JPH02258665A - Production of superconductive material - Google Patents

Production of superconductive material

Info

Publication number
JPH02258665A
JPH02258665A JP1045990A JP4599089A JPH02258665A JP H02258665 A JPH02258665 A JP H02258665A JP 1045990 A JP1045990 A JP 1045990A JP 4599089 A JP4599089 A JP 4599089A JP H02258665 A JPH02258665 A JP H02258665A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
superconducting
atmosphere
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1045990A
Other languages
Japanese (ja)
Inventor
Akira Fukizawa
蕗澤 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1045990A priority Critical patent/JPH02258665A/en
Publication of JPH02258665A publication Critical patent/JPH02258665A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain superconductive material having high critical electric current density and high strength by heat-treating oxide of Bi-Pb-Sr-Ca-Cu system in controlling atmosphere and temperature, molding resultant superconductive material, heat-treating, further molding under pressure and heat-treating at fixed temperature. CONSTITUTION:An oxide of Bi-Pb-Sr-Ca-Cu system is heat-treated at 800-860 deg.C temperature in an atmosphere of 2-22% oxygen-containing volume fraction to obtain crystal structure of superconductor. Then, the resultant material is molded to a superconductive molded material and heat-treated at 820-860 deg.C temperature, thus sintered superconductor is subjected to pressure-molding treatment without crushing process. Next, resultant material is subjected to heat treatment at 820-860 deg.C temperature to afford a superconductive material of oxide of Bi-Pb-Sr-Ca-Cu system. The resultant superconductive material has a critical electric current density larger than 5-10 times comparing to conventional production method and also has a sintered density larger than 80% of theoretical density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超伝導材料の製造方法に関し、更に詳しくは臨
界電流密度が高く送電用ケーブル、マグネット等に利用
される酸化物超伝導材料の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing superconducting materials, and more specifically to manufacturing oxide superconducting materials that have a high critical current density and are used for power transmission cables, magnets, etc. Regarding the method.

(従来の技術) 昨年1月発見されたBi −Sr −Ca −Cu系酸
化物超伝導体は、臨界温度110にと80にの2種類の
超伝導相か報告されており、特に、ll0K相は従来の
Y系超伝導体に比べて臨界温度か20に高く、化学的安
定性にも優れていることから、工業応用上実用化が急が
れている。このll0K相は、大気中の熱処理では87
5〜885℃の狭い温度範囲でのみ合成されそれ以外の
温度では合成てきないとされている。最近、pbを添加
することによりll0K相の合成温度を850℃まで低
下させ合成時間も短縮できることが報告されている(M
、Takano et  at;Japanes  J
ournal  of  AppliedPhysic
s、vol 27.L1041.1988) 、更に、
ll0K相の合成条件は熱処理雰囲気中の酸素分圧の影
響を受け、低斂素雰囲気(1/ 13 Torr)に於
て110に和合成温度領域が最も拡大することが報告さ
れている(U、 Endo et al;Japane
s Journal ofApplied Physi
cs、vol 27.L1476.1988)。
(Prior art) It has been reported that the Bi-Sr-Ca-Cu based oxide superconductor discovered in January last year has two types of superconducting phases, one at a critical temperature of 110 degrees and one at a critical temperature of 80 degrees. It has a critical temperature 20 degrees higher than that of conventional Y-based superconductors and has excellent chemical stability, so its commercialization in industrial applications is urgently needed. This ll0K phase is 87
It is said that it is synthesized only in a narrow temperature range of 5 to 885°C and cannot be synthesized at other temperatures. Recently, it has been reported that by adding pb, the synthesis temperature of the ll0K phase can be lowered to 850°C and the synthesis time can also be shortened (M
, Takano et at; Japan J
our own of Applied Physics
s, vol 27. L1041.1988), and further,
It has been reported that the synthesis conditions for the ll0K phase are influenced by the oxygen partial pressure in the heat treatment atmosphere, and that the sum synthesis temperature range expands the most to 110 in a low nitrogen atmosphere (1/13 Torr) (U, Endo et al;Japan
s Journal of Applied Physi
cs, vol 27. L1476.1988).

