture, and instability. In addition, it is difficult to control the atmosphere during production to impart desired superconducting properties, and it is difficult to obtain a single phase. For these reasons, there is a desire for the development of even newer superconductors.

本発明は、このような課題に対処するためになされたも
ので、従来の酸化物超電導体と同等の超電導特性を示し
、かつ耐久性や信頼性に優れた新規な酸化物超電導体を
提供することを目的としている。
The present invention was made to address these issues, and provides a novel oxide superconductor that exhibits superconducting properties equivalent to those of conventional oxide superconductors and has excellent durability and reliability. The purpose is to

[発明の構成] (課題を解決するための手段と作用) すなわち本発明の酸化物超電導体は、Ca、 RE(R
EはLa、 Y 、 NdおよびEuから選ばれた少な
くとも 1種の元素を示す。以下同じ)、SrおよびC
uを構成元素とする酸化物であって、結晶構造中にCu
O2平面を有していることを特徴とするものである。
[Structure of the invention] (Means and effects for solving the problem) That is, the oxide superconductor of the present invention has Ca, RE(R
E represents at least one element selected from La, Y, Nd and Eu. (same below), Sr and C
An oxide containing u as a constituent element, with Cu in the crystal structure.
It is characterized by having an O2 plane.

本発明は、以下に示すような知見に基づいて成されたも
のである。
The present invention was made based on the following findings.

すなわち、CaCuO2で表される酸素の4配位型Cu
O2平面を持った化合物か知られているが、この化合物
は絶縁体である。この化合物の組成に対して、SrとR
2元素とを (Cat−x l?IE、 ) l−y sr、 Cu
 Onという組成比になるように固溶させていくと、あ
る組成比のところで全く異なる結晶構造を有する新規の
化合物か得られる。この新しく見出たされた化合物は、
CuO2平面を持った層状構造を有しており、C軸長は
30人である。また、例えばCao、 51 Yo、 
4 Sro、 09 CuO2という組成の化合物は、
新規構造の単一相であり、この物質は3(IKにネール
点を持つ反強磁性絶縁体である。
That is, 4-coordination type Cu of oxygen represented by CaCuO2
A compound with an O2 plane is known, but this compound is an insulator. For the composition of this compound, Sr and R
Two elements (Cat-x l?IE, ) l-y sr, Cu
If the solid solution is made to reach a composition ratio of On, a new compound having a completely different crystal structure at a certain composition ratio can be obtained. This newly discovered compound is
It has a layered structure with a CuO2 plane, and the C-axis length is 30. Also, for example, Cao, 51 Yo,
The compound with the composition 4 Sro, 09 CuO2 is
A single phase with a novel structure, this material is an antiferromagnetic insulator with a Neel point at 3 (IK).

ここで、今までに発見され報告されている酸化物超電導
体は、いずれもCuと0とからなるいわゆるCuO2平
面というものを持っており、これが酸化物系の高温超電
導体の大きな特徴とされている。
All of the oxide superconductors that have been discovered and reported so far have a so-called CuO2 plane consisting of Cu and 0, and this is considered to be a major feature of oxide-based high-temperature superconductors. There is.

言い換えれば、CuO2平面を持つことが酸化物超電導
体になるための必須条件と言える。さらに、一連の酸化
物超電導体は、その超電導体の構成組成の一部を変化さ
せると、反強磁性絶縁体に転移することも大きな特徴の
一つとなっている。
In other words, having a CuO2 plane is an essential condition for becoming an oxide superconductor. Furthermore, one of the major characteristics of the series of oxide superconductors is that when a part of the composition of the superconductor is changed, the superconductor transforms into an antiferromagnetic insulator.

これらのことから、上記した新規構造の化合物は、その
組成に対してCaとR2元素の比を変えるか、熱処理の
際の雰囲気を制御して酸素量を変えるかして、ホールま
たは電子のキャリアーを導入することにより新規な超電
導体と成り得り、従来の酸化物超電導体と同様に液体窒
素の沸点以上の温度で超電導特性を示す。
Based on these facts, the compounds with the above-mentioned new structures can be made into carriers of holes or electrons by changing the ratio of Ca and R2 elements in the composition, or by controlling the atmosphere during heat treatment and changing the amount of oxygen. By introducing this, it can become a new superconductor, and like conventional oxide superconductors, it exhibits superconducting properties at temperatures above the boiling point of liquid nitrogen.

