JPH01163914A - Manufacture of oxide superconductive wire - Google Patents

Manufacture of oxide superconductive wire

Info

Publication number
JPH01163914A
JPH01163914A JP62321724A JP32172487A JPH01163914A JP H01163914 A JPH01163914 A JP H01163914A JP 62321724 A JP62321724 A JP 62321724A JP 32172487 A JP32172487 A JP 32172487A JP H01163914 A JPH01163914 A JP H01163914A
Authority
JP
Japan
Prior art keywords
oxide superconductor
oxide
metal tube
superconducting wire
metal pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62321724A
Other languages
Japanese (ja)
Other versions
JP2592872B2 (en
Inventor
Minoru Yamada
穣 山田
Shigeo Nakayama
茂雄 中山
Misao Koizumi
小泉 操
Akira Murase
村瀬 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP62321724A priority Critical patent/JP2592872B2/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to EP88302050.5A priority patent/EP0282286B2/en
Priority to DE3855911T priority patent/DE3855911T2/en
Priority to DE3855912T priority patent/DE3855912T2/en
Priority to DE3855717T priority patent/DE3855717T3/en
Priority to EP92201690A priority patent/EP0505015B1/en
Priority to EP92201691A priority patent/EP0503746B1/en
Priority to CN88101210A priority patent/CN1035139C/en
Publication of JPH01163914A publication Critical patent/JPH01163914A/en
Priority to US08/463,738 priority patent/US6170147B1/en
Priority to US08/463,777 priority patent/US5935911A/en
Application granted granted Critical
Publication of JP2592872B2 publication Critical patent/JP2592872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent the generation of bores and cracks, and to manufacture a superconductive wire of a high critical current density by introducing a columnar body formed by applying a pressure to an oxide superconductor powder, or a sintered body made by applying a heat treatment after such a pressure-formation, in a metal pipe, a surface reduction process is applied to the metal pipe, and heat-treating in the oxygen ambiance as it is or after the metal pipe is removed. CONSTITUTION:When an oxide superconductive wire is manufactured by using no reinforcement material, an oxide superconductor powder is formed by applying a pressure to make into a columnar body 2a with the outer diameter a little smaller than the inner diameter of a metal pipe 1, and the columnar body 2a is led in the metal pipe 1. Or, plural short column bodies 2b formed in the same way, or divided bodies 2c divided plurally are led in the metal tube 1 in series. On the other hand, when a reinforcement is used, a columnar body 2d with the outer diameter a little smaller than the inner diameter of the metal pipe and with holes 4 to insert reinforcements in the form of rotus root is formed by applying a pressure to the oxide superconductor powder, and linear reinforcement materials 3a are inserted to the holes 4, as well as the columnar body 2d is inserted to the metal pipe 1.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導線の製造方法に係り、特に臨界
電流密度の高い酸化物超電導線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an oxide superconducting wire, and particularly to a method for manufacturing an oxide superconducting wire having a high critical current density.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(Z、Phys、B Condensed Mat
ter64、189−193(198B))。その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥ベロアスカイト型(LnBa2 Ctl3 0y−
δ型)(δは酸素欠陥を表わし通常1以下、Lnは、Y
、 La1Sc、 Nd、 3ISLu、 Gd1Dy
、 llo、Er、 Te、Ybおよび[Uから選ばれ
た少なくとも1種の元素、Baの一部はSr等で置換可
能)の酸化物超電導体は、臨界温度が901(以上と液
体窒素以上の高い温度を示すため非常に有望な材料と′
して注目されている( Phys、 Rev、 Let
t、Vol、58NO,9,908−910)。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. (Z, Phys, B Condensed Mat
ter64, 189-193 (198B)). Among them, defective velorskite type (LnBa2 Ctl3 0y-
δ type) (δ represents oxygen defect and is usually 1 or less, Ln is Y
, La1Sc, Nd, 3ISLu, Gd1Dy
, llo, Er, Te, Yb, and [at least one element selected from U, a part of Ba can be replaced with Sr, etc.] oxide superconductors have critical temperatures of 901 and above and liquid nitrogen. It is a very promising material because it exhibits high temperatures.
(Phys, Rev, Let
t, Vol, 58NO, 9, 908-910).

