JP2556545B2 - Method for manufacturing oxide superconducting wire - Google Patents

Method for manufacturing oxide superconducting wire

Info

Publication number
JP2556545B2
JP2556545B2 JP63053155A JP5315588A JP2556545B2 JP 2556545 B2 JP2556545 B2 JP 2556545B2 JP 63053155 A JP63053155 A JP 63053155A JP 5315588 A JP5315588 A JP 5315588A JP 2556545 B2 JP2556545 B2 JP 2556545B2
Authority
JP
Japan
Prior art keywords
linear body
cooling
furnace
superconducting wire
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63053155A
Other languages
Japanese (ja)
Other versions
JPH01227310A (en
Inventor
祐行 菊地
靖三 田中
築志 原
潔夫 三井
小川  潔
純隆 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Tohoku Electric Power Co Inc
Tokyo Electric Power Company Holdings Inc
Original Assignee
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Furukawa Electric Co Ltd, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc filed Critical Electric Power Development Co Ltd
Priority to JP63053155A priority Critical patent/JP2556545B2/en
Publication of JPH01227310A publication Critical patent/JPH01227310A/en
Application granted granted Critical
Publication of JP2556545B2 publication Critical patent/JP2556545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電力ケーブル、マグネット、電力貯蔵リンク
又は磁気シールド等に用いられる酸化物超電導線材の製
造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an oxide superconducting wire used for a power cable, a magnet, a power storage link, a magnetic shield, or the like.

〔従来の技術及びその課題〕[Conventional technology and its problems]

近年、(Ln1-XSrX)CuO4、(Ln1-XBaX2CuO4、LnBa2
Cu3O7、LnBa2-XSrXCu3O7等(但し、LnはY、Sc又は希土
類元素)の層状ペロブスカイト型構造の酸化物超電導体
が見出されている。
In recent years, (Ln 1-X Sr X ) CuO 4 , (Ln 1-X Ba X ) 2 CuO 4 , LnBa 2
An oxide superconductor having a layered perovskite structure, such as Cu 3 O 7 , LnBa 2 -X Sr X Cu 3 O 7 (where Ln is Y, Sc or a rare earth element), has been found.

これらの酸化物超電導体は、液体N2温度以上で超電導
となるため従来の液体He温度で超電導を示す金属超電導
体に較べて格段に経済的であり、各分野での利用が検討
されている。
These oxide superconductors become superconducting at liquid N 2 temperature or higher, so they are much more economical than conventional metal superconductors that exhibit superconductivity at liquid He temperature, and their use in various fields is being studied. .

ところで上記の酸化物超電導体は脆いため金属材料の
ように塑性加工ができず、これらを線材等に加工するに
は、主に粉末冶金法が用いられている。
By the way, since the above oxide superconductors are brittle, they cannot be plastically processed like metal materials, and powder metallurgy is mainly used for processing these into wire rods and the like.

上記のような粉末冶金法に用いられる原料粉末は、Y
−Ba−Cu−O系の超電導体に例をとると、その原料はY2
O3、BaCO3、CuOのような化合物で、これを酸化物超電導
成形体に加工するには、上記化合物をY:Ba:Cuが1:2:3に
なるように混合したのち、この混合粉を酸素雰囲気中で
850〜1,000℃に加熱して仮焼成し、この仮焼成体をボー
ルミル等で粉砕し分級して仮焼粉に加工し、更にこの仮
焼粉を所望の形状に成形したのち、これを酸素含有雰囲
気中で焼結する方法により行われている。
The raw material powder used in the powder metallurgy method as described above is Y
Taking a Ba-Cu-O-based superconductor as an example, the raw material is Y 2
Compounds such as O 3 , BaCO 3 and CuO can be processed into oxide superconducting compacts by mixing the above compounds so that Y: Ba: Cu becomes 1: 2: 3, and then mixing this mixture. Powder in oxygen atmosphere
It is heated to 850-1,000 ℃ and calcined, and this calcined product is crushed with a ball mill etc., classified and processed into calcined powder, and this calcined powder is molded into a desired shape, which is then oxygen-containing. It is performed by a method of sintering in an atmosphere.

