JP3314102B2 - Manufacturing method of oxide superconductor - Google Patents

Manufacturing method of oxide superconductor

Info

Publication number
JP3314102B2
JP3314102B2 JP11443193A JP11443193A JP3314102B2 JP 3314102 B2 JP3314102 B2 JP 3314102B2 JP 11443193 A JP11443193 A JP 11443193A JP 11443193 A JP11443193 A JP 11443193A JP 3314102 B2 JP3314102 B2 JP 3314102B2
Authority
JP
Japan
Prior art keywords
sintered body
oxide superconductor
oxide
orientation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11443193A
Other languages
Japanese (ja)
Other versions
JPH06321621A (en
Inventor
貴之 井上
ひろみ 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11443193A priority Critical patent/JP3314102B2/en
Publication of JPH06321621A publication Critical patent/JPH06321621A/en
Application granted granted Critical
Publication of JP3314102B2 publication Critical patent/JP3314102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体の製造
方法に関し、詳細には、高密度で且つ高配向性を有する
酸化物超電導体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide superconductor, and more particularly, to a method for manufacturing an oxide superconductor having high density and high orientation.

【0002】[0002]

【従来技術】近年、超電導体として従来から用いられて
きた金属系超電導体よりも高い臨界温度Tc(抵抗がゼ
ロになる温度)を有する材料として酸化物超電導体が発
見され、その実用化が期待されている。
2. Description of the Related Art In recent years, oxide superconductors have been discovered as materials having a higher critical temperature Tc (temperature at which resistance becomes zero) than metal-based superconductors conventionally used as superconductors, and their practical use is expected. Have been.

【0003】現在、酸化物超電導体としては、主として
Y−Ba−Cu−O系(以下、Y系という)、Bi−S
r−Ca−Cu−O系(以下、Bi系という)及びTl
−Ba−Ca−Cu−O系(以下、Tl系という)の3
種が知られており、これらは液体窒素等の安価な冷却媒
体で超電導となる臨界温度を有しているため、各分野で
実用化が進められている。なお、実用化に際してはこれ
ら酸化物超電導体は臨界電流密度(抵抗ゼロにおける電
流値)が大きいことも必要とされている。このうちBi
系酸化物超電導体においてはその結晶が鱗片状粒子から
なることから、この鱗片状粒子を一方向に配向させるこ
とにより臨界電流密度を高くすることができると考えら
れている。また、焼結体としてその相対密度を高め、高
緻密化することも特性上大きな要因であると言われてい
る。
[0003] At present, oxide superconductors mainly include Y-Ba-Cu-O-based (hereinafter referred to as Y-based), Bi-S
r-Ca-Cu-O system (hereinafter referred to as Bi system) and Tl
-Ba-Ca-Cu-O type (hereinafter referred to as Tl type) 3
Species are known, and these have a critical temperature at which they become superconducting with an inexpensive cooling medium such as liquid nitrogen, so that their practical use is being promoted in various fields. For practical use, these oxide superconductors also need to have a high critical current density (current value at zero resistance). Bi of these
In the system-based oxide superconductor, since the crystal is composed of flake-like particles, it is considered that the critical current density can be increased by orienting the flake-like particles in one direction. It is also said that increasing the relative density and increasing the density of the sintered body is also a major factor in characteristics.

【0004】そこで、高密度の酸化物超電導体を作成す
る方法として、高い機械的な圧力を加えつつ加熱するホ
ットプレス法が採用されている。
[0004] Therefore, as a method of producing a high-density oxide superconductor, a hot press method of heating while applying a high mechanical pressure is employed.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、Bi
系酸化物超電導体を作成する場合、例えば仮焼粉末をホ
ットプレス焼成すると緻密化自体は進行しそれなりの効
果があるが、粒子の配向化の点からは不十分であるため
に、得られる焼結体のJc値もせいぜい1000A/c
2 以下であり、実用的レベルには到底達していないの
が現状であった。
[Problems to be solved by the invention] However, Bi
In the case of producing a system-based oxide superconductor, for example, when calcined powder is hot-pressed, densification itself proceeds and has a certain effect, but the resulting calcined powder is insufficient in terms of particle orientation. The Jc value of the aggregate is at most 1000A / c
m 2 or less, the practically level not hardly reached was present.