一般に、このようなペロブスカイト型の結晶構造を有す
る酸化物超電導体を用いた酸化物超電導線を製造する場
合には、銀や銀合金のような酸素透過性金属管内に酸化
物超電導体の粉末を充填し、これに減面加工を施して所
望の外径にまで成形した後、焼結のために900〜98
0℃の温度で10数時間熱処理し、次いで酸化物角N導
体結晶′の酸素空席に酸素を導入するために400〜6
00℃程度の酸素雰囲気中で10数時間程度加熱するこ
とが行われていた。
Generally, when producing an oxide superconducting wire using an oxide superconductor having such a perovskite crystal structure, powder of the oxide superconductor is placed in an oxygen-permeable metal tube such as silver or silver alloy. After filling and shaping it to the desired outer diameter by reducing the area, it is heated to 900 to 98 mm for sintering.
Heat-treated at a temperature of 0°C for 10 hours, and then heated at 400°C to 6°C to introduce oxygen into the oxygen vacancies in the oxide square N conductor crystal.
Heating was performed in an oxygen atmosphere at about 00° C. for about 10 hours.

(発明が解決しようとする問題点) しかしながら、このような従来の方法では、金属管へ酸
化物超電導体を充填する際、高密度で充填することが困
難であるため、熱処理時に、内部の酸化物超電導体が大
きい体積収縮を起してボアやクラックを生じることがあ
り、このため^い臨界電流密度を得ることができないと
いう問題があった。
(Problems to be Solved by the Invention) However, in such conventional methods, when filling a metal tube with oxide superconductors, it is difficult to fill the metal tube with high density, so during heat treatment, internal oxidation Physical superconductors sometimes experience large volumetric shrinkage, resulting in bores and cracks, and this poses a problem in that it is not possible to obtain a high critical current density.

本発明は、このような従来の難点を解消すべくなされた
もので、上記欠点のない酸化物超電導線の製造方法を提
供することを目的とする。
The present invention has been made to solve these conventional problems, and an object of the present invention is to provide a method for manufacturing an oxide superconducting wire that does not have the above-mentioned drawbacks.

[発明の構成] く問題点を解決するための手段) 本発明の酸化物超電導体の製造方法は、酸化物超電導体
粉末を加圧成形してなる円柱体もしくは加圧成形後熱処
理した焼結体を金属管内に挿入する工程と、この金属管
に減面加工を施す工程と、このまま、もしくは前記金属
管を除去した後酸素雰囲気中で熱処理する工程とを有す
ることを特徴としている。
[Structure of the Invention] Means for Solving the Problems) The method for producing an oxide superconductor of the present invention comprises a cylindrical body formed by pressure molding an oxide superconductor powder, or a sintered body formed by pressure molding and then heat-treated. The method is characterized by comprising a step of inserting the body into a metal tube, a step of subjecting the metal tube to surface reduction processing, and a step of heat-treating the metal tube as it is or after removing the metal tube in an oxygen atmosphere.

本発明には各種の酸化物超電導体を用いることができる
が、臨界温度の高い、Y 、 Laおよび希土類元素含
有のペロブスカイト型の酸化物超電導体を用いた場合に
特に実用的効果が大きい。
Although various oxide superconductors can be used in the present invention, the use of a perovskite-type oxide superconductor containing Y, La, and rare earth elements, which has a high critical temperature, has a particularly large practical effect.

上記の希土類元素を含有しペロブスカイト型構造を有す
る酸化物超電導体は、超電導状態を実現できるものであ
ればよく、LnBa  Cu  O系237−δ (δは酸素欠陥を表し通常1以下の数、Lnは、y、L
a、 Sc、 Nd、 5I11Eu、 Gd、 Dy
、 Ho、 Er、 Tm、 YbおよびLuから選ば
れた少なくとも1種の元素、Baの一部はSr等で置換
可能)等の酸素欠陥を有する欠陥ペロブスカイト型、5
r−La−Cu−0系等の層状ペロブスカイト型等の広
義にペロブスカイト型を有する酸化物が例示される。ま
た希土類元素も広義の定義とし、Sc、  YおよびL
a系を含むものとする。
The above-mentioned oxide superconductor containing a rare earth element and having a perovskite structure may be one that can realize a superconducting state, and may be an LnBa Cu O-based 237-δ (δ represents an oxygen defect and is usually a number of 1 or less, Ln y, L
a, Sc, Nd, 5I11Eu, Gd, Dy
, at least one element selected from Ho, Er, Tm, Yb and Lu, a part of Ba can be replaced with Sr, etc.), 5
Examples include oxides having a perovskite type in a broad sense, such as a layered perovskite type such as r-La-Cu-0 type. Rare earth elements are also broadly defined, and include Sc, Y and L.
This includes the a-series.

代表的な系としてY−Ba−Cu−0系のほかに、Yを
Eu。
In addition to the Y-Ba-Cu-0 system, Y is replaced by Eu as a typical system.

Oy、HOlEr、 Tra、 Yb、 Lu等の希土
類で置換した系、5r−La−Ctl−0系、ざらにS
rをBa、 Caで置換した系等が挙げられる。
Oy, HOlEr, Tra, Yb, system substituted with rare earth elements such as Lu, 5r-La-Ctl-0 system, Zarani S
Examples include systems in which r is replaced with Ba or Ca.