ところで上記のような酸化物超電導体の結晶構造は、
第3図にYBa2Cu3O7-δ(δ≒0.1〜0.3)の超電導体につ
いて例示したように立方体の中心にCu等の遷移元素イオ
ン、角隅にBa、Y等の半径の大きな活性金属イオン、そ
して面心に酸素が配置されたものである。このような結
晶構造からなる酸化物超電導体は、中心の遷移元素イオ
ンの電子雲が球対称でない為、電気的に結晶異方性が強
く、磁界電流がC軸方向に小さく、C軸に垂直な面即
ち、a、b軸を含む面に平行な方向に大きい値を示すも
のである。
By the way, the crystal structure of the above oxide superconductor is
As shown in Fig. 3 for YBa 2 Cu 3 O 7- δ (δ ≈ 0.1 to 0.3) superconductors, transition element ions such as Cu are present in the center of the cube, and Ba, Y, etc. with large radii of activity in the corners. It is a metal ion, and oxygen is arranged face to face. In the oxide superconductor having such a crystal structure, since the electron cloud of the transition element ion at the center is not spherically symmetric, the crystal anisotropy is electrically strong, the magnetic field current is small in the C-axis direction, and the perpendicular to the C-axis. A large value is shown in the direction parallel to the normal surface, that is, the surface including the a and b axes.

しかるに従来の酸化物超電導成形体の製造方法にあっ
ては、成形体を構成する超電導体の結晶粒はランダムに
配向しており、特に通電方向に高い臨界電流が得られる
ような結晶配向になっていない為、臨界電流密度(以下
Jcと略記)の低い酸化物超電導成形体しか得られないと
いう問題があった。
However, in the conventional method for producing a molded oxide superconducting body, the crystal grains of the superconductor forming the molded body are randomly oriented, and the crystal orientation is such that a high critical current is obtained particularly in the energizing direction. Critical current density (below
There is a problem that only an oxide superconducting compact having a low J c ) can be obtained.

〔課題を解決するための手段〕[Means for solving the problem]

本発明はかかる状況に鑑み鋭意研究を行った結果、所
定温度での加熱処理後の冷却条件が、得られる超電導体
の超電導特性に大きく影響を及ぼすことを突きとめ、こ
の点について更に研究を行った結果本発明方法を達成し
得たものである。
As a result of earnest research in view of such circumstances, the present invention has found that the cooling condition after the heat treatment at a predetermined temperature has a great influence on the superconducting properties of the obtained superconductor, and further research is conducted on this point. As a result, the method of the present invention can be achieved.

即ち本発明は酸化物超電導体の原料粉体を所望形状の
線状体に成形したのち、この線状体を酸素含有雰囲気中
で所定の温度で加熱し、次いで冷却するにあたり、上記
線状体を線状体の長手方向の冷却温度勾配が10℃/cm以
上、冷却速度が5℃/min以下の冷却条件にて冷却するこ
とを特徴とするものである。
That is, according to the present invention, after the raw material powder of the oxide superconductor is formed into a linear body having a desired shape, the linear body is heated at a predetermined temperature in an oxygen-containing atmosphere and then cooled. Is cooled under a cooling condition in which the cooling temperature gradient in the longitudinal direction of the linear body is 10 ° C./cm or more and the cooling rate is 5 ° C./min or less.