【0006】[0006]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して先に仮焼粉末を常圧で成形、焼成した後、
該焼結体に圧力を加えつつ加熱処理を行う、いわゆるホ
ットフォージング処理を行うことによって、高配向、高
密度でJc値が1500〜4500A/cm2 程度の優
れた酸化物超電導体が得られ、このホットフォ−ジング
処理は繰り返し行うことによって、さらに焼結体の密度
および配向度を高めることが可能であることを提案した
が、さらに高いJc値が得られる方法について検討した
ところ、このホットフォージング処理中に溶融あるいは
部分溶融させることにより、粒子内の原子が一方向加圧
下で加圧方向に垂直な方向に拡散するため、変形量が増
加するとともに加圧面に対し粒子のアスペクト比が大き
くなるため配向度が向上し、均一な組織で高いJc値を
有する酸化物超電導体が得られることを知見した。
Means for Solving the Problems The present inventors have solved the above problems by first forming and calcining the calcined powder at normal pressure.
By performing a so-called hot forging treatment in which a heat treatment is performed while applying pressure to the sintered body, an excellent oxide superconductor having a high orientation, a high density and a Jc value of about 1500 to 4500 A / cm 2 can be obtained. It has been proposed that the density and the degree of orientation of the sintered body can be further increased by repeatedly performing the hot forging treatment. However, when a method for obtaining a higher Jc value was examined, the hot forging was examined. By melting or partially melting during the zing process, the atoms in the particles diffuse in the direction perpendicular to the pressing direction under one-way pressing, increasing the amount of deformation and increasing the aspect ratio of the particles to the pressing surface Therefore, it was found that the degree of orientation was improved, and an oxide superconductor having a uniform structure and a high Jc value was obtained.

【0007】即ち、本発明は、Bi系酸化物超電導体を
構成する元素の酸化物あるいは酸化物形成化合物からな
る混合体を成形するか、あるいは該混合体を仮焼した後
に成形する。その後に該成形体を一旦酸化性雰囲気中で
焼成し、該焼結体をホットフォージング処理する時に
70〜1150℃の温度に加熱して溶融あるいは部分溶
融させることを特徴とするものである。
That is, in the present invention, a mixture comprising an oxide or an oxide-forming compound of an element constituting the Bi-based oxide superconductor is molded, or the mixture is calcined and then molded. 8 when subsequently fired in a once-oxidizing atmosphere molded article, hot forging process the sintered body
It is characterized by being heated to a temperature of 70 to 1150 ° C. to be melted or partially melted.

【0008】以下、本発明の酸化物超電導体の製造方法
における工程(a)〜(c)について個々に説明する。 調合成形工程(a) 酸化物超電導体を構成する金属の酸化物粉末あるいは焼
成により酸化物を形成しうる炭酸塩や硝酸塩粉末等を用
いてこれらを酸化物超電導体を形成しうる割合に秤量混
合する。具体的には前述したBi系酸化物超電導体を作
成する場合には、Bi2 3 、SrO、CaCO3 、C
uOの各粉末を用いてこれらを原子比においてSrを2
としたとき、Biが1.8〜2.3、Caが1. 0〜
3.5、Cuが2.0〜4.5の範囲になるように秤量
する。また、高Tc相の生成させることを目的として上
記の混合体にさらにPbO粉末、およびK2 CO3 、N
2CO3 、Li2 CO2 等をSrを2としてPbを
0.1〜0.5、K、Li、Naを0.05〜0.6の
割合で混合することができる。
Hereinafter, steps (a) to (c) in the method for producing an oxide superconductor of the present invention will be individually described. Preparation process (a) Using an oxide powder of a metal constituting the oxide superconductor or a carbonate or nitrate powder capable of forming an oxide by firing, weighing and mixing them in such a ratio that an oxide superconductor can be formed. I do. Specifically, when preparing the above-mentioned Bi-based oxide superconductor, Bi 2 O 3 , SrO, CaCO 3 , C
Using each powder of uO, these were converted to Sr at an atomic ratio of 2
When Bi is 1.8 to 2.3, Ca is 1.0 to 1.0.
3.5 Weigh so that Cu is in the range of 2.0 to 4.5. Further, for the purpose of generating a high Tc phase, PbO powder, K 2 CO 3 , N
a 2 CO 3, Li 2 0.1~0.5 the Pb CO 2 such as 2 Sr, K, Li, and Na can be mixed at a ratio of 0.05 to 0.6.