本発明に用いる酸化物超電導体は、たとえば以下に示す
製造方法により得ることができる。
The oxide superconductor used in the present invention can be obtained, for example, by the manufacturing method shown below.

まず、Y、 Ba、 Cu等のペロブスカイト型酸化物
超電導体の構成元素を充分混合する。混合の際には、Y
203 、CuO等の酸化物を原料として用いることが
できる。また、これらの酸化物のほかに、焼成後酸化物
に転化する炭酸塩、硝酸塩、水酸化物等の化合物を用い
てもよい。ざらには、共沈法等で得たシュウ酸塩等を用
いてもよい。ペロブスカイト型酸化物超電導体を構成す
る元素は、基本的に化学量論比の組成となるように混合
するが、多少製造条件等との関係でずれていても差支え
ない。たとえば、Y−Ba−Cu−0系ではY 1 m
olに対しBa 2 mol、Cu 3 nofが標準
組成であるが、実用上はY 1 molに対して、Ba
 2±o、e mol、Cu 3±0.2 mol程度
のずれは問題ない。
First, the constituent elements of the perovskite oxide superconductor, such as Y, Ba, and Cu, are thoroughly mixed. When mixing, Y
Oxides such as 203 and CuO can be used as raw materials. In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted into oxides after firing may be used. As the grain, oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there is no problem even if the composition deviates slightly depending on the manufacturing conditions. For example, in the Y-Ba-Cu-0 system, Y 1 m
The standard composition is Ba 2 mol and Cu 3 nof for Y 1 mol, but in practice, Ba 2 mol and Cu 3 nof are used for Y 1 mol.
A deviation of approximately 2±o, e mol and 3±0.2 mol of Cu is not a problem.

前述の原料を混合した後、仮焼、粉砕し所望の形状にし
た後、850〜980℃程度で焼成する。仮焼は必ずし
も必要ではない。仮焼および焼成は充分な酸素が供給で
きるような酸素含有雰囲気中で行うことが好ましい。所
望の形状に焼成した後、酸素含有雰囲気中で熱処理して
超電導特性を付与する。上記熱処理は、通常600℃以
下で徐冷しながら行うようにする。
After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape, and then fired at about 850 to 980°C. Calcining is not necessarily necessary. Preferably, calcination and firing are performed in an oxygen-containing atmosphere where sufficient oxygen can be supplied. After firing into a desired shape, it is heat-treated in an oxygen-containing atmosphere to impart superconducting properties. The above heat treatment is usually performed at 600° C. or lower while slowly cooling.

このようにして得られた酸化物超電導体は、酸素欠陥δ
を有する酸素欠陥型ペロプスカイト構造(LnBa2C
u30 、δ(δは通常1以下))となる。なお、Ba
Jji:Sr、 Caの少なくとも1種で置換すること
もでき、ざらにCuの一部をTi1V、 Cr1Hn。
The oxide superconductor thus obtained has oxygen defects δ
Oxygen-deficient perovskite structure (LnBa2C
u30, δ (δ is usually 1 or less)). In addition, Ba
Jji: At least one of Sr and Ca can be substituted, and a part of Cu can be replaced with Ti1V and Cr1Hn.

Fe、 Co、Xi、 Zn等で置換することもできる
Substitution with Fe, Co, Xi, Zn, etc. is also possible.

この置換看は、超電導特性を低下させない程度の範囲で
適宜設定可能であるが、あまりに多母の置換は超電導特
性を低下させてしまうので80101%以下、さらに実
用上は20mo1%以下程度までとする。
This substitution value can be set as appropriate within a range that does not deteriorate the superconducting properties, but too many substitutions will degrade the superconducting properties, so it should be set to 80101% or less, and in practical terms, to 20mo1% or less. .

本発明の酸化物超電導線を得るには、まず、酸化物超電
導体を焼成し結晶化した焼成物を、ボールミル等の公知
の手段により粉砕する。このとき、酸化物超電導体粉末
はへき開面から分割されて微粉末となる。粉砕は、平均
粒径が1〜5μm程度、直径対厚さの比が3〜5となる
まで行なうことが望ましい。なお、必要に応じて、粉砕
した粉末を上記の範囲となるように分級して用いてもよ
い。
To obtain the oxide superconducting wire of the present invention, first, a fired product obtained by firing and crystallizing an oxide superconductor is pulverized by a known means such as a ball mill. At this time, the oxide superconductor powder is divided from the cleavage plane and becomes fine powder. It is desirable that the pulverization be carried out until the average particle size is approximately 1 to 5 μm and the diameter to thickness ratio is 3 to 5. Note that, if necessary, the pulverized powder may be classified and used so as to fall within the above range.

