JP2565930B2 - Method for manufacturing ceramic superconducting compact - Google Patents

Method for manufacturing ceramic superconducting compact

Info

Publication number
JP2565930B2
JP2565930B2 JP62260862A JP26086287A JP2565930B2 JP 2565930 B2 JP2565930 B2 JP 2565930B2 JP 62260862 A JP62260862 A JP 62260862A JP 26086287 A JP26086287 A JP 26086287A JP 2565930 B2 JP2565930 B2 JP 2565930B2
Authority
JP
Japan
Prior art keywords
ceramics
molded body
stress
superconducting
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62260862A
Other languages
Japanese (ja)
Other versions
JPH01103405A (en
Inventor
靖三 田中
稔 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Tohoku Electric Power Co Inc
Tokyo Electric Power Company Holdings Inc
Original Assignee
Electric Power Development Co Ltd
Furukawa Electric Co Ltd
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Furukawa Electric Co Ltd, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc filed Critical Electric Power Development Co Ltd
Priority to JP62260862A priority Critical patent/JP2565930B2/en
Publication of JPH01103405A publication Critical patent/JPH01103405A/en
Application granted granted Critical
Publication of JP2565930B2 publication Critical patent/JP2565930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス超電導成形体の製造方法に関す
るものである。
The present invention relates to a method for producing a ceramics superconducting compact.

〔従来の技術〕[Conventional technology]

アルカリ土金属、希土類元素、銅及び酸素からなる酸
化物系超電銅成形体等のセラミックス超電導成形体は、
臨海温度(Tc)が高くその応用が期待されている。而し
てその製造方法としては、例えばY−Ba−Cu−O系の場
合、Y2O3、BaCO3及びCuOを原料とし、これらの原料粉体
を混合して約900℃で予備焼成する事によって複合酸化
物とし、これを粉砕後、所望の形状に成形して、大気中
又は酸素雰囲気中で900〜1000℃で数時間焼結後、室温
迄徐冷する事によって製造されている。更に必要に応じ
て、焼結処理時の酸素分圧を変化させる熱処理方法もと
られている。
Ceramic superconducting compacts such as alkaline earth metal, rare earth elements, oxide superconducting copper compacts composed of copper and oxygen,
The seaside temperature (T c ) is high and its application is expected. As the manufacturing method Thus, for example, in the case of Y-Ba-CuO system, Y 2 O 3, BaCO 3 and CuO as raw material, pre-baked at about 900 ° C. by mixing these starting powders It is manufactured by pulverizing this into a desired shape, sintering it in a desired shape, sintering it at 900 to 1000 ° C. in the air or in an oxygen atmosphere for several hours, and then slowly cooling it to room temperature. Further, a heat treatment method has been used in which the oxygen partial pressure during the sintering process is changed, if necessary.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

然しながら前記従来の方法により製造されたセラミッ
クス超電導成形体は、下記に述べる理由により臨界電流
密度(Jc)が低く、該臨界電流密度(Jc)の向上が強く
望まれていた。
However the ceramic superconductor shaped bodies said produced by conventional methods, for the reasons described below critical current density (J c) is low, the improvement of the critical current density (J c) has been strongly desired.

(1)緻密な焼結体を得る為には、なるべく粒径が小さ
い粉体を用いる必要があるが、この様な比較的粒径の小
さい粉体を高温に加熱すると、焼結体の結晶粒が粗大化
しやすく、その結果臨界電流密度(Jc)が低下する。
(1) In order to obtain a dense sintered body, it is necessary to use a powder having a particle diameter as small as possible. However, when such a powder having a relatively small particle diameter is heated to a high temperature, the crystal of the sintered body is crystallized. The grains are likely to become coarse, and as a result, the critical current density (J c ) decreases.

(2)高温での予備焼成や焼結によって結晶粒界の境界
エネルギーが低下する為、再結晶を起こしたり、大傾角
粒界になったりして、結晶粒界が電流に対するポテンシ
ャルバリヤーとなり、その結果臨界電流密度(Jc)が低
下する。
(2) Since the boundary energy of the crystal grain boundary is lowered by pre-baking or sintering at high temperature, recrystallization occurs or the grain boundary becomes a large tilt angle, and the crystal grain boundary becomes a potential barrier against electric current. As a result, the critical current density (J c ) decreases.