(発明か解決しようとする課題) Bi −Pb −Sr −Ca −Cu系酸化物超伝導
体は、通常、各種原料化合物を熱処理し超伝導体の結晶
構造を析出させた後、粉砕し成形体を形成し、更に熱処
理を加え焼結させている。この方法て作製した超伝導焼
結体は、理論密度の50%程度の低密度であり、又、液
体窒素温度に於ける臨界電流密度は300A/cm″以
下の値にとどまっており、超伝導送電用ケーブルの実用
化に最低限必要なlO万A / c rr+’には遠く
及ばない、最近、焼結体の臨界電流密度を向上させるた
めに熱処理の途中に加圧成形処理を加える方法が提案さ
れたが(Y、 Tanaka et al;Japan
es Journal of AppliedPhys
ics、vol 27.L1655.1988)この方
法に於いても達成された臨界電流密度は700 A /
 c m″であった。
(Problem to be solved by the invention) Bi-Pb-Sr-Ca-Cu-based oxide superconductors are usually produced by heat-treating various raw material compounds to precipitate the crystal structure of the superconductor, and then crushing them into a molded body. is formed, and then heat treated and sintered. The superconducting sintered body produced by this method has a low density of about 50% of the theoretical density, and the critical current density at liquid nitrogen temperature remains below 300 A/cm'', making it superconducting. This is far from the minimum required 100,000 A/c rr+' for practical use in power transmission cables, and recently a method of adding pressure forming treatment during heat treatment has been developed to improve the critical current density of sintered bodies. Although it was proposed (Y, Tanaka et al; Japan
es Journal of Applied Phys.
ics, vol 27. L1655.1988) The critical current density achieved in this method is 700 A/
cm''.

(課題を解決するための手段) 本件発明者は上記の問題を解決すべく鋭意研究した結果
、Bi −Pb −Sr −Ca −Cu系酸化物超伝
導体の熱処理温度を、特定の温度に設定し、熱処理と熱
処理の間に加圧成形処理を行う事により、液体窒素温度
に於ける臨界電流密度が5000A/crn′を越える
超伝導焼結材料が作製できることを発見して本件発明を
完成するに至った。
(Means for Solving the Problems) As a result of intensive research to solve the above problems, the inventor of the present invention set the heat treatment temperature of Bi-Pb-Sr-Ca-Cu based oxide superconductor to a specific temperature. However, by performing pressure molding treatment between heat treatments, the present invention was completed by discovering that a superconducting sintered material with a critical current density exceeding 5000 A/crn' at liquid nitrogen temperature could be produced. reached.

即ち、本件発明は、特定の温度条件で熱処理することに
より超伝導焼結体の密度低下の原因となる揮発成分の蒸
発を抑え、又、臨界電流密度低下の原因となる粒界析出
相の発生を抑えるばかりでなく、熱処理と熱処理の間に
加圧成形を行うことにより焼結密度の向上及び、超伝導
相の結晶配向制御を行う超伝導材料の製造方法に関する
ものであり、その要旨とするところは、B1−Pb−3
r−Ca −Cu系酸化物超伝導材料の製造方法に於い
て、酸素含有体積分率2%以上22%以下の雰囲気下、
当該酸化物を800℃以上860℃未満の温度で熱処理
し超伝導体の結晶構造とした後、成形して超伝導成形体
とし、820℃以上860℃未満の温度で熱処理を行い
、焼結した当該酸化物超伝導体に粉砕工程を加えること
無しに加圧成形処理を施し、更に、820℃以上860
℃未満の温度で熱処理を行う事を特徴とする、高臨界電
流密度を有する超伝導材料の製造方法にある。
That is, the present invention suppresses the evaporation of volatile components, which cause a decrease in the density of a superconducting sintered body, by heat treatment under specific temperature conditions, and also suppresses the generation of grain boundary precipitated phases, which causes a decrease in critical current density. This article relates to a method for producing superconducting materials that not only suppresses the heat treatment, but also improves the sintered density and controls the crystal orientation of the superconducting phase by performing pressure forming between heat treatments. However, B1-Pb-3
In the method for producing an r-Ca-Cu-based oxide superconducting material, in an atmosphere with an oxygen-containing volume fraction of 2% or more and 22% or less,
The oxide was heat-treated at a temperature of 800°C or more and less than 860°C to form a superconductor crystal structure, and then molded into a superconducting molded body, heat-treated at a temperature of 820°C or more and less than 860°C, and sintered. The oxide superconductor is subjected to pressure molding treatment without adding a pulverization process, and is further heated to a temperature of 820°C or higher at 860°C.
The present invention provides a method for producing a superconducting material having a high critical current density, characterized by performing heat treatment at a temperature of less than °C.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における原料は、 Bi、 Sr、 Ca、 C
u及びpbの酸化物、水酸化物、無機酸塩、有機酸塩を
用いることができる。それぞれの原料は粉末状態て混合
したもの、または共沈性、ゾルゲル法、スプレードライ
法などて作製して用いる。原料の混合比は元素比でBi
:Pb:Sr:Ca:Cu=1.6 : 0.4:2:
2:3か好ましいか限定するものではない。
The raw materials in the present invention are Bi, Sr, Ca, C
Oxides, hydroxides, inorganic acid salts, and organic acid salts of u and pb can be used. Each of the raw materials is used as a mixture in powder form, or prepared by coprecipitation, sol-gel method, spray drying method, etc. The mixing ratio of raw materials is Bi in elemental ratio.
:Pb:Sr:Ca:Cu=1.6:0.4:2:
There is no limitation as to whether 2:3 is preferable or not.