次に、この酸化物超電導体粉末を円柱状に加圧成形し、
この円柱体を金属管内に挿入して熱問おまたは温間、お
よび冷間で減面加工を施す。
Next, this oxide superconductor powder is pressure-molded into a cylindrical shape,
This cylindrical body is inserted into a metal tube and subjected to area reduction processing in hot or warm conditions and then in cold conditions.

なお、上記加圧成形の圧力は、1〜5t/cj程度が適
当である。
Note that the pressure for the above-mentioned pressure molding is suitably about 1 to 5 t/cj.

円柱体の成形および金属管内への挿入は、例えば次のよ
うな種々の方法で行うことができる。
The cylindrical body can be formed and inserted into the metal tube in various ways, such as the following.

(イ)補強材を使用しない場合 ■ 第1図に示すように、金属管1の内径よりやや小さ
い外径の円柱体2aとなるように酸化物超電導体粉末を
加圧成形し、これを金属管1内に挿入する。
(b) When no reinforcing material is used ■ As shown in Figure 1, oxide superconductor powder is pressure-molded into a cylindrical body 2a with an outer diameter slightly smaller than the inner diameter of the metal tube 1, and this is Insert into tube 1.

■ 第2図に示すように、金属管1の内径よりやや小さ
い外径の短円柱体2bとなるよう酸化物超電導体粉末を
加圧成形し、その複数個を金属管1内に直列に挿入する
■ As shown in Figure 2, oxide superconductor powder is pressure-formed into short cylindrical bodies 2b with an outer diameter slightly smaller than the inner diameter of the metal tube 1, and a plurality of cylindrical bodies 2b are inserted in series into the metal tube 1. do.

■第3図に示すように、金属管1の内径よりやや小さい
外径の円柱体を軸方向に放射面(または平行面)で複数
に分割した分割体2Cとなるよう酸化物超電導体粉末を
加圧成形し、これらを円柱体となるように揃えて金属管
1内に挿入する。この場合■に1おけるように円柱体と
なるように揃えたものを複数個直列に金属管1内に挿入
するようにしてもよい。
■As shown in Figure 3, the oxide superconductor powder is divided into a plurality of divided bodies 2C by dividing a cylindrical body with an outer diameter slightly smaller than the inner diameter of the metal tube 1 into a plurality of pieces in the axial direction along the radial plane (or parallel plane). They are press-formed, aligned to form a cylindrical body, and inserted into the metal tube 1. In this case, as in 1, a plurality of cylindrical bodies may be inserted in series into the metal tube 1.

(ロ)補強材を使用する場合 ■ 第4図に示すように、金属管1の内径よりやや小さ
い外径の、単数または複数の線状の補強材3aを埋設し
た円柱体2dを酸化物超電導体粉末の加圧成形により形
成し、これを金属管1内に挿入する。
(b) When using a reinforcing material ■ As shown in Figure 4, a cylindrical body 2d in which one or more linear reinforcing materials 3a with an outer diameter slightly smaller than the inner diameter of the metal tube 1 is embedded is used to conduct oxide superconducting. The body powder is formed by pressure molding, and this is inserted into the metal tube 1.

■ 第5図に示すように、金属管1の内径よりやや小さ
い外径を有し、蓮根状に補強材挿入用の穴4を有する円
柱体2eを、酸化物超電導体粉末の加圧成形により形成
し、これを金属管1内に挿入するとともに穴4に線状の
補強材3aを挿入する。
■ As shown in Fig. 5, a cylindrical body 2e having an outer diameter slightly smaller than the inner diameter of the metal tube 1 and having a lotus root-shaped hole 4 for inserting reinforcing material is formed by pressure molding of oxide superconductor powder. This is inserted into the metal tube 1, and the linear reinforcing material 3a is inserted into the hole 4.

■ 第6図に示すように、金属管1の内径よりやや小さ
い外径の円柱体を軸方向に平行面(または放射面)で複
数に分割した分割体2fとなるよう酸化物超電導体粉末
を加圧成形し、これらを当接面に板状の補強材3bを挟
み円柱体となるように揃えて金属管1内に挿入する。こ
の場合■におけるように、円柱体となるように揃えたも
のを複数個直列に金属管1内に挿入するようにしてもよ
い。
■ As shown in Fig. 6, the oxide superconductor powder is divided into a plurality of divided bodies 2f by dividing a cylindrical body with an outer diameter slightly smaller than the inner diameter of the metal tube 1 into a plurality of pieces along parallel planes (or radial planes) in the axial direction. Pressure molding is performed, and these are inserted into the metal tube 1 with the plate-shaped reinforcing material 3b sandwiched between the contact surfaces so as to form a cylindrical body. In this case, as in (3), a plurality of cylindrical bodies may be inserted in series into the metal tube 1.