【0009】上記のようにして得られた混合粉末を公知
の成形手段によって成形する。また、所望によっては上
記の混合粉末を700〜850℃の酸化性雰囲気中で1
〜30時間程度仮焼後、粉砕し同様に成形する。なお、
成形方法としてはプレス成形、押出成形、ドクターブレ
ード成形法等が採用される。
The mixed powder obtained as described above is molded by a known molding means. If desired, the above mixed powder is placed in an oxidizing atmosphere at 700 to 850 ° C. for 1 hour.
After calcination for about 30 hours, pulverize and mold similarly. In addition,
Press molding, extrusion molding, doctor blade molding, or the like is employed as a molding method.

【0010】焼成工程(b) 次に、上記のようにして得られた成形体を840〜85
5℃の酸化性雰囲気中で5〜200時間程度焼成する。
この焼成を非加圧で行うと鱗片状の結晶の成長により低
密度の焼結体となるために、ホットプレス焼成を行って
もよい。この焼成工程終了時点では、焼結体の鱗片状結
晶はほとんど無配向状態である。
Firing step (b) Next, the compact obtained as described above is
It is baked for about 5 to 200 hours in an oxidizing atmosphere at 5 ° C.
If this sintering is performed under no pressure, a low-density sintered body is formed due to the growth of the scale-like crystals, so that hot-press sintering may be performed. At the end of the firing step, the scaly crystals of the sintered body are almost non-oriented.

【0011】ホットフォージング処理工程(c) 次に、上記の焼結体をホットフォージング処理する。こ
のホットフォージング処理は、図1に示すように、焼結
体1をプレスパンチ2,3により方向Aに圧力を付加す
ると同時に適当な加熱手段(図示せず)で加熱する。ホ
ットプレス法とは、図1において焼結体1の水平方向が
開放されている点で異なり、このように水平方向が開放
されていることにより焼結体の変形の自由度を高められ
る。
Hot Forging Step (c) Next, the above sintered body is subjected to hot forging processing. In this hot forging treatment, as shown in FIG. 1, the sintered body 1 is heated by a suitable heating means (not shown) while applying pressure in the direction A by press punches 2 and 3. The hot press method differs from the hot press method in that the horizontal direction of the sintered body 1 is open in FIG. 1, and the degree of freedom of deformation of the sintered body can be increased by opening the horizontal direction in this way.

【0012】本発明によれば、この時の焼結体が部分溶
融あるいは溶融するような条件で処理することが重要で
ある。部分溶融あるいは溶融はBi系酸化物超電導体作
製においては、870〜1150℃の温度で5分〜4時
間行えばよく、その後徐冷し結晶化させ、800〜86
0℃で0〜10時間保持させる。この時の圧力は50k
g/cm2以上とし、雰囲気は、大気中等の酸化性雰囲
気であることが望ましい。
According to the present invention, it is important to treat the sintered body under such conditions that the sintered body is partially melted or melted. The partial melting or melting may be performed at a temperature of 870 to 1150 ° C. for 5 minutes to 4 hours in the production of a Bi-based oxide superconductor, and then slowly cooled to crystallize.
Hold at 0 ° C. for 0-10 hours. The pressure at this time is 50k
g / cm 2 or more, and the atmosphere is preferably an oxidizing atmosphere such as in the air.

【0013】また、ホットフォージング処理に際しては
図1において焼結体1とプレスパンチ2,3との間に銀
や金、銅等の延性金属板を介して圧力を付加すると、粒
子の移動性が高まることによってさらに配向性を高める
ことができる。
In the hot forging treatment, when pressure is applied between the sintered body 1 and the press punches 2 and 3 through a ductile metal plate such as silver, gold or copper in FIG. , The orientation can be further enhanced.