本発明において酸化物超電導体の原料粉体を所望形状
の線状体となした線状体に酸素含有雰囲気中で所定の温
度での加熱処理を施すのは、原料粉末を焼結し、又結晶
中の酸素量を調整するためであり、次いでこれを10℃/c
m以上の温度勾配で且つ5℃/min以下の冷却速度で冷却
するのは、酸化物超電導体結晶の導電性の高いa、b軸
を含む面を上記線状体の長手方向に配向させるためであ
り、10℃/cm未満の温度勾配ではその効果が十分に発現
しない。又5℃/min以下の速度で徐冷するのは、上記配
向を時間をかけて十分に行わせるとともに、結晶構造を
正方晶から超電導体となる斜方晶に変換するためであ
る。
In the present invention, the raw material powder of the oxide superconductor is subjected to heat treatment at a predetermined temperature in an oxygen-containing atmosphere to a linear body having a desired shape, by sintering the raw material powder, or This is to adjust the amount of oxygen in the crystal, which is then performed at 10 ° C / c.
Cooling at a temperature gradient of m or more and at a cooling rate of 5 ° C./min or less is necessary for orienting the highly conductive surface of the oxide superconductor crystal including the a and b axes in the longitudinal direction of the linear body. That is, the effect is not sufficiently exhibited with a temperature gradient of less than 10 ° C./cm. Further, the reason for slow cooling at a rate of 5 ° C./min or less is to allow the above orientation to be sufficiently performed over time and to convert the crystal structure from a tetragonal crystal to an orthorhombic crystal that becomes a superconductor.

本発明において冷却温度勾配を10℃/cm以上に大きく
とることにより酸化物超電導体の導電性の高いa、b軸
を含む結晶面が線状体の長手方向に配向する理由は、冷
却時に線状体の長手方向に熱応力が強く働き、軸比の小
さいa、b軸を含む面が長手方向に配向することによっ
て上記応力が緩和されるためと考えられる。
In the present invention, the reason why the crystal plane including the highly conductive a and b axes of the oxide superconductor is oriented in the longitudinal direction of the linear body by increasing the cooling temperature gradient to 10 ° C./cm or more is that the line during cooling is linear. It is considered that thermal stress strongly acts in the longitudinal direction of the sheet and the stress is relaxed by orienting the plane including the a and b axes having a small axial ratio in the longitudinal direction.

又上記の配向性は線状体の温度が高い程強く現れるの
で、加熱温度を固液共存温度にまで上げることが好まし
い。
Further, since the above-mentioned orientation becomes stronger as the temperature of the linear body becomes higher, it is preferable to raise the heating temperature to the solid-liquid coexisting temperature.

本発明において酸化物超電導原料粉体には例えばY
2O3、BaCO3、CuO等の酸化物超電導体となし得る原料化
合物を所定の配合比で混合しこれを850〜1,000℃に加熱
して仮焼成し、この仮焼体を粉砕し分級して得られる仮
焼粉が用いられる。
In the present invention, the oxide superconducting raw material powder contains, for example, Y
2 O 3 , BaCO 3 , CuO, and other raw material compounds that can be oxide superconductors are mixed in a prescribed mixing ratio, and this is heated to 850 to 1,000 ° C. and calcined, and the calcined body is crushed and classified. The calcined powder obtained by the above is used.

上記原料粉体を線状体に成形する方法としては、Ag、
Cu又はこれらの合金のパイプに上記原料粉体を充填して
伸延加工する方法、又は上記原料粉体の周囲にコンフォ
ーム法により上記金属又は合金を被覆成形する方法、又
は原料粉体をペースト状にして金属基体上にコーティン
グする方法、又は上記原料粉体を溶融しこの溶融体を上
記金属基体上に付着させる方法等が適用される。
As a method of forming the raw material powder into a linear body, Ag,
A method of filling the raw material powder into a pipe of Cu or an alloy thereof and performing a stretching process, or a method of coating the metal or alloy around the raw material powder by a conform method, or a raw material powder in a paste form Then, a method of coating on a metal substrate or a method of melting the raw material powder and depositing the melt on the metal substrate is applied.

上記の金属基体にはSUS、ハステロイ合金、Pt等の高
温で酸化スケールを発生しない金属又は合金材が適した
ものである。
For the above-mentioned metal substrate, a metal or alloy material that does not generate oxide scale at high temperatures, such as SUS, Hastelloy alloy, and Pt, is suitable.