■ 第7図に示すように、金属管1の内径よりやや小さ
い外径の円柱体を軸方向に平行面(または放射面)で複
数に分割し、ざらにこの平行面と直交する平行面で分割
した形状の分割体2qを酸化物超電導体粉末の加圧成形
により成形し、これらを井桁状に組んだ板状補強材30
間に挿入し全体として円柱体となるように揃えて金属管
1内に挿入する。
■ As shown in Figure 7, a cylindrical body with an outer diameter slightly smaller than the inner diameter of the metal tube 1 is divided into a plurality of parts along parallel planes (or radial planes) in the axial direction, and parallel planes that are roughly orthogonal to the parallel planes are divided into multiple parts. A plate-shaped reinforcing material 30 is formed by molding the divided bodies 2q in a divided shape by pressure molding of oxide superconductor powder and assembling them into a grid shape.
The metal tube 1 is inserted into the metal tube 1 in such a manner that it is aligned so as to form a cylindrical body as a whole.

以上の加圧成形体のかわりにこの加圧成形体を熱処理し
て焼結させたものを用いてもよい。
Instead of the above-mentioned press-molded body, a heat-treated and sintered press-molded body may be used.

上記の補強材としては、耐熱性、耐酸化性、延伸加工性
、熱伝導性および導電性が良好な、銀、金、白金または
これらの合金からなる線またはテープが適している。な
お、銀、金、白金またはこれらの合金の短繊維を酸化物
超電導体粉末と均一に混合して補強材とし、ボアやクラ
ックの発生を抑制させることも可能である。
As the above-mentioned reinforcing material, wires or tapes made of silver, gold, platinum, or alloys thereof, which have good heat resistance, oxidation resistance, stretchability, thermal conductivity, and electrical conductivity, are suitable. It is also possible to uniformly mix short fibers of silver, gold, platinum, or an alloy thereof with the oxide superconductor powder as a reinforcing material to suppress the occurrence of bores and cracks.

この後、この酸化物超電導体粉末を加圧成形してなる円
柱体の挿入された金属管を、熱間または温間でスェージ
ングマシン等により鍛造した後、冷間で線引きして前記
金属管の外径を元の外径の1/10以下、好ましくは1
/20以下程度となるまで縮径加工し、さらに、必要に
応じてロールを用いて偏平に圧縮加工を施す。
Thereafter, a metal tube into which a cylindrical body formed by pressure-forming the oxide superconductor powder is inserted is hot or warm forged using a swaging machine, etc., and then cold drawn to form the metal tube. The outer diameter of the original outer diameter is 1/10 or less, preferably 1
The diameter is reduced until the diameter is about /20 or less, and further, if necessary, compressed into a flat shape using a roll.

このようにして所望の断面寸法および外形となったとこ
ろで、焼結および酸素導入のための熱処理を行う。
When the desired cross-sectional dimensions and external shape are achieved in this manner, heat treatment for sintering and oxygen introduction is performed.

これらの、熱処理は通常、金属被覆を有するまで行われ
るが、必要に応じて、金属被覆を硝酸等のエツチング液
でエツチングして除去した後、熱処理を行うようにして
もよい。
These heat treatments are normally performed until the metal coating is formed, but if necessary, the heat treatment may be performed after the metal coating is removed by etching with an etching solution such as nitric acid.

焼結のための熱処理は、酸素含有雰囲気中850〜98
0℃で8〜80時間加熱することにより行なわれる。ま
た、酸素導入のための熱処理は、この後、酸素含有雰囲
気中で600℃以下を1℃/分程度の割合いで徐冷した
り、別工程において、300〜700℃で10数時間保
持することにより行なわれる。
Heat treatment for sintering is 850-98% in an oxygen-containing atmosphere.
This is carried out by heating at 0°C for 8 to 80 hours. In addition, the heat treatment for introducing oxygen is performed by slowly cooling the temperature below 600°C at a rate of about 1°C/minute in an oxygen-containing atmosphere, or by holding the temperature at 300 to 700°C for over 10 hours in a separate process. This is done by

これによって、酸化物超電導体の結晶構造中の酸素空席
に酸素が導入され超電導特性が向上する。
As a result, oxygen is introduced into the oxygen vacancies in the crystal structure of the oxide superconductor, and the superconducting properties are improved.