(3)電流異方性が大きい酸化物系超電導成形体におい
て高い臨界電流密度(Jc)を得る為には、結晶配向を制
御する事が必要であるが、従来の方法では高温で長時間
加熱される事により、結晶は自由に且つ任意の方位に成
長する為、前記結晶配向の制御は殆ど不可能である。
(3) In order to obtain a high critical current density (J c ) in an oxide-based superconducting compact with large current anisotropy, it is necessary to control the crystal orientation, but with the conventional method, high temperature and long time are required. By heating, the crystal grows freely and in an arbitrary orientation, so that it is almost impossible to control the crystal orientation.

(4)焼結処理時の酸素分圧を変化させる事も試みられ
ているが、酸素分圧を変化させて等方的応力処理である
為結晶配向性は余り生じない。
(4) It has been attempted to change the oxygen partial pressure during the sintering treatment, but crystal orientation is rarely generated because the oxygen partial pressure is changed and the isotropic stress treatment is performed.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は上記の点に鑑み鋭意検討の結果なされたもの
であり、その目的とするところは、高い臨界電流密度
(Jc)の値が得られる様なセラミックス超電導成形体の
製造方法を提供する事である。
The present invention has been made as a result of intensive studies in view of the above points, and an object thereof is to provide a method for producing a ceramics superconducting compact capable of obtaining a high critical current density (J c ). It is a thing.

即ち本発明は、セラミックス超電導成形体を製造する
に際して、セラミックス超電導体又はその前駆物質の成
形体を加熱冷却する工程において、前記成形体にその破
断強度の30分の1から10分の1の範囲の非等方的な応力
を負荷する事を特徴とするセラミックス超電導成形体の
製造方法である。
That is, in the present invention, in the process of manufacturing a ceramics superconducting molded body, in the step of heating and cooling the ceramics superconductor or the precursor thereof, the molded body has a breaking strength in the range of 1/30 to 1/10. Is a method for manufacturing a ceramics superconducting molded body, which is characterized in that the anisotropic stress is applied.

本発明は、例えば線材に対する1軸引張応力の様な非
等方的な応力を、加熱冷却する工程において成形体に負
荷する事によって、高温に加熱した際の結晶粒の粗大化
及び大傾角粒界の生成を防止すると共に、結晶配向を制
御しようとするものであって、その応力が成形体の破断
強度の30分の1未満であると前記応力負荷の効果が充分
に生じなく、また応力が成形体の破断強度の10分の1を
越えると結晶の配向性が乱されるので、成形体の破断強
度の30分の1から10分の1の範囲の応力を負荷する事が
必要である。
The present invention, for example, applies an anisotropic stress such as a uniaxial tensile stress to a wire rod to a molded body in the heating and cooling step, thereby coarsening the crystal grains and heating the high-angle grains when heated to a high temperature. In order to prevent the generation of a field and to control the crystal orientation, and the stress is less than 1/30 of the breaking strength of the molded body, the effect of the stress load does not sufficiently occur, and the stress Is more than 1/10 of the breaking strength of the compact, the crystal orientation is disturbed, so it is necessary to apply a stress in the range of 1/30 to 1/10 of the breaking strength of the compact. is there.

本発明の方法において、加熱冷却されるセラミックス
超電導体又はその前駆物質の成形体は銀で被覆されてい
る事が望ましい。又本発明の方法により製造されるセラ
ミックス超電導成形体は、セラミックスがアルカリ土金
属、希土類元素、銅及び酸素からなる酸化物系セラミッ
クスである場合に、特に優れた特性が得られるものであ
る。
In the method of the present invention, it is preferable that the ceramics superconductor to be heated and cooled or the molded body of the precursor thereof is coated with silver. Further, the ceramic superconducting molded article produced by the method of the present invention has particularly excellent characteristics when the ceramic is an oxide ceramic comprising an alkaline earth metal, a rare earth element, copper and oxygen.