【0014】[0014]

【作用】溶融を伴わない従来のホットフォージング処理
では、粒子の滑りにより配向が進行するが、同時に粒子
の破壊が起こるために配向度はある程度しか進まなくな
ってしまう。これに対して本発明の構成によれば、焼成
工程(b)によって得られた焼結体に対してホットフォ
ージング処理中に部分溶融あるいは溶融させる過程を含
むことが最も重要である。焼成工程(b)によって生成
された鱗片状の結晶粒子が加圧下で部分溶融あるいは溶
融した後に再結晶化される過程で、一旦破壊された鱗片
状粒子が原子の拡散によって変形し、加圧面に対しアス
ペクト比が大きい粒子に変換されるために加圧面に対す
る配向性が高まり、それと同時に緻密化が進行して粒子
同士の接触面積が増大するために密度および配向度がさ
らに向上する。これにより酸化物超電導体の臨界電流密
度を飛躍的に高めることができるのである。
In the conventional hot forging treatment without melting, the orientation advances due to the sliding of the particles, but at the same time, the degree of the orientation advances only to some extent because the particles are destroyed. On the other hand, according to the configuration of the present invention, it is most important to include a step of partially melting or melting the sintered body obtained in the firing step (b) during the hot forging treatment. In the process in which the scaly crystal particles generated in the firing step (b) are partially melted or melted under pressure and then recrystallized, the once broken scaly particles are deformed by the diffusion of atoms and become On the other hand, since the particles are converted into particles having a large aspect ratio, the orientation with respect to the pressurized surface increases, and at the same time, the densification proceeds and the contact area between the particles increases, thereby further improving the density and the degree of orientation. As a result, the critical current density of the oxide superconductor can be dramatically increased.

【0015】[0015]

【実施例】【Example】

実施例1 (a)原料粉末としてBi2 3 、SrCO3 、CaC
3 、CuOの各粉末を各金属のモル比がBi:Sr:
Ca:Cu=2.22:2:1.11:2.22となる
ように秤量後、750〜810℃で24時間仮焼し、粉
砕して平均粒径5μm の仮焼粉末を得た。この仮焼粉末
をφ12mmの金型を用いて成形圧1ton/cm2
成形して厚み約4mmの円板状成形体を得た。
Example 1 (a) Bi 2 O 3 , SrCO 3 , CaC
The powders of O 3 and CuO are mixed at a molar ratio of Bi: Sr:
After weighing Ca: Cu = 2.22: 2: 1.11: 2.22, the mixture was calcined at 750 to 810 ° C. for 24 hours and pulverized to obtain a calcined powder having an average particle size of 5 μm. This calcined powder was molded at a molding pressure of 1 ton / cm 2 using a mold having a diameter of 12 mm to obtain a disk-shaped compact having a thickness of about 4 mm.

【0016】(b)上記成形体を大気中で850℃の温
度で20時間焼成したところ、比重2.0(アルキメデ
ス法に基づく)の焼結体が得られた。また、組織観察し
たところ、鱗片状の結晶がランダムに配列していた。
(B) The compact was fired in the air at a temperature of 850 ° C. for 20 hours to obtain a sintered body having a specific gravity of 2.0 (based on the Archimedes method). When the structure was observed, scaly crystals were randomly arranged.

【0017】(c)次に、この焼結体を図1に従い、1
ton/cm2 の圧力付与下で870℃まで上昇させて
焼結体の一部溶融させた後、8時間かけて845℃まで
徐冷し、この温度で1時間保持し冷却した(試料No.
1)。
(C) Next, according to FIG.
After raising the temperature to 870 ° C. under a pressure of ton / cm 2 to partially melt the sintered body, the temperature was gradually cooled to 845 ° C. over 8 hours, and the temperature was maintained for 1 hour and cooled (Sample No.
1).