(作 用) 本発明により製造された酸化物超電導線は、酸化物超電
導体粉末を金属管に充填する際、加圧成形した成形体と
して挿入するので金属管への充填密度が高くなり、ボア
やクラックが発生しにくい。また、成形体中に補強材を
埋設することによりさらに、ボアやクラックを発生しに
くくすることができる。さらにシース材をエツチングし
て熱処理した線材でも、内部の補強材があるため、この
線材をコイル状に巻回すことができる。
(Function) When the oxide superconducting wire manufactured according to the present invention is filled with oxide superconductor powder into a metal tube, it is inserted as a press-formed compact, so the filling density in the metal tube is high, and the bore is increased. and cracks are less likely to occur. Further, by embedding a reinforcing material in the molded body, it is possible to further reduce the occurrence of bores and cracks. Furthermore, even if the sheath material is etched and heat treated, the wire can be wound into a coil because there is an internal reinforcing material.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例 まず、BaCO3粉末2n+o1%、Y2O3粉末0,
5a+olX、 CuO粉末3m−01%を充分混合し
、混合物を900℃で48時間焼成した後粉砕した。次
いで、この粉末原料を大気中700℃で24時間熱処理
して酸素空席に酸素を導入した後、ボールミルを用いて
粉砕し、分級して平均粒径2μm、直径対厚さの比が3
〜5のペロプスカイト型の酸化物超電導体粉末を得た。
Example First, BaCO3 powder 2n+o1%, Y2O3 powder 0,
5a+olX and 3m-01% of CuO powder were thoroughly mixed, the mixture was calcined at 900°C for 48 hours, and then pulverized. Next, this powder raw material was heat-treated at 700°C in the atmosphere for 24 hours to introduce oxygen into the oxygen vacancies, and then pulverized using a ball mill and classified to obtain particles with an average particle size of 2 μm and a diameter-to-thickness ratio of 3.
A perovskite-type oxide superconductor powder of No. 5 was obtained.

次に、得られた酸化物超電導体粉末を金型を用い1【パ
ノの圧力で、直径19n、長さ10nの寸法を有し、軸
方向に直径1.2nの穴を4個半径の1/2の位置に等
間隔で形成した円筒体を加圧成形した。
Next, the obtained oxide superconductor powder was molded using a mold with a pressure of 1 [Pano], having dimensions of 19 nm in diameter and 10 nm in length, and 4 holes with a diameter of 1.2 nm in the axial direction. Cylindrical bodies formed at equal intervals at /2 positions were pressure molded.

次に、この成形体10個を、前記穴に直径 11mの銀
線を通して連結した状態で、外径2011、内径151
1、長さ100mmの一端を銀材により封止した鎖管中
に挿入し、他端に銀材の栓をした後、常温でスェージン
グマシンにより根管外から酸化物超電導体粉末をつき固
め、この後外径2m11にまで冷間で線引きした後厚さ
Inにまで偏平に圧縮した。
Next, ten of these molded bodies were connected by passing a silver wire with a diameter of 11 m through the holes, and the outer diameter was 2011 and the inner diameter was 151.
1. Insert one end of the 100 mm length into a canal sealed with a silver material, plug the other end with a silver material, and compact the oxide superconductor powder from outside the root canal using a swaging machine at room temperature. After that, it was cold drawn to an outer diameter of 2 m11, and then compressed into a flat shape to a thickness of In.

しかる後、酸素中950℃で24時間熱処理して焼成し
た後、600℃からは1℃/分で徐冷して超電導線材を
得た。
Thereafter, it was heat-treated and fired in oxygen at 950°C for 24 hours, and then slowly cooled from 600°C at a rate of 1°C/min to obtain a superconducting wire.

この酸化物超電導体線材の臨界温度は87K、臨界電流
密度はl100A/c/であった。
The critical temperature of this oxide superconductor wire was 87 K, and the critical current density was 1100 A/c/.

一方、実施例と同じ根管内に、酸化物超電導体粉末を直
接充填し実施例と同一条件で減面加工を施し、酸素中で
熱処理して得た酸化物超電導体の臨界電流密度は200
A/cJでありた。
On the other hand, the critical current density of the oxide superconductor obtained by filling the same root canal as in the example directly with oxide superconductor powder, subjecting it to area reduction processing under the same conditions as in the example, and heat-treating it in oxygen is 200.
It was A/cJ.

[発明の効果] 以上説明したように、本発明により製造された酸化物超
電導線は、酸化物超電導体粉末を金属管に充填する際、
加圧成形した成形体として挿入するので充填密度が高く
なり、ボアやクラックが発生しにくい。また、成形体中
に補強材を埋設することによりさらに、ボアやクラック
は発生しにくくすることができ、これによって高い臨界
電流密度を得ることができる。ざらにシース材を除去し
て熱処理する場合、内部に補強材があると、コイル状に
巻回すことができ、実用上有益である。
[Effects of the Invention] As explained above, in the oxide superconducting wire manufactured by the present invention, when filling a metal tube with oxide superconductor powder,
Since it is inserted as a press-formed compact, the packing density is high, making it difficult for bores and cracks to occur. Further, by embedding a reinforcing material in the molded body, it is possible to further reduce the occurrence of bores and cracks, thereby making it possible to obtain a high critical current density. When the sheath material is roughly removed and heat treated, if there is a reinforcing material inside, it can be wound into a coil shape, which is useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は、それぞれ本発明において金属管
内に酸化物超電導体の成形体を挿入する状況を示す斜視
図である。 1・・・・・・・・・金属管 2a〜2g・・・酸化物超電導体の成形体3a〜3C・
・・補強材 出願人     株式会社 東芝 代理人弁理士  須 山 佐 − 第1図       第2図 第3図       第4図 第7図
FIGS. 1 to 7 are perspective views each showing a state in which a molded body of an oxide superconductor is inserted into a metal tube in the present invention. 1... Metal tubes 2a to 2g... Formed bodies of oxide superconductor 3a to 3C.
...Reinforcing material applicant Toshiba Corporation Patent attorney Sa Suyama - Figure 1 Figure 2 Figure 3 Figure 4 Figure 7

Claims (10)

【特許請求の範囲】[Claims] (1)酸化物超電導体粉末を加圧成形してなる円柱体も
しくは加圧成形後熱処理した焼結体を金属管内に挿入す
る工程と、この金属管に減面加工を施す工程と、このま
ま、もしくは前記金属管を除去した後酸素雰囲気中で熱
処理する工程とを有することを特徴とする酸化物超電導
線の製造方法。
(1) A step of inserting a cylindrical body formed by pressure molding oxide superconductor powder or a sintered body heat-treated after pressure molding into a metal tube, a step of subjecting this metal tube to surface reduction processing, and as it is, Alternatively, a method for manufacturing an oxide superconducting wire, comprising a step of heat-treating in an oxygen atmosphere after removing the metal tube.
(2)前記加圧成形の圧力が、1〜5t/cm^2であ
ることを特徴とする特許請求の範囲第1項記載の酸化物
超電導線の製造方法。
(2) The method for manufacturing an oxide superconducting wire according to claim 1, wherein the pressure of the pressure forming is 1 to 5 t/cm^2.
(3)前記円柱体は、内部に補強材が埋入されているこ
とを特徴とする特許請求の範囲第1項または第2項記載
の酸化物超電導線の製造方法。
(3) The method for manufacturing an oxide superconducting wire according to claim 1 or 2, wherein the cylindrical body has a reinforcing material embedded therein.
(4)補強材が、銀または銀合金からなることを特徴と
する特許請求の範囲第1項ないし第3項のいずれか1項
記載の酸化物超電導線の製造方法。
(4) The method for producing an oxide superconducting wire according to any one of claims 1 to 3, wherein the reinforcing material is made of silver or a silver alloy.
(5)前記円柱体は複数個が直列に金属管内に挿入され
ることを特徴とする特許請求の範囲第1項ないし第4項
のいずれか1項記載の酸化物超電導線の製造方法。
(5) The method for manufacturing an oxide superconducting wire according to any one of claims 1 to 4, wherein a plurality of the cylindrical bodies are inserted in series into a metal tube.
(6)前記円柱体は、これを軸方向に複数個に分割した
形状のユニットを円柱状に揃えたものであることを特徴
とする特許請求の範囲第1項ないし第5項のいずれか1
項記載の酸化物超電導線の製造方法。
(6) The cylindrical body is formed by dividing the cylindrical body into a plurality of units in the axial direction and arranging them in a cylindrical shape.
A method for manufacturing an oxide superconducting wire as described in .
(7)前記金属管の除去は、エッチングにより行われる
ことを特徴とする特許請求の範囲第1項ないし第6項の
いずれか1項記載の酸化物超電導線の製造方法。
(7) The method for manufacturing an oxide superconducting wire according to any one of claims 1 to 6, wherein the metal tube is removed by etching.
(8)酸化物超電導体は、Y、Laおよび希土類元素を
含有するペロブスカイト型の酸化物超電導体であること
を特徴とする特許請求の範囲第1項ないし第6項のいず
れか1項記載の酸化物超電導線の製造方法。
(8) The oxide superconductor according to any one of claims 1 to 6, wherein the oxide superconductor is a perovskite-type oxide superconductor containing Y, La, and a rare earth element. Method for manufacturing oxide superconducting wire.
(9)酸化物超電導体は、Ln元素(Lnは、Y)La
および希土類元素から選ばれた少なくとも1種の元素)
、BaおよびCuを原子比で実質的に1:2:3の割合
で含有することを特徴とする特許請求の範囲第1項ない
し第8項のいずれか1項記載の酸化物超電導線の製造方
法。
(9) The oxide superconductor consists of Ln element (Ln is Y)La
and at least one element selected from rare earth elements)
, Ba and Cu in an atomic ratio of substantially 1:2:3, according to any one of claims 1 to 8. Method.
(10)酸化物超電導体は、LnBa_2Cu_3O_
7_−_δ(δは酸素欠陥を表わす)で表わされる酸素
欠陥型ペロブスカイト構造を有することを特徴とする特
許請求の範囲第1項ないし第9項のいずれか1項記載の
酸化物超電導線の製造方法。
(10) The oxide superconductor is LnBa_2Cu_3O_
Production of an oxide superconducting wire according to any one of claims 1 to 9, which has an oxygen-deficient perovskite structure represented by 7_-_δ (δ represents an oxygen defect). Method.
JP62321724A 1987-03-13 1987-12-19 Manufacturing method of oxide superconducting wire Expired - Lifetime JP2592872B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP62321724A JP2592872B2 (en) 1987-12-19 1987-12-19 Manufacturing method of oxide superconducting wire
DE3855911T DE3855911T2 (en) 1987-03-13 1988-03-09 Superconducting wire and process for its manufacture
DE3855912T DE3855912T2 (en) 1987-03-13 1988-03-09 Superconducting wire and process for its manufacture
DE3855717T DE3855717T3 (en) 1987-03-13 1988-03-09 Superconducting wire and process for its production
EP92201690A EP0505015B1 (en) 1987-03-13 1988-03-09 Superconducting wire and method of manufacturing the same
EP92201691A EP0503746B1 (en) 1987-03-13 1988-03-09 Superconducting wire and method of manufacturing the same
EP88302050.5A EP0282286B2 (en) 1987-03-13 1988-03-09 Superconducting wire and method of manufacturing the same
CN88101210A CN1035139C (en) 1987-03-13 1988-03-12 Compound superconductive wire and manufacturing same
US08/463,738 US6170147B1 (en) 1987-03-13 1995-06-05 Superconducting wire and method of manufacturing the same
US08/463,777 US5935911A (en) 1987-03-13 1995-06-05 Superconducting wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62321724A JP2592872B2 (en) 1987-12-19 1987-12-19 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH01163914A true JPH01163914A (en) 1989-06-28
JP2592872B2 JP2592872B2 (en) 1997-03-19

Family

ID=18135730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62321724A Expired - Lifetime JP2592872B2 (en) 1987-03-13 1987-12-19 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP2592872B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311516A (en) * 1988-06-08 1989-12-15 Fujikura Ltd Manufacture of superconducting wire made of oxide
JPH01311517A (en) * 1988-06-08 1989-12-15 Fujikura Ltd Manufacture of superconducting wire made of oxide
JP2011124575A (en) * 2009-12-09 2011-06-23 Bruker Biospin Ag Superconductor with improved mechanical strength

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64617A (en) * 1987-02-28 1989-01-05 Sumitomo Electric Ind Ltd Manufacture of composite oxide superconducting wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64617A (en) * 1987-02-28 1989-01-05 Sumitomo Electric Ind Ltd Manufacture of composite oxide superconducting wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311516A (en) * 1988-06-08 1989-12-15 Fujikura Ltd Manufacture of superconducting wire made of oxide
JPH01311517A (en) * 1988-06-08 1989-12-15 Fujikura Ltd Manufacture of superconducting wire made of oxide
JP2011124575A (en) * 2009-12-09 2011-06-23 Bruker Biospin Ag Superconductor with improved mechanical strength

Also Published As

Publication number Publication date
JP2592872B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
US6170147B1 (en) Superconducting wire and method of manufacturing the same
JPH09185916A (en) Manufacture of composite oxide ceramic superconducting wire
US6218340B1 (en) Method of manufacturing superconductors including isostatic pressing
JPH01163914A (en) Manufacture of oxide superconductive wire
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPS63276819A (en) Manufacture of ceramic superconductive filament
JPS63279512A (en) Superconductor wire rod and its manufacture
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JP2590157B2 (en) Manufacturing method of superconductor wire
JPS63279513A (en) Superconductor wire rod and its manufacture
JP2644245B2 (en) Oxide superconducting wire
JPH01308602A (en) Manufacture of oxide super conductor
JP2556545B2 (en) Method for manufacturing oxide superconducting wire
AU742588B2 (en) Cryogenic deformation of ceramic superconductors
JPH01128317A (en) Manufacture of superconductive wire material
JPH01162310A (en) Manufacture of oxide superconducting power lead wire
JPH05274933A (en) Manufacture of oxide superconducting wire material
JPH01163915A (en) Manufacture of oxide superconductive wire
JPH01119002A (en) Superconductor coil and manufacture thereof
JPH0644842A (en) Manufacture of multilayer ceramic superconductor
JPH05190035A (en) Manufacture of ceramics superconductive conductor
JPH01320711A (en) Manufacture of superconductive compact in oxide line
JPH01157455A (en) Production of oxide superconducting sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term