本発明の酸化物超電導体の具体例を示すと、下記の一般
式で表される組成を有するものが例示される。
Specific examples of the oxide superconductor of the present invention include those having a composition represented by the following general formula.

一般式:  (Cat−x RE−) l−7Sr、 
Cu O,’++・(1)(式中、 Xは 0.3〜0
.7、 yは0.01〜0.2、2は2〜3の数をそれ
ぞれ示す) 本発明の酸化物超電導体は、例えば以下のようにして作
製される。
General formula: (Cat-x RE-) l-7Sr,
Cu O,'++・(1) (wherein, X is 0.3 to 0
.. (7, y represents a number from 0.01 to 0.2, and 2 represents a number from 2 to 3) The oxide superconductor of the present invention is produced, for example, as follows.

ます、本発明の酸化物超電導体の構成金属元素である、
Ca、 R2元素、Sr、 Cuの単体または化合物を
充分に混合する。この構成元素の化合物としては、Ca
C03、Y203 、SrCO3、CuO等の酸化物や
炭酸塩の他に、焼成後に酸化物に転化する硝酸塩、水酸
化物等の化合物や有機酸塩、有機性金属等を用いてもよ
い。
The constituent metal elements of the oxide superconductor of the present invention are
Ca, R2 element, Sr, and Cu alone or in combination are thoroughly mixed. As a compound of this constituent element, Ca
In addition to oxides and carbonates such as C03, Y203, SrCO3, and CuO, compounds such as nitrates and hydroxides, organic acid salts, and organic metals that are converted into oxides after firing may be used.

これら酸化物超電導体を構成する元素は、基本的に上記
した(1)式の原子比を満足するように混合するか、多
少製造条件などとの関係でずれていてもよい。
The elements constituting these oxide superconductors may be mixed so as to basically satisfy the atomic ratio of the above-mentioned formula (1), or may be slightly deviated depending on the manufacturing conditions.

次いで、この混合粉末を800°C〜900°C程度の
温度で仮焼して結晶化させ、この仮焼物をボールミル、
サンドグラインダ、その他公知の方法で粉砕し、プレス
成形法等によって所望の形状に成形した後、焼成し、酸
化物超電導体を得る。なお、上記仮焼は必ずしも必要で
はない。
Next, this mixed powder is calcined at a temperature of about 800°C to 900°C to crystallize, and this calcined product is passed through a ball mill,
The material is ground using a sand grinder or other known method, formed into a desired shape using a press molding method, etc., and then fired to obtain an oxide superconductor. Note that the above-mentioned calcination is not necessarily necessary.

上記焼成温度は、1000℃〜1100℃の範囲とする
ことか好ましい。本発明の酸化物超電導体は、このよう
に比較的高温で焼成することか可能であることから、焼
結体密度の向上を図ることか可能である。
The above firing temperature is preferably in the range of 1000°C to 1100°C. Since the oxide superconductor of the present invention can be fired at such a relatively high temperature, it is possible to improve the density of the sintered body.

そして、上記焼成工程の雰囲気は、導入するキャリアー
に応した雰囲気中、例えば酸素雰囲気中や不活性雰囲気
中において行い、所望とする超電導特性を付与する。ま
た、例えば(1)式の組成て×か0.4以上のときは電
子かキャリアーとして導入され、熱処理は還元雰囲気と
なり、Xか0.4以下のときはホールか導入されて、熱
処理は酸素雰囲気となる。
The firing step is performed in an atmosphere suitable for the carrier to be introduced, such as an oxygen atmosphere or an inert atmosphere, to impart desired superconducting properties. For example, when the composition in formula (1) is x or more than 0.4, electrons or carriers are introduced and the heat treatment is performed in a reducing atmosphere, and when x or less is 0.4 or less, holes are introduced and the heat treatment is carried out using oxygen. It creates an atmosphere.

tまお、以上説明した本発明の酸化物超電導体の製造方
法は、出発原料および焼結体を種々の形態にして行うこ
とかできる。
Furthermore, the method for manufacturing an oxide superconductor of the present invention described above can be carried out using the starting materials and the sintered body in various forms.

例えば出発原料または焼結体の粉末をペースト状にして
基板上にスクリーン印刷し、この所望のパターン状に形
成された材料に対して焼成および熱処理を施したり、ま
た出発原料または焼結体の粉末を銀やその他の金属管内
に封入し、線引きした後に焼成および熱処理を施すこと
も可能である。
For example, the powder of the starting raw material or sintered body is made into a paste and screen printed on the substrate, and the material formed in the desired pattern is subjected to firing and heat treatment, or the powder of the starting raw material or the sintered body is It is also possible to encapsulate the material in a silver or other metal tube, draw it, and then perform firing and heat treatment.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1 まず、CaC03粉末、Y2O3粉末、5rCO3およ
びCuO粉末を、原子比てCa:Y:Sr:Cu”0.
71:0.2:0.09:]となるように所定量計量し
、充分に混合した後、この混合粉を大気中において90
0℃×24時間の条件で仮焼した。
Example 1 First, CaC03 powder, Y2O3 powder, 5rCO3 and CuO powder were mixed in an atomic ratio of Ca:Y:Sr:Cu''0.
71:0.2:0.09:], and after mixing thoroughly, put this mixed powder in the air at 90%
Calcining was performed at 0°C for 24 hours.

次いて、この仮焼物を平均粒径2μmとなるように粉砕
した後、この粉末を用いて、プレス成形法によってペレ
ット状の成形体を作製した。
Next, this calcined product was pulverized to an average particle size of 2 μm, and then a pellet-shaped body was produced using this powder by a press molding method.

次に、上記成形体を大気中にて1000℃×24時間の
条件で焼成した後、酸素中にて500°C×24時間の
条件で熱処理を行って、目的とする酸化物超電導体の焼
結体を得た。
Next, the above-mentioned compact was fired in the atmosphere at 1000°C for 24 hours, and then heat-treated in oxygen at 500°C for 24 hours to produce the desired oxide superconductor. Obtained a body.

このようにして得た焼結体の磁化率を測定したところ、
4.2Kにおいてマイスナー効果を示した。
When we measured the magnetic susceptibility of the sintered body obtained in this way, we found that
The Meissner effect was shown at 4.2K.

また、上記焼結体の電子顕微鏡観察および中性子回折を
行ったところ、CuO2平面を持つことを確認した。
Furthermore, when the sintered body was observed using an electron microscope and subjected to neutron diffraction, it was confirmed that the sintered body had a CuO2 plane.

以上のことから、上記実施例で得た焼結体は、Cao、
 71 Yo、 2 Sro、 09 CuO2+aと
いう組成を有する、新規な酸化物超電導体であることが
分る。
From the above, the sintered bodies obtained in the above examples are Cao,
It can be seen that it is a novel oxide superconductor having the composition of 71 Yo, 2 Sro, 09 CuO2+a.

比較例l CaC03粉末、Y2O3粉末、5rC(hおよびCu
O粉末を、原子比でCa:Y:Sr:Cu=0.51:
0.4:0.09:lとなるように所定量計量し、充分
に混合した後、上記実施例1と同一条件て仮焼、成形、
焼成し、焼成後の熱処理を行わない以外は同様にして焼
結体を得た。
Comparative Example l CaC03 powder, Y2O3 powder, 5rC(h and Cu
The O powder has an atomic ratio of Ca:Y:Sr:Cu=0.51:
After weighing a predetermined amount so that the ratio is 0.4:0.09:l and mixing thoroughly, calcining and molding were carried out under the same conditions as in Example 1 above.
A sintered body was obtained in the same manner except that the sintered body was fired and the heat treatment after firing was not performed.

この焼結体の組成分析を行ったところ、Cao、 5□
)u4srlJ、U9 CuO2の111−相であり、
また4、2Kにおいてもマイスナー効果を示さなかった
When we analyzed the composition of this sintered body, we found that Cao, 5□
) u4srlJ, U9 is the 111-phase of CuO2,
Further, no Meissner effect was observed at 4 or 2K.

実施例2〜6 第1表に示すように、CaとYとの比を変化させた組成
や、RE元索としてLa5NdおよびEuを用いた組成
の化合物を、実施例]における焼成後の熱処理条件を変
化させる以外は、実施例1と同様にしてそれぞれ焼結体
を得た。
Examples 2 to 6 As shown in Table 1, compounds with compositions in which the ratio of Ca and Y was changed or in which La5Nd and Eu were used as the RE source were prepared under the heat treatment conditions after firing in Example]. Each sintered body was obtained in the same manner as in Example 1 except that .

これら焼結体に対しても、4.2Kにおけるマイスナー
効果の実験を行った。第2表に熱処理条件と共に、マイ
スナー効果の有無を示す。
Meissner effect experiments at 4.2K were also conducted on these sintered bodies. Table 2 shows the heat treatment conditions and the presence or absence of the Meissner effect.

(以下余白) [発明の効果] 以上説明したように、本発明による酸化物超電導体は、
新規な構造および新規な組成を有する超電導体であり、
従来のY−Ba−Cu−0系酸化物超電導体等と同様な
超電導特性を示すと共に、高温焼成することか可能であ
ることから、密度か高く耐久性に優れており、各種の超
電導現象を利用する用途に好適した超電導材料といえる
(The following is a blank space) [Effects of the invention] As explained above, the oxide superconductor according to the present invention has the following effects:
A superconductor with a new structure and new composition,
It exhibits the same superconducting properties as conventional Y-Ba-Cu-0-based oxide superconductors, etc., and can be fired at high temperatures, so it has high density and excellent durability, and is capable of suppressing various superconducting phenomena. It can be said that it is a superconducting material suitable for the intended use.

出願人      株式会社 東芝Applicant: Toshiba Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)Ca、RE(REはLa、Y、NdおよびEuか
ら選ばれた少なくとも1種の元素を示す)、Srおよび
Cuを構成元素とする酸化物であって、結晶構造中にC
uO_2平面を有していることを特徴とする酸化物超電
導体。
(1) An oxide whose constituent elements are Ca, RE (RE represents at least one element selected from La, Y, Nd, and Eu), Sr, and Cu, with carbon in the crystal structure.
An oxide superconductor characterized by having a uO_2 plane.
(2)請求項1記載の酸化物超電導体において、一般式
:(Ca_1_−_xRE_x)_1_−_ySr_y
CuO_z(式中、xは0.3〜0.7、yは0.01
〜0.2、zは2〜3の数をそれぞれ示す) で実質的に表されることを特徴とする酸化物超電導体。
(2) In the oxide superconductor according to claim 1, the general formula: (Ca_1_-_xRE_x)_1_-_ySr_y
CuO_z (in the formula, x is 0.3 to 0.7, y is 0.01
~0.2, z each represents a number from 2 to 3) An oxide superconductor characterized by being substantially represented by:
JP2171407A 1990-06-29 1990-06-29 Oxide superconductor Pending JPH0459654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171407A JPH0459654A (en) 1990-06-29 1990-06-29 Oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2171407A JPH0459654A (en) 1990-06-29 1990-06-29 Oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0459654A true JPH0459654A (en) 1992-02-26

Family

ID=15922577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171407A Pending JPH0459654A (en) 1990-06-29 1990-06-29 Oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0459654A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015099908A (en) * 2013-10-17 2015-05-28 中部電力株式会社 Thermoelectric conversion material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015099908A (en) * 2013-10-17 2015-05-28 中部電力株式会社 Thermoelectric conversion material

Similar Documents

Publication Publication Date Title
JPS63291817A (en) Oxide superconductor
JPH0459654A (en) Oxide superconductor
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JP2593475B2 (en) Oxide superconductor
JPS63270317A (en) Oxide superconductor
JP2597578B2 (en) Superconductor manufacturing method
JP3163122B2 (en) Manufacturing method of oxide superconductor
EP0446552B1 (en) Superconductive compounds and process for producing said compounds
HU217018B (en) Super conducting composition contain bismuth, strontium, copper and oxygen, process for producing this composition, and process for conducting an electrical current within a conductor material without electrical resistive losses and josephson-effect ...
JPH01224229A (en) Superconducting material and production thereof
JP2593480B2 (en) Manufacturing method of oxide superconductor
JP3034267B2 (en) Oxide superconductor
JP2597579B2 (en) Superconductor manufacturing method
JPS63307110A (en) Oxide superconductor
JPH01157455A (en) Production of oxide superconducting sintered body
Zhao et al. Synthesis and Superconductivity of New Cuprates (Pb 0.8 W 0.2) Sr 2 (Nd 1− x Ca x) Cu 2 O 7− δ
JPH02248321A (en) Oxide superconductor
JPH01183450A (en) Production of formed oxide superconductor
JPH01164762A (en) Compound oxide type superconducting sintered body
JPH01126259A (en) Production of oxide superconductor
JPH01320226A (en) Production of bismuth-containing oxide superconducting material
JPH02196058A (en) Production of superconductor
JPH0292819A (en) Oxide superconductor
JPH01286921A (en) Superconducting material and production thereof
JPS63252921A (en) Oxide superconductor