【0018】また、(c)における他の条件として1t
on/cm2 の圧力付与下で870℃まで上昇させて焼
結体の一部溶融させた後、4時間かけて845℃まで徐
冷し、この温度で1時間保持し冷却した(試料No.
2)。
As another condition in (c), 1t
After raising the temperature to 870 ° C. under a pressure of on / cm 2 to partially melt the sintered body, the temperature was gradually cooled to 845 ° C. over 4 hours, and the temperature was maintained for 1 hour and cooled (Sample No.
2).

【0019】さらに(c)における他の条件として1t
on/cm2 の圧力付与下で900℃まで上昇させて焼
結体を溶融させた後、8時間かけて845℃まで徐冷
し、この温度で1時間保持し冷却した(試料No.3)。
Further, as another condition in (c), 1t
After the sintered body was melted by raising the temperature to 900 ° C. under a pressure of on / cm 2 , it was gradually cooled to 845 ° C. over 8 hours, kept at this temperature for 1 hour, and cooled (Sample No. 3). .

【0020】得られた各焼結体に対してアルキメデス法
により比重を調べるととにX線回折を測定し、X線回折
のチャートデータに基づき、下記の数1
The specific gravity of each of the obtained sintered bodies was measured by the Archimedes method, X-ray diffraction was measured, and based on the X-ray diffraction chart data,

【0021】[0021]

【数1】 (Equation 1)

【0022】から(001)面の配向度fを求めた。Then, the orientation degree f of the (001) plane was determined.

【0023】さらに、上記焼結体について、抵抗法に基
づき、試料を液体窒素中で電流を徐々に高め、高圧端子
に1μV/cmの電圧が生じた時の電流値を臨界電流密
度Jc(77K,0T)として求め、同時に臨界温度T
cも測定した。結果は表1に示した。
Further, with respect to the above sintered body, the current was gradually increased in liquid nitrogen based on the resistance method, and the current value when a voltage of 1 μV / cm was generated at the high voltage terminal was changed to the critical current density Jc (77K). , 0T) and at the same time the critical temperature T
c was also measured. The results are shown in Table 1.

【0024】比較例1 実施例1に記載した(a)(b)にて作製した焼結体を
1ton/cm2 の圧力下で840℃で10時間ホット
フォージング処理して焼結体を得た(試料No.4)。
Comparative Example 1 The sintered body prepared in (a) and (b) described in Example 1 was subjected to hot forging at 840 ° C. for 10 hours under a pressure of 1 ton / cm 2 to obtain a sintered body. (Sample No. 4).

【0025】さらに、実施例1に記載した(a)(b)
にて作製した焼結体を1ton/cm2 の圧力下で85
0℃で10時間ホットフォージング処理して焼結体を得
た(試料No.5)。
Further, (a) and (b) described in Example 1
Under the pressure of 1 ton / cm 2 for 85
A hot forging treatment was performed at 0 ° C. for 10 hours to obtain a sintered body (Sample No. 5).

【0026】得られた各焼結体に対して、実施例1と同
様に特性の評価を行った。結果は表1に示した。
The characteristics of each of the obtained sintered bodies were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1から明らかなように本発明試料No.1
乃至No.3と、比較試料No.4およびNo.5との比較に
おいてホットフォージング処理中に部分溶融あるいは溶
融させることにより配向性を高めるとともに臨界電流密
度、臨界温度を高めることができた。
As is clear from Table 1, the sample No. 1 of the present invention
No. 3 to Comparative Samples No. 4 and No. 5, partial orientation or melting during the hot forging treatment increased the orientation and the critical current density and the critical temperature.

【0029】[0029]

【発明の効果】以上、詳述した通り、本発明の方法によ
れば、Bi−Sr−Ca−Cu−O系酸化物超電導体の
作成に際して、焼結体をホットフォージング処理中に部
分溶融あるいは溶融させることにより、焼結体の結晶粒
子の配向度を高めるとともに高密度化が達成できるため
に高配向性を有し、且つ臨界電流密度が極めて高い酸化
物超電導体を安定して得ることができる。
As described in detail above, according to the method of the present invention, when producing a Bi-Sr-Ca-Cu-O-based oxide superconductor, the sintered body is partially melted during hot forging. Alternatively, by melting, it is possible to increase the degree of orientation of the crystal grains of the sintered body and to achieve high density, thereby obtaining an oxide superconductor having high orientation and an extremely high critical current density in a stable manner. Can be.

【0030】このように、臨界電流密度の高い酸化物超
電導体が得られることにより酸化物超電導体の実用化を
さらに進めることができる。
As described above, by obtaining an oxide superconductor having a high critical current density, the practical use of the oxide superconductor can be further promoted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の酸化物超電導体の製造方法におけるホ
ットフォージング処理を説明するための図である。
FIG. 1 is a diagram for explaining a hot forging process in a method for manufacturing an oxide superconductor according to the present invention.

【符号の説明】[Explanation of symbols]

1 焼結体 2,3 プレスパンチ 1 Sintered body 2, 3 Press punch

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Bi系酸化物超電導体を構成する元素の酸
化物あるいは酸化物形成化合物からなる混合体を成形す
るか、あるいは該混合体を仮焼後成形する工程と、該成
形体を酸化性雰囲気中で焼成する工程と、得られた焼結
体を加圧中に870〜1150℃の部分溶融あるいは溶
融する条件にて熱処理する工程と、を具備することを特
徴とする酸化物超電導体の製造方法。
1. A step of molding a mixture comprising an oxide or an oxide-forming compound of an element constituting the Bi-based oxide superconductor, or a step of calcining the mixture, followed by oxidizing the molded article. An oxide superconductor comprising: a step of firing in a neutral atmosphere; and a step of heat-treating the obtained sintered body under a condition of partially melting or melting at 870 to 1150 ° C. during pressurization. Manufacturing method.
JP11443193A 1993-05-17 1993-05-17 Manufacturing method of oxide superconductor Expired - Fee Related JP3314102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11443193A JP3314102B2 (en) 1993-05-17 1993-05-17 Manufacturing method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11443193A JP3314102B2 (en) 1993-05-17 1993-05-17 Manufacturing method of oxide superconductor

Publications (2)

Publication Number Publication Date
JPH06321621A JPH06321621A (en) 1994-11-22
JP3314102B2 true JP3314102B2 (en) 2002-08-12

Family

ID=14637549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11443193A Expired - Fee Related JP3314102B2 (en) 1993-05-17 1993-05-17 Manufacturing method of oxide superconductor

Country Status (1)

Country Link
JP (1) JP3314102B2 (en)

Also Published As

Publication number Publication date
JPH06321621A (en) 1994-11-22

Similar Documents

Publication Publication Date Title
KR970007765B1 (en) Superconducting wire and method of manufacturing the same
JP3314102B2 (en) Manufacturing method of oxide superconductor
US5108985A (en) Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof
JP2969220B2 (en) Manufacturing method of oxide superconductor
JP3164640B2 (en) Manufacturing method of oxide superconductor
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPH06263520A (en) Production of oxide superconductor
JP2866484B2 (en) Manufacturing method of oxide superconductor
JPH07232960A (en) Production of oxide superconductor
JP2803823B2 (en) Method for producing T1-based oxide superconductor
EP0500966B1 (en) Oxide superconductor and method of manufacturing said superconductor
JP2791408B2 (en) Method for manufacturing high-density and highly-oriented oxide superconductor
JP3285646B2 (en) Manufacturing method of oxide superconducting structure
JP3285636B2 (en) Manufacturing method of oxide superconductor
JP3568657B2 (en) Manufacturing method of oxide superconductor
JP2821568B2 (en) Method for producing superconducting whisker composite
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JPH07242424A (en) Oxide superconducting structure and production thereof
JPH0238359A (en) Production of superconductor
JP2556545B2 (en) Method for manufacturing oxide superconducting wire
JPH05135635A (en) Manufacture of oxide superconductive wire
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPH03201320A (en) Manufacture of bismuth oxide superconductor
JPH054803A (en) Production of oxide superconductive structure
JPH05135634A (en) Manufacture of oxide superconductive wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees