JPH01160861A - Anisotropic growth of superconducting ceramic - Google Patents

Anisotropic growth of superconducting ceramic

Info

Publication number
JPH01160861A
JPH01160861A JP62322167A JP32216787A JPH01160861A JP H01160861 A JPH01160861 A JP H01160861A JP 62322167 A JP62322167 A JP 62322167A JP 32216787 A JP32216787 A JP 32216787A JP H01160861 A JPH01160861 A JP H01160861A
Authority
JP
Japan
Prior art keywords
heat treatment
raw material
oxidizing atmosphere
superconducting ceramic
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62322167A
Other languages
Japanese (ja)
Inventor
Yoji Naka
仲 洋二
Kiyoshi Yoshizaki
吉崎 浄
Shoji Miyashita
章志 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62322167A priority Critical patent/JPH01160861A/en
Publication of JPH01160861A publication Critical patent/JPH01160861A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To properly arrange growth direction of ceramic crystal grain and to obtain a superconducting ceramic having higher critical current density in producing a superconducting ceramic of Y-Ba-Cu-O type, by adding a specific amount of barium sulfate to raw material components during heat treatment. CONSTITUTION:Raw material substances showing superconductivity by heat treatment in an oxidizing atmosphere is subjected to first heat treatment in an oxidizing atmosphere and ground to give a ground material. The ground material is subjected to second heat treatment to form YBa2Cu3O7-delta. In the operation, the following method is used. Namely, <=0.5 pt.wt. sum of barium salt is added to at least one of the raw material substances during the first heat treatment and the ground material during the second heat treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は高い臨界電流密度を有する超電導セラミクス
の異方成長法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an anisotropic growth method for superconducting ceramics having a high critical current density.

〔従来の技術〕[Conventional technology]

最近、送電などの電力分野、磁気浮上列車、核磁気共鳴
装置、物性研究用などの分野において、運転コストの低
い超電導ケーブルが望まれているっ1987年になって
非常に高い臨界温度(Th)を持った酸化物超電導体が
発見され、液体窒素温度(77K)でも超電導性を示す
ようKなった。この超電導体は、基本組成がY Ehz
 Qi3O7−δ(δは0〜lを中心とした値)で表わ
される酸化物であり、セラミクスとしてはY2O3、f
mco3. (110各原料粉末を混合し、熱処理、粉
砕、成形後再度熱処理を施して作成されている。なおこ
の分野の技術については、例えば雑誌(Phys Re
v Lett 58 (1987) P908〜91O
)に記載されている。またこの酸化物結晶は例えば雑誌
(J、 J、 A、 P、 Lett、 26(198
7) L649)に示されているように、構造上極めて
異方性が大きいことが知られている。それに伴い臨界電
流密度(Jc )も結晶方位により異方性を示し、C軸
方向に、平行よりも垂直方向により大きなJcが得られ
ることが例えば雑誌(J、J、A、P、 Lett、 
26 (1987) L 1248 )に報告されてい
る。
Recently, superconducting cables with low operating costs have been desired in fields such as power transmission, magnetic levitation trains, nuclear magnetic resonance equipment, and physical property research. An oxide superconductor has been discovered that exhibits superconductivity even at liquid nitrogen temperatures (77 K). This superconductor has a basic composition of Y Ehz
It is an oxide represented by Qi3O7-δ (δ is a value centered around 0 to l), and as a ceramic, Y2O3, f
mco3. (110) It is made by mixing raw material powders, heat-treating, crushing, molding, and then heat-treating again.For technology in this field, for example, see the magazine (Phys Re
v Lett 58 (1987) P908-91O
)It is described in. In addition, this oxide crystal is described, for example, in a magazine (J, J, A, P, Lett, 26 (198
7) As shown in L649), it is known to have extremely large structural anisotropy. Accordingly, the critical current density (Jc) also exhibits anisotropy depending on the crystal orientation, and a larger Jc can be obtained in the C-axis direction than in the parallel direction, as reported in magazines (J, J, A, P, Lett,
26 (1987) L 1248).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、Y Ba2 Cu3O7−δ系超電導セラミクス
の製造法は通常Y2O3、)mco3. Cu。各原料
粉末を所望組成比になる様秤量・混合され、電気炉によ
シ熱処理を施した後粉砕し粉末状にする。その後粉末を
金型に入れプレス成形し、最終的な熱処理を経て焼結さ
せ超電導特性を有するセラミクスを得る。しかしながら
この方法では、得られたセラミクスは個々の結晶粒の結
晶方位がそろい難く低い値のJcしか得られない。
Conventionally, the manufacturing method of YBa2Cu3O7-δ-based superconducting ceramics usually uses Y2O3, )mco3. Cu. Each raw material powder is weighed and mixed to obtain a desired composition ratio, heat-treated in an electric furnace, and then ground into powder. Thereafter, the powder is put into a mold and press-molded, and is sintered through a final heat treatment to obtain ceramics with superconducting properties. However, with this method, the crystal orientations of the individual crystal grains of the obtained ceramics are difficult to align, and only a low value of Jc can be obtained.

この発明は上記の問題点を解決するためになされたもの
で、より高い値の臨界電流密度(Jc)を有する超電導
セラミクスを得る超電導セラミクスの異方成長法を得る
ことを目的とする。
This invention was made to solve the above problems, and aims to provide an anisotropic growth method for superconducting ceramics that yields superconducting ceramics having a higher critical current density (Jc).

〔問題点を解決するための手段〕[Means for solving problems]

この発明の超電導セラミクスの異方成長法は、酸化性雰
囲気中における熱処理により超電導性を示す原料物質を
、酸化性雰囲気中で第1熱処理し、これを粉砕して粉砕
物を得、これを酸化性雰囲気中で第2熱処理してY B
a 2 Cu3O7−δを得るものにおいて、硫酸バリ
ウムが上記第1熱処理時の原料物質および第2熱処理時
の粉砕物の内の少なくとも一方に、合計0.5重量部以
下含有されていることを特徴とするものである。
In the anisotropic growth method of superconducting ceramics of the present invention, a raw material that exhibits superconductivity by heat treatment in an oxidizing atmosphere is first heat-treated in an oxidizing atmosphere, and then pulverized to obtain a pulverized product, which is then oxidized. A second heat treatment is carried out in a positive atmosphere.
A 2 Cu3O7-δ is obtained, characterized in that barium sulfate is contained in at least one of the raw material during the first heat treatment and the pulverized material during the second heat treatment in a total of 0.5 parts by weight or less. That is.

〔作用〕[Effect]

この発明において、硫酸バリウムの含有によりセラミッ
ク結晶粒の成長方位がそろうことにより、より高いJc
値を有する超電導セラミクスが得られる。
In this invention, the growth direction of ceramic crystal grains is aligned due to the inclusion of barium sulfate, resulting in a higher Jc.
A superconducting ceramic having a high value is obtained.

〔実施例〕〔Example〕

以下この発明の実施例の超電導セラミクスの異方成長法
を、比較例および従来例と比較しながら具体的に説明す
る。
Hereinafter, the anisotropic growth method of superconducting ceramics according to an embodiment of the present invention will be specifically explained while comparing it with a comparative example and a conventional example.

原料粉末Y2O3,EllO03,OuOを各原子数比
が1:2:3になる様に秤量し、4時間アルコール中で
湿式ボールミル混合した。混合後泥しようを乾燥しライ
カイ機にて40分さらに混合し均一混合粉末を得た。そ
の後粉末を高純度アルミナの容器に入れ、950°Cに
て15時間酸化性雰囲気中で熱処理を施した後、スタン
プミルにて打砕後ライカイ機にてさらに粗粉砕をおこな
った。粗粉砕粉に対して硫酸バリウム(Halo4) 
f夫々0(従来例)、0.1(実施例1)、0.3(実
施例2)、0.5(実施例3)、0.7(比較例)重量
部添加含有させ、10時間アルコール中で湿式ボールミ
ルにて混合・粉砕をおこなった。
Raw material powders Y2O3, EllO03, and OuO were weighed so that the atomic ratio of each was 1:2:3, and mixed in a wet ball mill in alcohol for 4 hours. After mixing, the slurry was dried and further mixed for 40 minutes using a Raikai machine to obtain a uniform mixed powder. Thereafter, the powder was placed in a high-purity alumina container, heat-treated at 950°C for 15 hours in an oxidizing atmosphere, crushed in a stamp mill, and further coarsely pulverized in a Raikai machine. Barium sulfate (Halo4) for coarsely ground powder
f respectively 0 (conventional example), 0.1 (example 1), 0.3 (example 2), 0.5 (example 3), 0.7 (comparative example) and added in parts by weight for 10 hours. Mixing and pulverization were performed in alcohol using a wet ball mill.

ボールミル容器より取り出し乾燥後さらにライカイ機に
て均一に混合し、成形助剤としてのポリビニルアルコー
ル水溶液を添加混合し、顆粒状となし、直径3Ofiφ
の金型に入れ、l  /、!の圧力で加圧成形し、厚み
約1.5 Mの円板状成形品を得た。成形品を酸素雰囲
気中にて980°Cの温度で2時間熱処理を施し、外径
約24器、厚み約Inの従来例、この発明の実施例およ
び比較例による焼結体を得た。第1図〜第5図は各々、
硫酸バリウム、の添加量が0.0.1 、 0.3 、
 0.5 、 0.7重量部添加含有させ、上記のよう
にして得られた各々、従来例、実施例1.実施例2.実
施例3.比較例による円板表面のX線回折パター〉の回
折角度(横軸:2θ)に対する代表的指数面(h、に、
1)のX線相対強度比(タテ軸)を示したX線回折パタ
ーシ図であり、各図中、0内の数字は指数面を示す。
After taking it out from the ball mill container and drying it, it was further mixed uniformly in a raikai machine, and an aqueous polyvinyl alcohol solution as a molding aid was added and mixed to make it into granules, with a diameter of 3Ofiφ.
Put it in the mold of l/,! A disk-shaped molded product with a thickness of about 1.5 M was obtained by pressure molding at a pressure of . The molded products were heat-treated at a temperature of 980° C. for 2 hours in an oxygen atmosphere to obtain sintered bodies having an outer diameter of about 24 mm and a thickness of about In according to the conventional example, the example of the present invention, and the comparative example. Figures 1 to 5 are each
The amount of barium sulfate added is 0.0.1, 0.3,
0.5, 0.7 parts by weight were added and obtained as above, Conventional Example, Example 1. Example 2. Example 3. Typical index plane (h, to,
1) is an X-ray diffraction pattern diagram showing the X-ray relative intensity ratio (vertical axis), and in each figure, the numbers inside 0 indicate the index plane.

次に円板状焼結試料を長さ約15fi、巾約2nの短冊
状に加工し、長手方向にインジウム電極を付け、4端子
法にて超電導特性を測定した。表はその特性であり、抵
抗値の急激低下の始まる温度と抵抗が零になる濡面の中
間温度(Tcm)と液体窒素温度での臨界電流密度(J
c)を示す。
Next, the disc-shaped sintered sample was processed into a strip shape with a length of about 15 fi and a width of about 2 n, an indium electrode was attached in the longitudinal direction, and the superconducting properties were measured using a four-probe method. The table shows its characteristics, including the temperature at which the resistance value starts to rapidly decrease, the intermediate temperature of the wetted surface where the resistance becomes zero (Tcm), and the critical current density at the liquid nitrogen temperature (J
c).

表 第1図〜第5図より明らかな様に硫酸バリウム無添加円
板(従来例)に較べ添加した円板(実施例1〜3.比較
例)はいづれもC軸配向した指数面(oon)に係る面
のX線相対強度比が大きくなっており円板面に平行に0
面がより成長し易くなったことを示している。それに伴
いJC値も表にみる如く、無添加円板に較べ増加してい
ることが判る。しかしながら硫酸バリウム添加量が0.
7重置部(比較例)になるとその増加効果が殆んどみら
れない。従って結晶配向効果がJc内向上有効に働くの
は、05重量部以下の範囲に限定される。
As is clear from Table 1 to 5, the barium sulfate-added disks (Examples 1 to 3. Comparative example) compared to the barium sulfate-free disks (conventional example) have C-axis oriented index planes (ooon ) is large, and the relative X-ray intensity ratio of the plane related to
This indicates that the surface has become easier to grow. Accordingly, as shown in the table, it can be seen that the JC value has increased compared to the non-additive disk. However, the amount of barium sulfate added is 0.
In the case of the 7-layered portion (comparative example), the increasing effect is hardly seen. Therefore, the crystal orientation effect is effective in improving Jc only within the range of 0.5 parts by weight or less.

他の実施例として原料配合時に前以って上記実施例と同
重量の硫酸バリウムを添加した試料および、原料配合時
に、上記実施例の硫酸バリウムの重量の一部を添加し、
粉砕物に残量を含有させた試料についても同様の結果が
得られた。
Other examples include a sample in which the same weight of barium sulfate as in the above example was added in advance at the time of raw material blending, and a sample in which a part of the weight of barium sulfate in the above example was added at the time of raw material blending,
Similar results were obtained for the sample containing the residual amount in the pulverized material.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、この発明は酸化性雰囲気中におけ
る熱処理により超電導性を示す原料物質を、酸化性雰囲
気中で第1熱処理し、これを粉砕して粉砕物を得、これ
を酸化性雰囲気中で第2熱処理してY Baz 0u3
O?−δを得るものにおいて、硫酸バリウムが上記第1
熱処理時の原料物質および第2熱処理時の粉砕物の内の
少なくとも一方に、合計0.5重量部以下含有されてい
ることを特徴とする方法により、より高い臨界電流密度
(Jc)を有する超電導セラミクスの異方成長法を得る
ことができる。
As explained above, the present invention subjects a raw material that exhibits superconductivity through heat treatment in an oxidizing atmosphere to a first heat treatment in an oxidizing atmosphere, pulverizes the material to obtain a pulverized material, and pulverizes the material in an oxidizing atmosphere. After second heat treatment, Y Baz 0u3
O? -δ, barium sulfate is the first
A superconductor having a higher critical current density (Jc) is produced by a method characterized in that a total of 0.5 parts by weight or less is contained in at least one of the raw material during heat treatment and the pulverized material during second heat treatment. An anisotropic growth method for ceramics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法による円板表面のX線回折パターン図、
第2図〜第4図はこの発明の実施例による円板表面のX
線回折パター5図、第5図は比較例による円板表面のX
線回折パターン図である。
Figure 1 is an X-ray diffraction pattern diagram of the disk surface obtained by the conventional method.
Figures 2 to 4 show the X of the disk surface according to the embodiment of this invention.
Line diffraction pattern Figure 5, Figure 5 shows the X of the disk surface according to a comparative example.
It is a line diffraction pattern diagram.

Claims (1)

【特許請求の範囲】[Claims]  酸化性雰囲気中における熱処理により超電導性を示す
原料物質を、酸化性雰囲気中で第1熱処理し、これを粉
砕して粉砕物を得、これを酸化性雰囲気中で第2熱処理
してYBa_2Cu_3O_7_−_δを得るものにお
いて、硫酸バリウムが上記第1熱処理時の原料物質およ
び第2熱処理時の粉砕物の内の少なくとも一方に、合計
0.5重量部以下含有されていることを特徴とする超電
導セラミクスの異方成長法。
A raw material that exhibits superconductivity by heat treatment in an oxidizing atmosphere is subjected to a first heat treatment in an oxidizing atmosphere, pulverized to obtain a pulverized product, and then subjected to a second heat treatment in an oxidizing atmosphere to produce YBa_2Cu_3O_7_-_δ A superconducting ceramic characterized in that barium sulfate is contained in at least one of the raw material in the first heat treatment and the pulverized product in the second heat treatment in a total of 0.5 parts by weight or less. Anisotropic growth method.
JP62322167A 1987-12-17 1987-12-17 Anisotropic growth of superconducting ceramic Pending JPH01160861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322167A JPH01160861A (en) 1987-12-17 1987-12-17 Anisotropic growth of superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322167A JPH01160861A (en) 1987-12-17 1987-12-17 Anisotropic growth of superconducting ceramic

Publications (1)

Publication Number Publication Date
JPH01160861A true JPH01160861A (en) 1989-06-23

Family

ID=18140683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322167A Pending JPH01160861A (en) 1987-12-17 1987-12-17 Anisotropic growth of superconducting ceramic

Country Status (1)

Country Link
JP (1) JPH01160861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573798A2 (en) * 1992-06-10 1993-12-15 Hoechst Aktiengesellschaft Process for producing high-temperature superconductor and shaped product thereof
US5294601A (en) * 1991-07-26 1994-03-15 Hoechst Aktiengesellschaft High-temperature superconductor comprising barium sulfate, strontium sulfate or mixtures thereof and a process for its preparation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294601A (en) * 1991-07-26 1994-03-15 Hoechst Aktiengesellschaft High-temperature superconductor comprising barium sulfate, strontium sulfate or mixtures thereof and a process for its preparation
EP0573798A2 (en) * 1992-06-10 1993-12-15 Hoechst Aktiengesellschaft Process for producing high-temperature superconductor and shaped product thereof
EP0573798A3 (en) * 1992-06-10 1995-02-08 Hoechst Ag Process for producing high-temperature superconductor and shaped product thereof.

Similar Documents

Publication Publication Date Title
EP0493007B1 (en) Rare earth oxide superconducting material and process for producing the same
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPH013015A (en) Superconducting materials and their manufacturing methods
Müller et al. LaSr-manganate powders and bulk material by crystallization of a glass
JPH013061A (en) Method for manufacturing superconducting materials
Bruce et al. Size effects on the superconducting properties of polycrystalline aggregates of Ba2YCu3O7− δ cuprates
JP3314102B2 (en) Manufacturing method of oxide superconductor
KR0166708B1 (en) Fabricating method of high tc superconducting thick film
JPH03103351A (en) Preparation of bi-based oxide superconductor and wire thereof
JPH013059A (en) Method for manufacturing superconducting materials
JPH02258665A (en) Production of superconductive material
JPH02252620A (en) Production of scaly bi-based superconducting oxide powder having uniform directional property
JPH0431355A (en) Production of superconductive ceramics
JPH0259466A (en) Oxide superconducting sintered body
JPH01126262A (en) Superconducting material and its production
JPH01203257A (en) Production of superconductor
JPH04254466A (en) Production of yittrium-base superconducting bulk material
JPH09110426A (en) Production of oxide superconductor
JPH0238357A (en) Oxide superconductor
JPH0524908A (en) Production of oxide superconducting material
JPS63277551A (en) Production of superconductive material having high critical temperature
JPH03261647A (en) Production of sintered y1ba2cu3o7-x oxide superconductor
JPH02271920A (en) Production of superconductor oxide material
JPH0664921A (en) Production of oxide superconductor
JPH013053A (en) Method for manufacturing superconducting materials