本発明では、これらの原料を酸素含有体積分率2%以上
22%以下の雰囲気下、800℃以上860℃未満の温
度で一定時間熱処理し、超伝導体の結晶構造とする。こ
のものは80に相の結晶構造を主体としており若干の1
10に和結晶も含んでいる。空気中ては860℃を越え
る温度では超伝導体材料が融解を始め半導体相と言われ
る結晶構造相と酸化物絶縁体の混合体に分解する。融解
開始温度は、熱処理雰囲気中の酸素分圧により異なり具
体的には酸素含有率4%雰囲気で840℃、同8%雰囲
気で850℃である。熱処理はこれらの温度以下で行う
、又、何れの雰囲気でも。
In the present invention, these raw materials are heat-treated at a temperature of 800° C. or more and less than 860° C. for a certain period of time in an atmosphere with an oxygen-containing volume fraction of 2% or more and 22% or less to obtain a superconductor crystal structure. This material mainly has a crystal structure of 80-phase, with some 1-phase crystal structure.
10 also includes Japanese crystals. In air, at temperatures exceeding 860° C., superconductor materials begin to melt and decompose into a mixture of a crystal structure phase called a semiconductor phase and an oxide insulator. The melting start temperature varies depending on the oxygen partial pressure in the heat treatment atmosphere, and specifically, it is 840° C. in an atmosphere with an oxygen content of 4%, and 850° C. in an atmosphere with an oxygen content of 8%. Heat treatment is performed below these temperatures and in any atmosphere.

800℃未満では、超伝導体の結晶が殆ど析出しない。At temperatures below 800°C, almost no superconductor crystals precipitate.

次に1本発明では、この焼結体を粉砕、混合、成形する
。本発明に於て、成形とは充填、パターン形成、塗布、
皮膜形成など所定の形態に構成する事を含む概念である
9例えば、粉末を有機酸のバインダーに混合し、アルミ
ナ、ジルコニア、マグネシア、シリコン等のセラミック
ス、または、銀、銅、ニッケル、ステンレス等の金属基
板にパターンを形成する方法や通常行われる粉体をブレ
ス成形する方法などである。成形体は、ついで酸素含有
率2゛%以上22%以下の雰囲気下、820℃以上86
0”C未満の温度で熱処理を行い、110に相の結晶構
造を晶出させる。熱処理温度は処理雰囲気により異なる
が、何れも融解開始温度以下20℃以内の温度に設定す
る。この温度処理に於いて成形体内部の超伝導相は80
に相から110に相への転換が速やかに進行するが、同
時に成形体からはBi、 Pbを主体とする低融点元素
の蒸発ないし原料化合物の分解に伴うガス発生が生じ、
成形体の内部に多数の空孔が発生し成形体の密度が低下
する。特に、融解開始温度近傍の温度ではBi、 Pb
を主体とする低融点元素の蒸発量が増大し成形体中のp
b量が減少する結果、pb添加により安定化されていた
ll0K相が、80に相と非超伝導酸化物に分解を始め
成形体の超伝導特性は悪化する。従って、熱処理には特
定の温度を選択する必要があり、精力的に研究を進めた
結果、本件発明に於ける最適な熱処理温度は、酸素含有
率2%≦P≦22%の雰囲気において、−o、osp”
+3. 4P+816≦T(℃)  ≦−o、osp2
+3.4P+820で表わされる温度範囲であり、具体
的には、酸素含有率4±0.5%の雰囲気に於て830
±2℃、酸素含有率8±0.5%の雰囲気に於て840
±2℃、又、空気中酸素含有率21±0.5%では85
5±2℃で有ることか判明した。熱処理は各雰囲気に於
ける最適温度の下、50時間以上行うことが好ましい。
Next, in the present invention, this sintered body is crushed, mixed, and shaped. In the present invention, molding includes filling, pattern formation, coating,
The concept includes forming a film into a predetermined form.9 For example, by mixing powder with an organic acid binder, it can be made into ceramics such as alumina, zirconia, magnesia, silicon, or silver, copper, nickel, stainless steel, etc. These methods include forming a pattern on a metal substrate and the commonly used method of press molding powder. The molded body is then heated at 820°C or more and 86°C in an atmosphere with an oxygen content of 2% or more and 22% or less.
Heat treatment is performed at a temperature below 0"C to crystallize the crystal structure of the 110 phase.The heat treatment temperature varies depending on the treatment atmosphere, but is set at a temperature within 20 °C below the melting start temperature. The superconducting phase inside the compact is 80
The conversion from the phase to the phase 110 proceeds rapidly, but at the same time, gas is generated from the compact due to the evaporation of low melting point elements, mainly Bi and Pb, or the decomposition of the raw material compounds.
A large number of pores are generated inside the molded body, and the density of the molded body is reduced. In particular, at temperatures near the melting start temperature, Bi, Pb
The amount of evaporation of low-melting-point elements mainly consisting of
As a result of the decrease in the amount of b, the ll0K phase, which had been stabilized by the addition of pb, began to decompose into an 80° phase and a non-superconducting oxide, deteriorating the superconducting properties of the molded article. Therefore, it is necessary to select a specific temperature for heat treatment, and as a result of intensive research, the optimal heat treatment temperature in the present invention is - in an atmosphere with an oxygen content of 2%≦P≦22%. o, osp”
+3. 4P+816≦T(℃)≦-o, osp2
+3.4P+820, specifically, 830 in an atmosphere with an oxygen content of 4±0.5%.
840 in an atmosphere of ±2℃ and oxygen content of 8±0.5%
85 at ±2℃ and atmospheric oxygen content of 21±0.5%
It was found that the temperature was 5±2℃. The heat treatment is preferably carried out for 50 hours or more under the optimum temperature in each atmosphere.

熱処理後の超伝導成形体は、密度向上、超伝導相の結晶
配向を付与させるために加圧成形処理を行う。加圧方法
はプレス成形あるいはロール成形等、試料体積を圧縮さ
せる方法であれば特に規定するものではない、この圧縮
成形処理により成形体内部に存在した空孔がつぶされ成
形体の密度が向上する。同時に超伝導相の結晶のa−b
面が圧縮成形の加圧方向に対して垂直の方向に選択的に
配向する。これは、超伝導相の結晶形状が板状あるいは
針状をしている結果、加圧方向に垂直な方向に配列し易
いためである。結晶の配向性は成形体の加圧方法を工夫
することにより向上が認められる。具体的には、加圧と
無負荷を交互に繰り返すことが好ましく、このことによ
り結晶の配列か進み結晶配向性は向上する。臨界電流密
度はBi系超超伝導体結晶のa−b面方向で最高となる
ことが知られており、本発明で用いられる加圧成形処理
で超伝導体成形体に結晶配向の選択配向性が付与される
事により臨界電流密度の向上が期待される。
The superconducting molded body after heat treatment is subjected to pressure molding treatment in order to improve density and impart crystal orientation of the superconducting phase. The pressurizing method is not particularly specified as long as it is a method that compresses the sample volume, such as press molding or roll molding.This compression molding process collapses the pores existing inside the molded body and improves the density of the molded body. . At the same time, a-b of the superconducting phase crystal
The surfaces are selectively oriented in a direction perpendicular to the pressing direction of compression molding. This is because the crystal shape of the superconducting phase is plate-like or needle-like, and as a result, it is easy to align in the direction perpendicular to the pressurizing direction. The crystal orientation can be improved by devising a method of pressurizing the compact. Specifically, it is preferable to alternately repeat pressurization and non-loading, thereby advancing crystal alignment and improving crystal orientation. It is known that the critical current density is highest in the a-b plane direction of Bi-based superconductor crystals, and the pressure forming process used in the present invention imparts selective crystal orientation to the superconductor compact. is expected to improve the critical current density.

加圧成形処理を行う温度は、通常室温とするが、金属基
板に形成した超伝導体を加圧処理する場合には、金属基
板の圧延が容易となる2 00 ℃以上程度の温度とす
るのが好ましい。
The temperature for pressure forming treatment is usually room temperature, but when pressure treating a superconductor formed on a metal substrate, the temperature is preferably about 200 °C or higher to facilitate rolling of the metal substrate. is preferred.

加圧成形処理に伴う結晶粒・の再配列により、成形体内
部には多数の亀裂が生じるため、ひきつずいて結晶粒を
焼結させるための熱処理が必要になる。熱処理の条件は
、前述の通り各雰囲気に於ける最適温度の下、50時間
以上行う。しかしこの熱処理に於いて、成形体内部に残
存する80に相超伝導体からll0K相の超伝導体が合
成されるに伴うガス発生と、Bi、 Pbを主体とする
低融点元素の蒸発か生じ、成形体の密度が低下する事が
ある。この場合は、再び、前述の加圧成形処理を行い、
ひきつずいて、焼結熱処理を行う0以上述べた方法とは
別に5成形体の熱処理時間を50時間以下に設定し、熱
処理と加圧成形処理を交互に繰り返して主としてll0
K相の超伝導体から構成される成形体に高密度・高配向
性を付与してもよい。この方法に於いても、最終段階の
熱処理時間は、50時間以上を必要とする。最終段階の
熱処理時間か例えば20時間程度の場合1個々の結晶粒
相互の焼結か進行しておらず結晶粒界の臨界電流密度低
下の原因となる。このため、このものの臨界電流密度は
弱結合部分を形成するので数百A/cm’と低い。
Due to the rearrangement of crystal grains during the pressure molding process, many cracks occur inside the molded body, which subsequently requires heat treatment to sinter the crystal grains. The heat treatment is performed for 50 hours or more under the optimum temperature in each atmosphere as described above. However, during this heat treatment, gas generation occurs as ll0K phase superconductor is synthesized from the 80 phase superconductor remaining inside the compact, and low melting point elements mainly consisting of Bi and Pb evaporate. , the density of the molded product may decrease. In this case, perform the above-mentioned pressure molding process again,
Subsequently, in addition to the above-mentioned method of performing sintering heat treatment, the heat treatment time of the 5 compact was set to 50 hours or less, and the heat treatment and pressure forming treatment were alternately repeated to mainly
A molded body made of a K-phase superconductor may be provided with high density and high orientation. Even in this method, the heat treatment time in the final stage requires 50 hours or more. If the heat treatment time in the final stage is, for example, about 20 hours, sintering of individual crystal grains does not proceed, which causes a decrease in the critical current density at the grain boundaries. Therefore, the critical current density of this material is as low as several hundred A/cm' since it forms a weakly coupled portion.

また、超伝導成形体の熱処理、加圧成形、熱処理の連続
する工程を1回または2回以上連続して行ってもよい。
Further, the successive steps of heat treatment, pressure molding, and heat treatment of the superconducting molded body may be performed one time or two or more times in succession.

これは結晶粒同志の焼結面積を向上させ、結晶粒界の弱
結合部分の割合を減少させ臨界密度を向上させる為であ
る。加圧成形前後の熱処理雰囲気は必ずしも同しである
必要はないが、変更する場合は、加圧成形後の熱処理雰
囲気を成形前の雰囲気より酸素分圧の高い雰囲気とする
ことが望ましい、具体的には、酸素含有率4%雰囲気8
30℃で熱処理した後、加圧成形し、更に、空気中85
5℃て熱処理する方法である。こうした処理温度を増加
させる方法により成形体中の超伝導相の結晶粒が増大し
結晶粒界の弱結合部分の割合を減少させることが可能に
なり、臨界電流密度をさらに向上させることが可能とな
る。
This is to increase the sintering area between crystal grains, reduce the proportion of weakly bonded portions at grain boundaries, and improve critical density. The heat treatment atmosphere before and after pressure molding does not necessarily have to be the same, but if changed, it is desirable that the heat treatment atmosphere after pressure molding be an atmosphere with a higher oxygen partial pressure than the atmosphere before molding. For this, an atmosphere with an oxygen content of 4%8
After heat treatment at 30℃, pressure molding and further heating at 85℃ in air.
This method involves heat treatment at 5°C. By increasing the processing temperature, it is possible to increase the crystal grains of the superconducting phase in the compact and reduce the proportion of weakly bonded parts at grain boundaries, making it possible to further improve the critical current density. Become.

以上述べた方法により、液体窒素温度に於ける臨界電流
密度が、2000 A / c m’を越える超伝導成
形体が容易に得られる。特に超伝導成形体の熱処理、加
圧成形、熱処理の連続する工程の回数を5回以上行い、
工程間の熱処理時間を50時間以下に設定し、最終の熱
処理時間のみを50時間以上に設定した場合は焼結密度
、配向性か更に向上するので臨界電流密度は5000 
A / c rn’を容易に越える。以下、実施例を使
い本発明を更に詳しく説明する。
By the method described above, a superconducting molded body having a critical current density exceeding 2000 A/cm' at liquid nitrogen temperature can be easily obtained. In particular, the continuous steps of heat treatment, pressure molding, and heat treatment of the superconducting molded body are performed five or more times,
If the heat treatment time between steps is set to 50 hours or less, and only the final heat treatment time is set to 50 hours or more, the sintered density and orientation will further improve, so the critical current density will be 5000.
Easily exceeds A/c rn'. Hereinafter, the present invention will be explained in more detail using Examples.

(実施例1) Bi(NO,)3−5H10,Sr(NOり2、Ca(
NOi)r’4H20。
(Example 1) Bi(NO,)3-5H10, Sr(NO2, Ca(
NOi)r'4H20.

Cu(NO+)z”llH*0 、 Pb(NO3)z
を元素比でBi:Pb:Sr:Ca:Cu=1.6:0
.4+1:1:1.5の割合で秤量し2001の純水に
混合させる0次いて、この溶液に、酒石酸、エチレング
リコールを適量加え、90℃で3時間攪拌混合し、青白
色ゲル状物質な得た0次いで、400 ℃て2時間、8
00℃で15時間大気中で熱処理して得た80に相超伝
導体を粉砕混合し、7ton/crn’の荷重を加えて
lOs+sφX1mmの成形体を得た。この成形体を酸
素含有率4%雰囲気下830℃で66時間熱処理した後
、炉から取り出し5分以内で室温まで冷却した。ついで
この焼結体に7ton/am’の荷重を繰り返し10回
連続して加え10v+iφ×0.8鵬■の成形体とした
後、更に、酸素含有率4%雰囲気下830℃で60時間
熱処理した。得られた超伝導成形体の臨界電流密度を液
体窒素温度、零磁界中、最大輸送電流法にて測定したと
ころ2300 A / cゴの値か得られた。
Cu(NO+)z"llH*0, Pb(NO3)z
The element ratio is Bi:Pb:Sr:Ca:Cu=1.6:0
.. Weigh and mix with 2001 pure water in the ratio of 4 + 1: 1: 1.5. Next, add appropriate amounts of tartaric acid and ethylene glycol to this solution and stir and mix at 90°C for 3 hours to form a bluish-white gel-like substance. Obtained 0, then at 400 °C for 2 hours, 8
A phase superconductor was pulverized and mixed with 80 obtained by heat treatment in the air at 00° C. for 15 hours, and a load of 7 tons/crn' was applied to obtain a molded body of lOs+sφX1 mm. After this molded body was heat-treated at 830° C. for 66 hours in an atmosphere with an oxygen content of 4%, it was taken out of the furnace and cooled to room temperature within 5 minutes. Next, a load of 7 ton/am' was repeatedly applied to this sintered body 10 times in succession to form a molded body of 10 V + iφ x 0.8 mm, which was further heat-treated at 830° C. for 60 hours in an atmosphere with an oxygen content of 4%. . When the critical current density of the obtained superconducting molded body was measured by the maximum transport current method at liquid nitrogen temperature and in zero magnetic field, a value of 2300 A/c was obtained.

(実施例2) 実施例1で作製した10mmφX1mmの成形体を、酸
素含有率8%雰囲気下840℃で100時間熱処理し、
ついでこの焼結体に7ton/crn’の荷重を繰り返
し10回連続して加え10mmφ×0.75mmの成形
体とした後、酸素含有率8%雰囲気下840℃で更に1
00時間熱処理した。得られた超伝導成形体の臨界電流
密度を液体窒素温度、零磁界中、最大輸送電流法にて測
定したところ2500A/am’の値が得られた。
(Example 2) The 10 mmφ x 1 mm molded body produced in Example 1 was heat treated at 840°C for 100 hours in an atmosphere with an oxygen content of 8%,
Next, a load of 7 ton/crn' was repeatedly applied to this sintered body 10 times in a row to form a molded body of 10 mmφ x 0.75 mm.
Heat treated for 00 hours. When the critical current density of the obtained superconducting molded body was measured by the maximum transport current method at liquid nitrogen temperature and in zero magnetic field, a value of 2500 A/am' was obtained.

〔実施例3〕 実施例1で作製した10s+mφX1mmの成形体を、
酸素含有率4%雰囲気下830℃て90時間熱処理し、
ついでこの焼結体に7ton/cm’の荷重を繰り返し
10回連続して加え1ossφ×0.8■の成形体とし
た後、酸素含有率8%雰囲気下840℃で更に120時
間熱処理した。得られた超伝導成形体の臨界電流密度を
液体窒素温度、零磁界中、最大輸送電流法にて測定した
ところ3500A/crn’の値か得られた。
[Example 3] The molded body of 10s + mφ x 1mm produced in Example 1 was
Heat treated at 830°C for 90 hours in an atmosphere with an oxygen content of 4%,
Next, a load of 7 ton/cm' was repeatedly applied to this sintered body 10 times in succession to form a molded body having a size of 1 ossφ×0.8 cm, and then heat-treated at 840° C. for an additional 120 hours in an atmosphere with an oxygen content of 8%. The critical current density of the obtained superconducting molded body was measured by the maximum transport current method at liquid nitrogen temperature in zero magnetic field, and a value of 3500 A/crn' was obtained.

(実施例4) 実施例1で作製した10mIIφX1mmの成形体を、
酸素含有率8%雰囲気下840℃で20時間熱処理し、
ついてこの焼結体に7ton/crn’の荷重を繰り返
し10回連続して加え、再び回じ条件で20時間熱処理
を加えた。この熱処理と加圧成形処理を交互に都合5回
行い、最後に10mmφxO,’7aa+の成形体とし
た後、酸素含有率8%雰囲気下840℃で更に100時
間熱処理した。得られた超伝導成形体の臨界電流密度は
、5700A / c rn’の値か得られた。
(Example 4) The 10 m IIφ x 1 mm molded body produced in Example 1 was
Heat treated at 840°C for 20 hours in an atmosphere with an oxygen content of 8%,
Then, a load of 7 ton/crn' was repeatedly applied to this sintered body 10 times in succession, and heat treatment was again applied under rotating conditions for 20 hours. This heat treatment and pressure molding treatment were performed alternately five times in total, and finally a molded product of 10 mmφxO, '7aa+ was obtained, and then heat treated at 840° C. for an additional 100 hours in an atmosphere with an oxygen content of 8%. The critical current density of the obtained superconducting compact was 5700 A/c rn'.

(実施例5) 実施例1で作製した超伝導粉末に20vo1%のポリビ
ニルアルコールを混合しペースト状とした。次いて、厚
さ1■のAg板にペーストで厚さ0.1mmの皮膜を形
成した。200℃て加熱しバインターを除去した後、酸
素含有率4%雰囲気中825℃で15時間熱処理した。
(Example 5) The superconducting powder produced in Example 1 was mixed with 20 vol 1% polyvinyl alcohol to form a paste. Next, a film with a thickness of 0.1 mm was formed using the paste on an Ag plate with a thickness of 1 cm. After heating at 200°C to remove the binder, heat treatment was performed at 825°C for 15 hours in an atmosphere with an oxygen content of 4%.

ついで、プレート温度300℃のホットプレスにて1.
  ton/ c rn’の荷重を加えて加圧成形処理
を行った後、酸素含有率4%雰囲気中830℃て15時
間熱処理した。
Then, 1.
After performing pressure molding treatment with a load of ton/c rn', heat treatment was performed at 830° C. for 15 hours in an atmosphere with an oxygen content of 4%.

得られた超伝導体厚膜は厚さか0.06mmで臨界電流
密度は、2100A/crn’てあった。
The obtained superconductor thick film had a thickness of about 0.06 mm and a critical current density of 2100 A/crn'.

(発明の効果) 本発明に係わる超伝導材料の製造方法に依れば、臨界電
流密度か従来の製造方法より5〜lO倍以上大きい超伝
導材料を製造てきる。又、超伝導相の結晶か回し方向に
配向しており、焼結密度も理論密度の80%以上となる
のて、機械強度の大きい超伝導成形体の製造が容易とな
る。本発明の方法により製造される超伝導成形体は、磁
気シールド用超伝導体構造物、マグネット線材、送電用
線材等に用いることか出来る。
(Effects of the Invention) According to the method for producing a superconducting material according to the present invention, a superconducting material whose critical current density is 5 to 10 times higher than that of the conventional production method can be produced. In addition, since the crystals of the superconducting phase are oriented in the rotation direction and the sintered density is 80% or more of the theoretical density, it is easy to manufacture a superconducting molded body with high mechanical strength. The superconducting molded body produced by the method of the present invention can be used for superconductor structures for magnetic shielding, magnet wires, power transmission wires, and the like.

Claims (7)

【特許請求の範囲】[Claims] (1)Bi−Pb−Sr−Ca−Cu系酸化物超伝導体
の製造方法に於て、酸素含有体積分率2%以上22%以
下の雰囲気下、当該酸化物を800℃以上860℃未満
の温度で熱処理し超伝導体の結晶構造とした後、成形し
て超伝導成形体とし、820℃以上860℃未満の温度
で熱処理を行い、焼結した当該酸化物超伝導体に粉砕工
程を加えること無しに加圧成形処理を施し、更に、82
0℃以上860℃未満の温度で熱処理を行う事を特徴と
する,高臨界電流密度を有する超伝導材料の製造方法。
(1) In the method for producing a Bi-Pb-Sr-Ca-Cu based oxide superconductor, the oxide is heated at 800°C or more and less than 860°C in an atmosphere with an oxygen-containing volume fraction of 2% or more and 22% or less. The oxide superconductor is heat-treated at a temperature of 820°C or higher and lower than 860°C, and then subjected to a crushing process. Pressure molding treatment is performed without adding, and furthermore, 82
A method for producing a superconducting material having a high critical current density, the method comprising performing heat treatment at a temperature of 0°C or more and less than 860°C.
(2)超伝導成形体を、酸素含有率2%≦P≦22%の
雰囲気において、−0.08P^2+3.4P+816
≦T(℃)≦−0.08P^2+3.4P+820で表
される範囲の温度で熱処理する事を特徴とする請求項1
記載の超伝導材料の製造方法。
(2) The superconducting molded body was heated to −0.08P^2+3.4P+816 in an atmosphere with an oxygen content of 2%≦P≦22%.
Claim 1 characterized in that the heat treatment is carried out at a temperature within the range expressed by ≦T (℃)≦-0.08P^2+3.4P+820.
A method for manufacturing the superconducting material described.
(3)超伝導成形体の熱処理、加圧成形、熱処理の連続
する工程を1回又は2回以上連続して行うことを特徴と
する請求項1項又は2項記載の超伝導材料の製造方法。
(3) The method for producing a superconducting material according to claim 1 or 2, characterized in that the successive steps of heat treatment, pressure molding, and heat treatment of the superconducting molded body are performed once or twice or more consecutively. .
(4)超伝導成形体の熱処理温度が酸素含有率4±0.
5%の雰囲気に於て830±2℃で有ることを特徴とす
る請求項1、2項又は3項記載の超伝導材料の製造方法
(4) The heat treatment temperature of the superconducting molded body is the oxygen content of 4±0.
4. The method for producing a superconducting material according to claim 1, wherein the temperature is 830±2° C. in a 5% atmosphere.
(5)超伝導成形体の熱処理温度が酸素含有率8±0.
5%の雰囲気に於て840±2℃で有ることを特徴とす
る請求項1、2、3項又は4項記載の超伝導材料の製造
方法。
(5) The heat treatment temperature of the superconducting molded body is the oxygen content of 8±0.
5. The method for producing a superconducting material according to claim 1, wherein the temperature is 840±2° C. in a 5% atmosphere.
(6)超伝導成形体の熱処理温度が酸素含有率21±0
.5%の雰囲気即ち一般には空気中に於て855±2℃
で有ることを特徴とする請求項1、2、3、4項又は5
項記載の超伝導材料の製造方法。
(6) Heat treatment temperature of superconducting molded body is oxygen content 21±0
.. 855±2℃ in 5% atmosphere, generally air
Claim 1, 2, 3, 4 or 5 characterized in that
2. Method for manufacturing the superconducting material described in Section 1.
(7)超伝導成形体の加圧成形方法が、加圧と無負荷を
繰り返すことにより成形体に結晶配向性を付与させるこ
とを特徴とする請求項1、2、3、4、5項又は6項記
載の超伝導材料の製造方法。
(7) Claims 1, 2, 3, 4, and 5, characterized in that the method for pressure forming a superconducting molded body imparts crystal orientation to the molded body by repeating pressurization and no load. 6. A method for producing a superconducting material according to item 6.
JP1045990A 1988-12-01 1989-02-27 Production of superconductive material Pending JPH02258665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1045990A JPH02258665A (en) 1988-12-01 1989-02-27 Production of superconductive material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-304444 1988-12-01
JP30444488 1988-12-01
JP1045990A JPH02258665A (en) 1988-12-01 1989-02-27 Production of superconductive material

Publications (1)

Publication Number Publication Date
JPH02258665A true JPH02258665A (en) 1990-10-19

Family

ID=26386089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1045990A Pending JPH02258665A (en) 1988-12-01 1989-02-27 Production of superconductive material

Country Status (1)

Country Link
JP (1) JPH02258665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265522A (en) * 1990-03-15 1991-11-26 Rikagaku Kenkyusho Bi-containing high-temperature superconductor having monoclinic system and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03265522A (en) * 1990-03-15 1991-11-26 Rikagaku Kenkyusho Bi-containing high-temperature superconductor having monoclinic system and production thereof

Similar Documents

Publication Publication Date Title
JP3332350B2 (en) Superconductor and method of using the same
EP0764991A1 (en) Oxide superconductor and method of producing the same
JP2571789B2 (en) Superconducting material and its manufacturing method
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
JPH02258665A (en) Production of superconductive material
US5108985A (en) Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof
US5270292A (en) Method for the formation of high temperature semiconductors
JP2840349B2 (en) High Tc superconductor and method of manufacturing the same
JP2966442B2 (en) Bi-based oxide superconductor and method for producing wire thereof
JP2603688B2 (en) Superconducting material reforming method
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JPH0238359A (en) Production of superconductor
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPH02204358A (en) Oxide superconductor and production thereof
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
JP2821568B2 (en) Method for producing superconducting whisker composite
JPH01301555A (en) Production of molded article of oxide superconductor
JPH01157455A (en) Production of oxide superconducting sintered body
JPH01203257A (en) Production of superconductor
JPH01208360A (en) Production of superconductor
JPH01160825A (en) Production of oxide superconductor
JPH01153565A (en) Production of oxide superconductor
JPH01305812A (en) Production of y-ba-cu-o type superconductive powder
JPH01246173A (en) Oxide superconductor and production thereof