本発明において酸素雰囲気中で原料粉末を成形してな
る線状体を加熱する所定温度は900℃未満では、その後
の本発明で定めた冷却条件の冷却工程において目的とす
る結晶配向性が十分に発現されず、又1,200℃を超える
と冷却過程においてY2BaCuO5等他の化合物が多量に生成
し超電導特性が低下する。
In the present invention, the predetermined temperature for heating the linear body formed by molding the raw material powder in the oxygen atmosphere is less than 900 ° C., and the desired crystal orientation in the subsequent cooling step of the cooling conditions defined in the present invention is sufficient. If it is not expressed, and if it exceeds 1,200 ° C, a large amount of other compounds such as Y 2 BaCuO 5 are generated in the cooling process, and the superconducting property is deteriorated.

本発明において5℃/min以下の冷却速度で徐冷しなが
ら、10℃/cm以上の大きい冷却温度勾配がとれる加熱炉
としては例えば第1図イに示したような構造の炉が用い
られる。
In the present invention, as the heating furnace capable of gradually cooling at a cooling rate of 5 ° C./min or less and having a large cooling temperature gradient of 10 ° C./cm or more, for example, a furnace having a structure shown in FIG. 1A is used.

即ち第1図イに示した炉は電気抵抗式加熱炉で、線状
体1を所定温度に急速に加熱するため炉の入側外壁を断
熱材2でカバーし、又発熱体3は炉の入側から中央にか
けて密に又中央から出側に向けて次第に粗に配置されて
大きい温度勾配と徐冷とが可能な構造になっている。又
炉の中央部分に反射板4が設けてあり冷却開始直前での
加熱を助長して冷却初期から高い温度勾配がとれるよう
な構造になっている。
That is, the furnace shown in FIG. 1A is an electric resistance type heating furnace, and in order to rapidly heat the linear body 1 to a predetermined temperature, the outer wall on the inlet side of the furnace is covered with a heat insulating material 2, and the heating element 3 is a furnace. The structure is densely arranged from the inlet side to the center and gradually coarsely arranged from the center to the outlet side so that a large temperature gradient and gradual cooling are possible. Further, a reflecting plate 4 is provided in the central portion of the furnace so as to promote heating immediately before the start of cooling and to obtain a high temperature gradient from the beginning of cooling.

同図ロに上記の電気抵抗式加熱炉内に線状体を走行さ
せたときの線状体の温度履歴を示した。線状体は炉に入
ったのち急速に所定温度に所定温度T1に昇温し、その後
一定の温度勾配で降温していることが判る。
FIG. 8B shows the temperature history of the linear body when the linear body was run in the electric resistance heating furnace. It can be seen that after the linear body enters the furnace, the linear body is rapidly heated to a predetermined temperature to a predetermined temperature T 1 and then cooled at a constant temperature gradient.

第2図イは誘導加熱炉の構造説明図で、この加熱炉は
線状体1を誘導コイル5内に走行させて加熱するもの
で、炉の出入口側壁に断熱材2を張って炉の保温性を高
め、又炉内の入口近傍に反射板4を置いて急速加熱を促
進せしめ、更に炉の出口外側にガスノズル6を配置して
N2、フレオン等のガスを線状体1に吹きつけて冷却温度
勾配が大きくとれるようにした構造のもので、この構造
の加熱炉は炉長を短くすることができる。
FIG. 2 (a) is a structural explanatory view of an induction heating furnace, in which the linear body 1 is run in an induction coil 5 for heating, and a heat insulating material 2 is stretched on the inlet / outlet side wall of the furnace to keep the furnace warm. To improve rapidity and accelerate the rapid heating by placing the reflector 4 near the inlet of the furnace, and further disposing the gas nozzle 6 outside the outlet of the furnace.
It has a structure in which a gas such as N 2 or Freon is blown onto the linear body 1 so that a large cooling temperature gradient can be obtained. The heating furnace of this structure can shorten the furnace length.

同図ロに上記加熱炉による線状体の温度履歴を示した
が線状体は急激に所定温度T1に到達し、又冷却にあたっ
ては極めて大きい冷却温度勾配が得られている。
FIG. 2B shows the temperature history of the linear body by the heating furnace. The linear body rapidly reaches the predetermined temperature T 1 , and an extremely large cooling temperature gradient is obtained during cooling.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be described in detail below with reference to examples.

実施例1 Y2O3、BaCO3、CuOをY:Ba:Cuがモル比で1:2:3になるよ
うに配合し混合したのち、これを大気中で920℃20H加熱
し、次いでこれをボールミルで粉砕してY1Ba2Cu3Oxの仮
焼粉となし、この仮焼粉を外径6mm、内径4mmのPdパイプ
に詰め、次いでこれを延伸加工して0.5mmφの線状体に
成形した。
Example 1 Y 2 O 3 , BaCO 3 and CuO were mixed and mixed so that the molar ratio of Y: Ba: Cu was 1: 2: 3, which was then heated in the atmosphere at 920 ° C. for 20 hours and then heated. Is crushed with a ball mill into a Y 1 Ba 2 Cu 3 O x calcined powder, which is packed into a Pd pipe with an outer diameter of 6 mm and an inner diameter of 4 mm, which is then stretched to form a 0.5 mmφ linear wire. Molded into a body.

而して得た上記線状体を第1又は2図に示した加熱炉
内を走行させ大気中で種々条件で加熱処理を施し酸化物
超電導線材となした。
The linear body thus obtained was run in the heating furnace shown in FIG. 1 or 2 and heat-treated under various conditions in the atmosphere to obtain an oxide superconducting wire.

実施例2 実施例1で用いたと同じ仮焼粉を1,350℃に加熱して
溶融し、この溶融体中に0.5mmφのPt線を走行させてY1B
a2Cu3Oxの凝固体を10μm厚さに付着させて線状体に成
形した。而して得た上記線状体を第1又は2図に示した
加熱炉中を走行させて種々条件で加熱処理を施し酸化物
超電導線材となした。
Example 2 The same calcined powder used in Example 1 was heated to 1,350 ° C. to be melted, and a Pt wire of 0.5 mmφ was run in this melt to produce Y 1 B.
A solidified body of a 2 Cu 3 O x was adhered to a thickness of 10 μm to form a linear body. The linear body thus obtained was run in the heating furnace shown in FIG. 1 or 2 and heat-treated under various conditions to obtain an oxide superconducting wire.

尚上記実施例1,2において加熱炉出口の線状体の温度T
2は40℃とした。
In the above Examples 1 and 2, the temperature T of the linear body at the outlet of the heating furnace
2 was 40 ° C.

従来例1 実施例1又は2で用いたと同じ線状体をバッチ炉によ
り加熱処理した。
Conventional Example 1 The same linear body as that used in Example 1 or 2 was heat-treated in a batch furnace.

斯くの如くして得た各々の超電導線材について、臨界
温度(Tc)及び臨界電流密度(Jc)を測定した。結果は
第1表に示した。
The critical temperature ( Tc ) and the critical current density ( Jc ) of each of the superconducting wire rods thus obtained were measured. The results are shown in Table 1.

第1表より明らかなように本発明方法品(1〜8)は
比較方法品(9〜13)又は従来方法品(14,15)に較べ
てTc、Jcともに高い値を示している。
As is apparent from Table 1, the method products (1 to 8) of the present invention have higher T c and J c values than the comparative method products (9 to 13) or the conventional method products (14, 15). .

比較方法品(9〜13)のうち、No10は冷却温度勾配が
又No11、13は冷却温度がいずれも本発明方法での限定値
外にあるため、Tc、Jc値が低い値を示した。このうちNo
13は冷却速度が速すぎたため結晶構造が超電導体となる
斜方晶に完全に変換されなかったためで、酸素含有雰囲
気中で再アニールすることにより超電導体となし得るも
のである。No9は加熱温度が低いため十分な結晶配向が
得られず、又No12は加熱温度が高すぎたためY2BaCuO5
化合物が生成してTc、Jcが低い値となった。尚上記の本
発明方法による各々の超電導線材についてX線回析を行
ったところ、いずれもa、b軸を含む結晶面が線材の長
手方向に平行に配向していることが確認された。
Among the comparative method products (9 to 13), No. 10 has a cooling temperature gradient, and Nos. 11 and 13 have cooling temperatures outside the limit values of the method of the present invention, so that T c and J c values are low. It was No of these
No. 13 was because the crystal structure was not completely converted to the orthorhombic crystal that becomes a superconductor because the cooling rate was too fast, and it can be made into a superconductor by reannealing in an oxygen-containing atmosphere. No. 9 had a low heating temperature, so that sufficient crystal orientation could not be obtained, and No. 12 had a too high heating temperature, so that a compound of Y 2 BaCuO 5 was formed and T c and J c were low. When X-ray diffraction was performed on each of the superconducting wire rods according to the method of the present invention, it was confirmed that the crystal planes including the a and b axes were oriented parallel to the longitudinal direction of the wire rods.

本実施例においては、線状体を加熱炉内に走行させた
が、線状体が短いような場合には、線状体を固定し加熱
炉又はバーナーを移動させて加熱し冷却しても差支えな
い。
In the present example, the linear body was run in the heating furnace, but when the linear body is short, the linear body is fixed and the heating furnace or burner is moved to heat and cool the linear body. It doesn't matter.

上記実施例ではY−Ba−Cu−O系の超電導体について
説明したが、本発明方法は他のアルカリ土類金属、希土
類元素、銅及び酸素を主成分とする酸化物超電導体にも
適用できることは勿論である。
Although the above embodiments have been described with respect to a Y-Ba-Cu-O-based superconductor, the method of the present invention can also be applied to oxide superconductors containing other alkaline earth metals, rare earth elements, copper and oxygen as main components. Of course.

〔効果〕〔effect〕

以上述べたように本発明方法によれば導電性の高い
a、b軸を含む結晶面が超電導線材の長手方向に配向す
るので、Jc等の超電導特性に優れた酸化物超電導線材が
容易に製造し得るもので、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, since the crystal planes including a and b axes having high conductivity are oriented in the longitudinal direction of the superconducting wire, an oxide superconducting wire having excellent superconducting properties such as J c can be easily obtained. It can be produced and has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

第1図イは、本発明方法を実施する加熱炉の一実施例を
示す構造説明図、同図ロは上記加熱炉による線状体の温
度履歴線図、第2図イ、ロは他の実施例を示すそれぞれ
加熱炉の構造説明図及び線状体の温度履歴線図、第3図
は、酸化物超電導体の結晶構造の一例を示すYBa2Cu3O7-
δ(δ≒0.1〜0.3)の結晶構造である。 1……線状体、3……発熱体、5……誘導コイル。
FIG. 1A is a structural explanatory view showing an embodiment of a heating furnace for carrying out the method of the present invention, FIG. 1B is a temperature history diagram of a linear body by the heating furnace, and FIGS. Examples of the structure of the heating furnace and the temperature history diagram of the linear body showing the examples are shown in FIG. 3, and FIG. 3 shows an example of the crystal structure of the oxide superconductor YBa 2 Cu 3 O 7-
It has a crystal structure of δ (δ ≈ 0.1 to 0.3). 1 ... Linear body, 3 ... Heating element, 5 ... Induction coil.

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 999999999 電源開発株式会社 東京都中央区銀座6丁目15番1号 (72)発明者 菊地 祐行 神奈川県横浜市西区岡野2―4―3 古 河電気工業株式会社横浜研究所内 (72)発明者 田中 靖三 神奈川県横浜市西区岡野2―4―3 古 河電気工業株式会社横浜研究所内 (72)発明者 原 築志 東京都調布市西つつじヶ丘2―4―1 東京電力株式会社技術研究所内 (72)発明者 三井 潔夫 宮城県仙台市中山7―2―1 東北電力 株式会社総合研究所内 (72)発明者 小川 潔 北海道札幌市豊平区里塚461―6 北海 道電力株式会社総合研究所内 (72)発明者 吉野 純隆 東京都中央区銀座6―15―1 電源開発 株式会社内 (56)参考文献 特開 平1−260717(JP,A) 特開 昭64−10518(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (73) Patent holder 999999999 Electric Power Development Co., Ltd. 6-15-1 Ginza, Chuo-ku, Tokyo (72) Inventor Yuyuki Kikuchi 2-4-3 Okano Nishi-ku, Yokohama-shi, Kanagawa Furukawa Electric Industry Co., Ltd. Yokohama Research Laboratory (72) Inventor Yasumi Tanaka 2-4-3 Okano, Nishi-ku, Yokohama-shi, Kanagawa Furukawa Electric Co., Ltd. Yokohama Research Laboratory (72) Inventor Tsukushi Hara Nishitsujiga, Chofu-shi, Tokyo Oka 2-4-1 Tokyo Electric Power Co., Inc. Technical Research Institute (72) Inventor Kiyoo Mitsui 7-2-1 Nakayama, Sendai City, Miyagi Prefecture Tohoku Electric Power Co., Inc. (72) Inventor Kiyoshi Ogawa Toyohira-ku, Sapporo-shi, Hokkaido Satozuka 461-6 Hokkaido Electric Power Co., Inc. Research Institute (72) Inventor Juntaka Yoshino 6-15-1, Ginza Ginza, Chuo-ku, Tokyo (56) Reference text Patent flat 1-260717 (JP, A) JP Akira 64-10518 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体の原料粉体を所望の方法に
て所望形状の線状体に成形したのち、この線状体を酸素
含有雰囲気中で所定の温度で加熱し、次いで冷却するに
あたり、上記線状体を線状体の長手方向の冷却温度勾配
が10℃/cm以上、冷却速度が5℃/min以下の冷却条件に
て冷却することを特徴とする酸化物超電導線材の製造方
法。
1. A raw material powder for an oxide superconductor is formed into a linear body having a desired shape by a desired method, the linear body is heated at a predetermined temperature in an oxygen-containing atmosphere, and then cooled. In the production of an oxide superconducting wire, the linear body is cooled under cooling conditions such that the cooling temperature gradient in the longitudinal direction of the linear body is 10 ° C / cm or more and the cooling rate is 5 ° C / min or less. Method.
JP63053155A 1988-03-07 1988-03-07 Method for manufacturing oxide superconducting wire Expired - Lifetime JP2556545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63053155A JP2556545B2 (en) 1988-03-07 1988-03-07 Method for manufacturing oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63053155A JP2556545B2 (en) 1988-03-07 1988-03-07 Method for manufacturing oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH01227310A JPH01227310A (en) 1989-09-11
JP2556545B2 true JP2556545B2 (en) 1996-11-20

Family

ID=12934955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63053155A Expired - Lifetime JP2556545B2 (en) 1988-03-07 1988-03-07 Method for manufacturing oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP2556545B2 (en)

Also Published As

Publication number Publication date
JPH01227310A (en) 1989-09-11

Similar Documents

Publication Publication Date Title
US5846912A (en) Method for preparation of textured YBa2 Cu3 Ox superconductor
EP0308892B1 (en) Flaky oxide superconductor and method of manufacturing the same
JP3089294B2 (en) Manufacturing method of superconducting tape material
EP0385485A2 (en) Oxide superconductor, superconducting wire and coil using the same, and method of production thereof
EP0311337B1 (en) Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
JP2556545B2 (en) Method for manufacturing oxide superconducting wire
JP2920497B2 (en) Manufacturing method of superconducting tape material
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JP2610033B2 (en) Method for producing oxide-based superconducting molded body
JP2567891B2 (en) Method for producing oxide superconducting molded body
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
JP2593520B2 (en) Method for producing oxide-based superconducting wire
JP2678619B2 (en) Oxide superconducting wire and its manufacturing method
US5429791A (en) Silver-high temperature superconductor composite material manufactured based on powder method, and manufacturing method therefor
JPH01163914A (en) Manufacture of oxide superconductive wire
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JP2565930B2 (en) Method for manufacturing ceramic superconducting compact
JP3050573B2 (en) Manufacturing method of oxide superconducting conductor
JPH02158012A (en) Manufacture of oxide superconductive liner body
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH01315907A (en) Oxide superconductive filament and manufacture thereof
JPH02263606A (en) Manufacture of oxide superconductor
JPH0371520A (en) Manufacture of ceramics superconductor
JPH02258665A (en) Production of superconductive material