本発明における応力負荷は、成形体の加熱及び冷却の
両工程において行なう事が望ましいが、冷却工程のみに
適用しても類似した効果を得る事が可能である。応力負
荷の方法としては、例えばセラミックス超電導体又はそ
の前駆物質の成形体を1組の滑車間を連続的に移動させ
ながら、該滑車間の張力によって応力を負荷する事が出
来る。或いは1軸の引張試験機又は圧縮機を利用して応
力を負荷する事も可能である。
It is desirable to apply the stress load in both the heating and cooling steps of the molded body in the present invention, but it is possible to obtain a similar effect by applying it only to the cooling step. As a method of applying a stress, for example, a ceramic superconductor or a precursor thereof can be continuously moved between a set of pulleys while the tension is applied between the pulleys. Alternatively, it is possible to apply the stress using a uniaxial tensile tester or a compressor.

〔作用〕[Action]

本発明の方法においては、セラミックス超電導体又は
その前駆物質の成形体を加熱冷却する工程において、非
等方的な応力を前記成形体に負荷しているので、下記の
理由により高い臨界電流密度(Jc)を持った成形体を得
る事が出来る。
In the method of the present invention, in the step of heating and cooling the molded body of the ceramics superconductor or its precursor, anisotropic stress is applied to the molded body, so that the high critical current density ( It is possible to obtain a molded product having J c ).

(1)結晶粒の粗大化が防止される。(1) Coarsening of crystal grains is prevented.

(2)大傾角粒界の生成が防止され、粒界のポテンシャ
ルバリヤーが少なくなる。即ち境界エネルギーのより低
い小傾角粒界のアモルファスにする事によって、ポテン
シャルバリヤーが解消され、粒間での電流が流れやすく
なる。
(2) Generation of large-angle tilt grain boundaries is prevented, and the potential barrier at grain boundaries is reduced. That is, the potential barrier is eliminated and the current flows easily between the grains by making the grain boundaries of the low-angle grain with lower boundary energy amorphous.

(3)長時間高温に加熱されるが、応力が負荷されてい
る為、結晶配向が可能となる。
(3) Although it is heated to a high temperature for a long time, since stress is applied, crystal orientation becomes possible.

〔実施例〕〔Example〕

次に本発明を実施例により更に具体的に説明する。Y2
O3、BaCO3及びCuOをY:Ba:Cu=1:2:3になる様に配合し、
900℃で予備焼成後粉砕し、外径15mm、内径10mmの銀パ
イプに充填し、直径1mmに伸線加工した。この様にして
得られた線材を、電気炉中に所望の応力を与える重りを
吊り下げる方法により0.3〜10kg/mm2の引張り応力を負
荷しながら、大気中で10℃/minで900〜1000℃に加熱
し、5時間保持した後、300℃迄2℃/minで冷却した。
この様にして得られた超電導線について、四端子法で、
77゜K、0Tにおける臨界電流密度(Jc、A/cm2)を測定し
た。得られた結果を加熱温度及び負荷応力に対して第1
表に示した。尚負荷応力を加えない場合、即ち従来法で
製造した場合についても臨界電流密度(Jc)を測定し、
その結果も第1表に併記した。尚900〜1000℃に加熱し
た際の線材の破断強度は、約30kg/mm2であった。
Next, the present invention will be described more specifically by way of examples. Y 2
O 3 , BaCO 3 and CuO are mixed so that Y: Ba: Cu = 1: 2: 3,
After pre-firing at 900 ° C., it was crushed, filled into a silver pipe having an outer diameter of 15 mm and an inner diameter of 10 mm, and wire-drawn into a diameter of 1 mm. The wire rod thus obtained is loaded with a tensile stress of 0.3 to 10 kg / mm 2 by a method of suspending a weight giving a desired stress in an electric furnace, and 900 to 1000 at 10 ° C./min in the atmosphere. After heating to ℃ and holding for 5 hours, it was cooled to 300 ℃ at 2 ℃ / min.
For the superconducting wire obtained in this way, by the four-terminal method,
The critical current density (J c , A / cm 2 ) at 77 ° K and 0T was measured. The obtained results are first compared with the heating temperature and the load stress.
Shown in the table. The critical current density (J c ) was measured when no load stress was applied, that is, when manufactured by the conventional method.
The results are also shown in Table 1. The breaking strength of the wire when heated to 900 to 1000 ° C. was about 30 kg / mm 2 .

第1表から明らかな様に、線材を加熱冷却する際に、
本発明の範囲内の負荷応力(1kg/mm2及び3kg/mm2)を加
えた場合は、いずれも103A/cm2以上の高い臨界電流密度
(Jc)が得られている。一方負荷応力の大きさが本発明
の範囲外(0.3kg/mm2及び10kg/mm2)の場合並びに応力
を負荷しなかった場合(従来例)は低い臨界電流密度
(Jc)しか得られなかった。
As is clear from Table 1, when heating and cooling the wire,
When a load stress within the range of the present invention (1 kg / mm 2 and 3 kg / mm 2 ) was applied, a high critical current density (J c ) of 10 3 A / cm 2 or more was obtained in all cases. On the other hand, when the magnitude of the applied stress is outside the range of the present invention (0.3 kg / mm 2 and 10 kg / mm 2 ) and when no stress is applied (conventional example), only a low critical current density (J c ) is obtained. There wasn't.

又本発明の方法により製造した線材の縦断面をX線回
析により調査した結果、従来の方法により製造した場合
よりも、結晶配向性が大きい事が確認された。更に透過
電子顕微鏡観察により、従来の線材よりも、双晶や結晶
粒界層での原子の非結晶的な乱れが多く観察される事が
分かった。一方従来の線材では、明確な大傾角粒界であ
る場合が多く、本発明法と従来法とでは、結晶粒子間の
整合の程度に大きな差がある事が確認された。
Further, as a result of investigating the longitudinal section of the wire produced by the method of the present invention by X-ray diffraction, it was confirmed that the crystal orientation was larger than that produced by the conventional method. Furthermore, it was found by observation with a transmission electron microscope that more non-crystalline disorder of atoms in the twin crystal and grain boundary layers was observed than in the conventional wire. On the other hand, it is confirmed that the conventional wire rods often have distinct high-angle grain boundaries, and there is a large difference in the degree of matching between crystal grains between the method of the present invention and the conventional method.

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば高い臨界電流密度(Jc)の値を
有するセラミックス超電導成形体を得る事が出来、工業
上顕著な効果を奏するものである。
According to the method of the present invention, it is possible to obtain a ceramics superconducting compact having a high critical current density (J c ) value, which is a significant industrial effect.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C01G 1/00 H01B 12/00 ZAA H01B 12/00 ZAA C04B 35/00 ZAAK (73)特許権者 999999999 電源開発株式会社 東京都中央区銀座6丁目15番1号 (72)発明者 田中 靖三 神奈川県横浜市西区岡野2―4―3 古 河電気工業株式会社横浜研究所内 (72)発明者 中島 稔 神奈川県横浜市西区岡野2―4―3 古 河電気工業株式会社横浜研究所内 (56)参考文献 特開 昭63−282152(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location // C01G 1/00 H01B 12/00 ZAA H01B 12/00 ZAA C04B 35/00 ZAAK (73) Patent Right holder 999999999 Electric Power Development Co., Ltd. 6-15-1, Ginza, Chuo-ku, Tokyo (72) Inventor Yasuzo Tanaka 2-4-3 Okano, Nishi-ku, Yokohama-shi, Kanagawa Furukawa Electric Co., Ltd. Yokohama Research Laboratory (72) Invention Person Minoru Nakajima 2-4-3 Okano, Nishi-ku, Yokohama-shi, Kanagawa Furukawa Electric Co., Ltd. Yokohama Research Laboratory (56) Reference JP-A-63-282152 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミックス超電導成形体を製造するに際
して、セラミックス超電導体又はその前駆物質の成形体
を加熱冷却する工程において、前記成形体にその破断強
度の30分の1から10分の1の範囲の非等方的な応力を負
荷する事を特徴とするセラミックス超電導成形体の製造
方法。
1. When manufacturing a ceramics superconducting molded body, in the step of heating and cooling the molded body of the ceramics superconductor or its precursor, the molded body is in the range of 1/30 to 1/10 of its breaking strength. A method for manufacturing a ceramics superconducting molded body, characterized in that the anisotropic stress is applied.
【請求項2】セラミックス超電導体又はその前駆物質の
成形体が銀で被覆されている事を特徴とする特許請求の
範囲第1項記載のセラミックス超電導成形体の製造方
法。
2. The method for producing a ceramics superconducting molded article according to claim 1, wherein the molded body of the ceramics superconductor or its precursor is coated with silver.
【請求項3】セラミックスが酸化物系セラミックスであ
る事を特徴とする特許請求の範囲第1項記載のセラミッ
クス超電導成形体の製造方法。
3. The method for producing a ceramic superconducting compact according to claim 1, wherein the ceramic is an oxide ceramic.
【請求項4】応力負荷が冷却工程のみに適用される事を
特徴とする特許請求の範囲第1項記載のセラミックス超
電導成形体の製造方法。
4. The method for producing a ceramics superconducting compact according to claim 1, wherein the stress load is applied only to the cooling step.
【請求項5】応力負荷を、セラミックス超電導体又はそ
の前駆物質の成形体を1組の滑車間を連続的に移動させ
ながら、該滑車間の張力によって行なう事を特徴とする
特許請求の範囲第1項記載のセラミックス超電導成形体
の製造方法。
5. A stress load is applied by tension between pulleys while continuously moving a molded body of a ceramics superconductor or its precursor between a pair of pulleys. The method for producing a ceramics superconducting molded article according to item 1.
JP62260862A 1987-10-16 1987-10-16 Method for manufacturing ceramic superconducting compact Expired - Fee Related JP2565930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62260862A JP2565930B2 (en) 1987-10-16 1987-10-16 Method for manufacturing ceramic superconducting compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260862A JP2565930B2 (en) 1987-10-16 1987-10-16 Method for manufacturing ceramic superconducting compact

Publications (2)

Publication Number Publication Date
JPH01103405A JPH01103405A (en) 1989-04-20
JP2565930B2 true JP2565930B2 (en) 1996-12-18

Family

ID=17353788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260862A Expired - Fee Related JP2565930B2 (en) 1987-10-16 1987-10-16 Method for manufacturing ceramic superconducting compact

Country Status (1)

Country Link
JP (1) JP2565930B2 (en)

Also Published As

Publication number Publication date
JPH01103405A (en) 1989-04-20

Similar Documents

Publication Publication Date Title
JPH01163910A (en) Superconductive composite and its manufacture
KR970007765B1 (en) Superconducting wire and method of manufacturing the same
US5284823A (en) Superplastic forming of YBa2 Cu3 O7-x ceramic superconductors with or without silver addition
JP2565930B2 (en) Method for manufacturing ceramic superconducting compact
JPH0416549A (en) Oxide superconductor and production thereof
JPH10511926A (en) Low temperature preparation of melt textured YBCO superconductors (T below 950 ° C)
JP2002538071A5 (en)
Nellis et al. Novel Preparation Methods for High TcOxide Superconductors
JP2514690B2 (en) Superconducting wire manufacturing method
KR910009198B1 (en) Method of manufacturing superconductive products
WO1993010047A1 (en) Method of fabricating thallium-containing ceramic superconductors
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
US20090048114A1 (en) Alloy superconductor and methods of making the same
US5525586A (en) Method of producing improved microstructure and properties for ceramic superconductors
JP2980650B2 (en) Method for producing rare earth oxide superconductor
JP2567891B2 (en) Method for producing oxide superconducting molded body
JP2556545B2 (en) Method for manufacturing oxide superconducting wire
US5401712A (en) Method of manufacture of single phase ceramic superconductors
JP2727565B2 (en) Superconductor manufacturing method
JP3053411B2 (en) Manufacturing method of oxide superconducting wire
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP2519741B2 (en) Manufacturing method of superconducting material
JPH01163914A (en) Manufacture of oxide superconductive wire
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees