JPH01162310A - Manufacture of oxide superconducting power lead wire - Google Patents

Manufacture of oxide superconducting power lead wire

Info

Publication number
JPH01162310A
JPH01162310A JP62321710A JP32171087A JPH01162310A JP H01162310 A JPH01162310 A JP H01162310A JP 62321710 A JP62321710 A JP 62321710A JP 32171087 A JP32171087 A JP 32171087A JP H01162310 A JPH01162310 A JP H01162310A
Authority
JP
Japan
Prior art keywords
oxide superconducting
lead wire
power lead
oxide superconductor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62321710A
Other languages
Japanese (ja)
Inventor
Minoru Tanaka
実 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62321710A priority Critical patent/JPH01162310A/en
Publication of JPH01162310A publication Critical patent/JPH01162310A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the title oxide superconducting power lead wire having high critical current density by a method wherein oxide superconducting powder is filled in a metal tube, the powder is calcined, the oxide superconducting material on the part where a metal film was removed is brought into the state of high density, and the quantity of generation of Joule heat is reduced. CONSTITUTION:Oxide superconducting powder is filled in a metal tube having low electric resistance and excellent oxidation-resistant property, and after an area-reducing processing has been conducted, the powder is calcinated. After the calcinating operation has been conducted, the metal film is removed excluding the part which is used as a terminal. Subsequently, the oxide superconducting material on the metal film removed part is brought into the state of high density. The metal having low electric resistance and excellent oxidation-resistant property is silver. The oxide superconducting material is a perovskite type oxide superconducting substance containing a rare-earth element. As a result, the generating amount of Joule heat can be reduced, and the oxide superconducting power lead wire having high critical current density can be obtained.

Description

【発明の詳細な説明】 [発明め目的] (産業上の利用分野) 本発明は、酸化物超電導体を用いたパワーリード線の製
造方法に係り、特に高い臨界電流密度が得られる酸化物
超電導パワーリード線の製造方法に関する。
[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing a power lead wire using an oxide superconductor, and particularly relates to a method for manufacturing a power lead wire using an oxide superconductor, which can obtain a particularly high critical current density. The present invention relates to a method of manufacturing a power lead wire.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(Z、Phys、B Condensed Mat
ter64、189−193(1986))。その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥ペロブスカイト型(LnBa2Cu3O.δ型)(
6ハitt素欠陥t[:b L通常1以下、Lnは、Y
、 La、 Sc、 Nd、 Sm、 Eu、 Gd。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. (Z, Phys, B Condensed Mat
ter64, 189-193 (1986)). Among them, defective perovskite type (LnBa2Cu3O.δ type) with oxygen defects represented by Y-Ba-Cu-0 system (
6-hit elementary defect t[:b L usually 1 or less, Ln is Y
, La, Sc, Nd, Sm, Eu, Gd.

Dy1tlo、Er、 Tm、 WbおよびLuから選
ばれた少なくとも1種の元素、Baの一部はSr等で置
換可能)の酸化物超電導体は、臨界湿度が90に以上と
液体窒素以上の高い温度を示すため非常に有望な材料と
して注目されティる( Phys、 Rev、 Let
t、Vol、58No、 9.908−910 >。
At least one element selected from Dy1tlo, Er, Tm, Wb, and Lu (some of Ba can be replaced with Sr, etc.) oxide superconductor has a critical humidity of 90 or higher and a high temperature higher than that of liquid nitrogen. It is attracting attention as a very promising material because it shows
t, Vol, 58 No. 9.908-910>.

この酸化物超電導体を線材化するにあたっては、銀管の
ような常電導金属管に酸化物超電導体を充填して伸線加
工、焼成、酸素導入のための熱処理を施して得るという
方法がとられていた。
A common method for making wire from this oxide superconductor is to fill a normal-conducting metal tube such as a silver tube with the oxide superconductor and subject it to wire drawing, firing, and heat treatment to introduce oxygen. It was getting worse.

しかしながら、従来の酸化物超電導線材を、酸化物超電
導体を用いた導電部材間あるいは酸化物超電導体を用い
た導電部材と他の導体を用いた導電部材間とを電気的に
接続するためのパワーリード線として用いた場合、常電
導金属と酸化物超電導体との接触抵抗による発熱により
パワーリード線の超電導特性が低下し、所望の電流を印
加することが困難であるという問題があった。またこの
発熱は、冷媒の蒸発を促進して冷却効果を低下させると
いう問題もあった。
However, the power required to electrically connect conventional oxide superconducting wires between conductive members using oxide superconductors or between conductive members using oxide superconductors and conductive members using other conductors is insufficient. When used as a lead wire, there was a problem in that the superconducting properties of the power lead wire deteriorated due to heat generation due to contact resistance between the normal conducting metal and the oxide superconductor, making it difficult to apply a desired current. Further, this heat generation has the problem of accelerating evaporation of the refrigerant and reducing the cooling effect.

(発明が解決しようとする問題点) このように、従来の酸化物超電導線材をパワーリード線
として用いた場合、常電導金属と酸化物超電導体との接
触抵抗による発熱によりパワーリード線の超電導特性が
低下して、所望の電流を印加することが困難であるとい
う問題があった。
(Problems to be Solved by the Invention) As described above, when a conventional oxide superconducting wire is used as a power lead wire, heat generation due to the contact resistance between the normal conducting metal and the oxide superconductor causes the power lead wire to have superconducting properties. There is a problem in that the current decreases, making it difficult to apply a desired current.

また発熱により、冷媒の冷却効果が低下するという問題
もあった。
There is also the problem that the cooling effect of the refrigerant is reduced due to heat generation.

本発明はかかる従来の難点を解決すべくなされたもので
、リード端子と酸化物超電導体との接触抵抗による発熱
を抑制して高い臨界電流密度が得られる酸化物超電導パ
ワーリード線の製造方法を提供することを目的とする。
The present invention has been made to solve these conventional problems, and provides a method for manufacturing an oxide superconducting power lead wire that can suppress heat generation due to contact resistance between the lead terminal and the oxide superconductor and obtain a high critical current density. The purpose is to provide.

[発明の構成] (問題点を解決するための手段) すなわち、本発明の酸化物超電導パワーリード線の製造
方法は、低電気抵抗であって耐酸化性に優れた金属管内
に酸化物超電導体粉末を充填して減面加工を施した後仮
焼し、仮焼後端子とすべき部分を残して金属被覆を除去
した後、酸素含有雰囲気中で熱処理を施して金属被覆を
除去した部分の酸化物超電導体を緻密化することを特徴
としている。
[Structure of the Invention] (Means for Solving the Problems) That is, the method for manufacturing an oxide superconducting power lead wire of the present invention includes an oxide superconductor in a metal tube having low electrical resistance and excellent oxidation resistance. After filling with powder and performing surface reduction processing, it is calcined, and after calcining, the metal coating is removed leaving the part that should be used as a terminal, and then heat treatment is performed in an oxygen-containing atmosphere to remove the metal coating. It is characterized by densifying the oxide superconductor.

本発明には各種の酸化物超電導体を用いることができる
が、臨界温度の高い、希土類元素含有のペロブスカイト
型の酸化物超電導体を用いた場合に特に実用的効果が大
きい。
Although various oxide superconductors can be used in the present invention, the use of a perovskite-type oxide superconductor containing a rare earth element, which has a high critical temperature, has a particularly large practical effect.

上記の希土類元素を含有しペロブスカイト型構造を有す
る酸化物超電導体は、超電導状態を実現できるものであ
ればよく、LnBa2Cu3O7−δ系!(δは酸素欠
陥を表し通常1以下の数、Lnは、YlLa、 Sc、
 NdXSm、 Eu、 Gd、 Dy、 Ho、Er
、 Tn+、 YbおよびLuから選ばれた少なくとも
1種の元素、Baの一部はSr等で置換可能)等の酸素
欠陥を有する欠陥ペロブスカイト型、5r−La−Cu
−0系等の層状ペロブスカイト型等の広義にペロブスカ
イト型を有する酸化物が例示される。また希土類元素も
広義の定義とし、5cXYおよびLa系を含むものとす
る。
The above-mentioned oxide superconductor containing a rare earth element and having a perovskite structure may be one that can realize a superconducting state, such as the LnBa2Cu3O7-δ system! (δ represents an oxygen defect and is usually a number of 1 or less, Ln is YlLa, Sc,
NdXSm, Eu, Gd, Dy, Ho, Er
, Tn+, at least one element selected from Yb and Lu, a part of Ba can be replaced with Sr, etc.), a defective perovskite type, 5r-La-Cu
Examples include oxides having a perovskite type in a broad sense, such as a layered perovskite type such as -0 type. Rare earth elements are also broadly defined to include 5cXY and La-based elements.

代表的な系としてY−Ba−Cu−0系のほかに、Yを
Eu。
In addition to the Y-Ba-Cu-0 system, Y is replaced by Eu as a typical system.

Dy5tlo、Er、 Tm、 Yb、 Lu等の希土
類で置換した系、5c−Ba−Cu−0系、5r−La
−Cu刊系、さらにSrをBa5Caで置換した系等が
挙げられる。
Dy5tlo, Er, Tm, Yb, system substituted with rare earth elements such as Lu, 5c-Ba-Cu-0 system, 5r-La
Examples include -Cu series, and systems in which Sr is replaced with Ba5Ca.

本発明に用いる酸化物超電導体は、たとえば以下に示す
製造方法により得ることができる。
The oxide superconductor used in the present invention can be obtained, for example, by the manufacturing method shown below.

まず、Y、 Ba5Cu等のペロブスカイト型酸化物超
電導体の構成元素を充分混合する。混合の際には、Y2
O3、CuO等の酸化物を原料として用いることができ
る。また、これらの酸化物のほかに、焼成後酸化物に転
化する炭酸塩、硝酸塩、水酸化物等の化合物を用いても
よい。さらには、共沈法等で得たシュウ酸塩等を用いて
もよい。ペロブスカイト型酸化物超電導体を構成する元
素は、基本的に化学量論比の組成となるように混合する
が、多少製造条件等との関係でずれていても差支えない
。たとえば、Y−Ba−Cu−0系ではY 1 mol
に対しBa 2 mol、Cu 3 molが標準組成
テアルが、実用上はY 1 molに対して、Ba 2
±0.6 mof、Cu 3±0.21llol程度の
ずれは問題ない。
First, the constituent elements of the perovskite oxide superconductor, such as Y and Ba5Cu, are thoroughly mixed. When mixing, Y2
Oxides such as O3 and CuO can be used as raw materials. In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted into oxides after firing may be used. Furthermore, oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there is no problem even if the composition deviates slightly depending on the manufacturing conditions. For example, in the Y-Ba-Cu-0 system, Y 1 mol
The standard composition is Ba 2 mol and Cu 3 mol, but in practice, Ba 2 mol and Cu 3 mol are
A deviation of approximately ±0.6 mof, Cu 3 ±0.21 llol is not a problem.

前述の原料を混合した後、仮焼、粉砕し所望の形状にし
た後、850〜980℃程度で焼成する。仮焼は必ずし
も必要ではない。仮焼および焼成は充分な酸素が供給で
きるような酸素含有雰囲気中で行うことが好ましい。焼
成後、酸素含有雰囲気中3O0〜700℃で保持するか
、600℃以下を徐冷することにより酸化物超電導体の
酸素空席に酸素を導入して、超電導特性を向上させる。
After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape, and then fired at about 850 to 980°C. Calcining is not necessarily necessary. Preferably, calcination and firing are performed in an oxygen-containing atmosphere where sufficient oxygen can be supplied. After firing, oxygen is introduced into the oxygen vacancies in the oxide superconductor by holding it at 3O0 to 700°C in an oxygen-containing atmosphere or slowly cooling it to 600°C or less, thereby improving the superconducting properties.

このようにして得られた酸化物超電導体は、酸素欠陥δ
を有する酸素欠陥型ペロブスカイト構造(LnBa  
Cu  O(δは通常1以下))となる。
The oxide superconductor thus obtained has oxygen defects δ
Oxygen-deficient perovskite structure (LnBa
Cu O (δ is usually 1 or less)).

237−δ なお、BaをSr、 Caの少なくとも1種で置換する
こともでき、ざらにCuの一部をTi、  VXCr、
 HnXFe。
237-δ Note that Ba can also be replaced with at least one of Sr and Ca, and roughly a part of Cu can be replaced with Ti, VXCr,
HnXFe.

C01Ni、 In等で置換することもできる。C01Ni, In, etc. can also be substituted.

この置換量は、超電導特性を低下させない程度の範囲で
適宜設定可能であるが、あまりに多量の置換は超電導特
性を低下させてしまうので80mo 1%以下、さらに
実用上は20mo1%以下程度までとする。
The amount of this substitution can be set as appropriate within a range that does not reduce the superconducting properties, but too much substitution will reduce the superconducting properties, so it should be limited to 80mo 1% or less, and more practically 20mo 1% or less. .

本発明に用いる低電気抵抗であって耐酸化性に優れた金
属は、銀であることが好ましいが、金、白金あるいはこ
れらの合金であってもよい。なお、銀、金、白金および
これらの合金以外の低抵抗金属を用いることも可能であ
るが、この場合は仮焼時の熱処理により酸化物超電導体
の表面に酸素欠損層あるいは汚染層を生じさせて、超電
導特性を劣化させる恐れがあるため好ましくない。
The metal with low electrical resistance and excellent oxidation resistance used in the present invention is preferably silver, but may also be gold, platinum, or an alloy thereof. Note that it is also possible to use low-resistance metals other than silver, gold, platinum, and their alloys, but in this case, an oxygen-deficient layer or a contamination layer is created on the surface of the oxide superconductor by heat treatment during calcination. This is not preferable because it may deteriorate the superconducting properties.

本発明による酸化物超電導パワーリード線の製造は、前
述の酸化物超電導体および低電気抵抗であって耐酸化性
に優れた金属を用いて、たとえば次のようにして行われ
る。
The oxide superconducting power lead wire according to the present invention is manufactured, for example, in the following manner using the aforementioned oxide superconductor and a metal having low electrical resistance and excellent oxidation resistance.

まず、出発原料を焼成して得た酸化物超電導体をボール
ミル等の公知の手段により粉砕し、この酸化物超電導体
粉末を低電気抵抗であって耐酸化性に優れた金属管に充
填して、ダイス、タークスヘッド等を用いて減面加工を
施す。この際、端子と酸化物超電導体との密着性を向上
させるため、通常の減面加工時の圧力より大きい圧力を
加えることが好ましい。また、予め金属管内面の端子対
応部分に溝を切る等の処理を施しておいてもよい。
First, the oxide superconductor obtained by firing the starting material is pulverized by a known means such as a ball mill, and the oxide superconductor powder is filled into a metal tube with low electrical resistance and excellent oxidation resistance. , dies, Turk's head, etc. are used to reduce the surface area. At this time, in order to improve the adhesion between the terminal and the oxide superconductor, it is preferable to apply a pressure higher than that during normal area reduction processing. Furthermore, processing such as cutting a groove in the terminal-corresponding portion of the inner surface of the metal tube may be performed in advance.

次いで850〜980℃で仮焼した後、端子とすべき部
分以外の金属層をエツチング、切削加工等により除去し
、酸素含有雰囲気中850〜980℃で焼成する。この
とき、酸化物超電導体の外周には端子部分を除いて金属
層が無いため、酸化物超電導体は円滑に体積収縮を起し
、緻密化する。
Next, after calcining at 850 to 980°C, the metal layer other than the portion to be used as a terminal is removed by etching, cutting, etc., and fired at 850 to 980°C in an oxygen-containing atmosphere. At this time, since there is no metal layer on the outer periphery of the oxide superconductor except for the terminal portion, the oxide superconductor smoothly undergoes volumetric contraction and becomes densified.

この後、酸素含有雰囲気中3O0〜700℃で保持する
か、600℃以下を1℃/分程度の冷却速度で徐冷して
、酸化物超電導体の結晶構造中の酸素空席に酸素を導入
し、超電導特性を向上させる。
After this, oxygen is introduced into the oxygen vacancies in the crystal structure of the oxide superconductor by holding it at 3O0 to 700°C in an oxygen-containing atmosphere or slowly cooling it to 600°C or less at a cooling rate of about 1°C/min. , improve superconducting properties.

(作 用) 本発明により得られる酸化物超電導パワーリード線では
、端子部分にのみ低電気抵抗金属を用いて酸化物超電導
体と密着させているため、酸化物超電導体と端子との接
触面における接触抵抗による発熱量が少ない。また、パ
ワーリード線本体として酸化物超電導体を用いるため、
通電に伴うジュール熱の発生は端子においてのみであり
、ジュール熱の発生量も少ない。このため、昇温による
超電導特性の低下が抑止される。
(Function) In the oxide superconducting power lead wire obtained by the present invention, since a low electrical resistance metal is used only in the terminal portion and the oxide superconductor is in close contact with the oxide superconductor, the contact surface between the oxide superconductor and the terminal is Less heat generation due to contact resistance. In addition, since oxide superconductor is used as the power lead wire body,
Joule heat is generated only at the terminals due to energization, and the amount of Joule heat generated is small. Therefore, deterioration of superconducting properties due to temperature rise is suppressed.

また、端子部分以外の金属層を除去して焼成することに
より、酸化物超電導体の体積収縮が円滑に行われて緻密
化するため、酸化物超電導体自体の臨界電流密度が向上
する。
Furthermore, by removing and firing the metal layer other than the terminal portion, the volume of the oxide superconductor is smoothly contracted and densified, so that the critical current density of the oxide superconductor itself is improved.

したがって、端子と酸化物超電導体との接触抵抗による
発熱が抑制された、高い臨界電流密度を有する酸化物超
電導パワーリード線が得られる。
Therefore, an oxide superconducting power lead wire having a high critical current density and suppressing heat generation due to contact resistance between the terminal and the oxide superconductor can be obtained.

(実施例) 以下、本発明の実施例について図面を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

実施例 まず、酸化物超電導体の原料として8aC03粉末、Y
2O3粉末、CuO粉末を用い、これらをY:Ba:C
u=1:2:3のモル比となるように調合し、充分混合
した後大気中900℃で8時間仮焼した。次いで、得ら
れた仮焼物をボールミルを用いて粉砕して、酸化物超電
導体粉末を得、この酸化物超電導体粉末を内面の両端に
螺旋状の溝を有する外径20mm。
Example First, 8aC03 powder, Y
Using 2O3 powder and CuO powder, these are Y:Ba:C
The mixtures were prepared in a molar ratio of u=1:2:3, thoroughly mixed, and then calcined in the air at 900° C. for 8 hours. Next, the obtained calcined product was pulverized using a ball mill to obtain oxide superconductor powder, and this oxide superconductor powder was milled into a powder having an outer diameter of 20 mm with spiral grooves at both ends of the inner surface.

内径15mm、長さ70mmの一端を銀材により封止し
た銀層に充填した後銀材により栓をした。この後、ダイ
スを用いて外径が1mmになるまで減面加工を施し、9
50℃で5時間熱板焼した後長さ3Ommに切断し、両
端から5mmの銀層を端子として残して伯の銀層を11
 N 03を用いて除去して棒状体とした。
One end of the tube, which had an inner diameter of 15 mm and a length of 70 mm, was sealed with a silver material, filled with a silver layer, and then plugged with a silver material. After this, surface reduction processing was performed using a die until the outer diameter was 1 mm, and 9
After baking on a hot plate for 5 hours at 50°C, cut into pieces of 30 mm in length, leaving 5 mm of silver layers from both ends as terminals, and attaching 11 square silver layers.
Bars were removed using N 03 .

しかる後、棒状体を酸素含有雰囲気中950℃で10時
間熱処理した後、600℃以下を1℃/分で徐冷して酸
化物超電導体の結晶構造中の酸素空席に酸素を導入し、
超電導特性を向上させて酸化物超電導パワーリード線を
得た。
Thereafter, the rod-shaped body is heat-treated at 950° C. for 10 hours in an oxygen-containing atmosphere, and then slowly cooled to 600° C. or lower at a rate of 1° C./min to introduce oxygen into the oxygen vacancies in the crystal structure of the oxide superconductor.
We obtained an oxide superconducting power lead wire with improved superconducting properties.

この酸化物超電導パワーリード線の90Kにおける臨界
電流密度は103A/cd、4.4への通電時における
総発熱量は0.1m−であった。
The critical current density of this oxide superconducting power lead wire at 90K was 103 A/cd, and the total heat generation amount when energized to 4.4 was 0.1 m-.

[発明の効果] 以上説明したように、本発明による得られる酸化物超電
導パワーリード線は、酸化物超電導体と端子との接触抵
抗による発熱量が少なく、酸化物超電導体自体の臨界電
流密度も高い。
[Effects of the Invention] As explained above, the oxide superconducting power lead wire obtained according to the present invention has a small amount of heat generated due to the contact resistance between the oxide superconductor and the terminal, and has a low critical current density of the oxide superconductor itself. expensive.

また、通電に伴うジュール熱の発生量も少ない。In addition, the amount of Joule heat generated during energization is also small.

したがって、本発明を用いることにより、リード端子と
酸化物超電導体との接触抵抗による発熱に起因する超電
導特性の低下が少なく、また、発熱に起因する冷媒の冷
却効果の低下も少ない高臨界電流密度の酸化物超電導パ
ワーリード線を得ることができる。
Therefore, by using the present invention, there is less deterioration in superconducting properties due to heat generation due to contact resistance between the lead terminal and the oxide superconductor, and there is also less decrease in the cooling effect of the refrigerant due to heat generation at a high critical current density. oxide superconducting power lead wires can be obtained.

出願人     株式会社 東芝 代理人弁理士  須 山 佐 −Applicant: Toshiba Corporation Representative Patent Attorney Su Yamasa -

Claims (5)

【特許請求の範囲】[Claims] (1)低電気抵抗であつて耐酸化性に優れた金属管内に
酸化物超電導体粉末を充填して減面加工を施した後仮焼
し、仮焼後端子とすべき部分を残して金属被覆を除去し
た後、酸素含有雰囲気中で熱処理を施して前記金属被覆
を除去した部分の酸化物超電導体を緻密化することを特
徴とする酸化物超電導パワーリード線の製造方法。
(1) A metal tube with low electrical resistance and excellent oxidation resistance is filled with oxide superconductor powder, subjected to area reduction processing, and then calcined, leaving the part to be used as a terminal after calcining. A method for producing an oxide superconducting power lead wire, which comprises removing the coating and then performing heat treatment in an oxygen-containing atmosphere to densify the oxide superconductor in the portion from which the metal coating has been removed.
(2)低電気抵抗であって耐酸化性に優れた金属は、銀
であることを特徴とする特許請求の範囲第1項記載の酸
化物超電導パワーリード線の製造方法。
(2) The method for manufacturing an oxide superconducting power lead wire according to claim 1, wherein the metal having low electrical resistance and excellent oxidation resistance is silver.
(3)酸化物超電導体は、希土類元素を含有するペロブ
スカイト型の酸化物超電導体であることを特徴とする特
許請求の範囲第1項または第2項記載の酸化物超電導パ
ワーリード線の製造方法。
(3) The method for manufacturing an oxide superconducting power lead wire according to claim 1 or 2, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element. .
(4)酸化物超電導体は、Ln元素(Lnは、希土類元
素から選ばれた少なくとも1種の元素)、BaおよびC
uを原子比で実質的に1:2:3の割合で含有すること
を特徴とする特許請求の範囲第1項ないし第3項のいず
れか1項記載の酸化物超電導パワーリード線の製造方法
(4) The oxide superconductor contains Ln element (Ln is at least one element selected from rare earth elements), Ba and C
The method for producing an oxide superconducting power lead wire according to any one of claims 1 to 3, characterized in that the oxide superconducting power lead wire contains u in an atomic ratio of substantially 1:2:3. .
(5)酸化物超電導体は、LnBa_2Cu_3O_7
_−_δ(δは酸素欠陥を表わす)で表わされる酸素欠
陥型ペロブスカイト構造を有することを特徴とする特許
請求の範囲第1項ないし第4項のいずれか1項記載の酸
化物超電導パワーリード線の製造方法。
(5) The oxide superconductor is LnBa_2Cu_3O_7
The oxide superconducting power lead wire according to any one of claims 1 to 4, which has an oxygen-deficient perovskite structure represented by _-_δ (δ represents an oxygen defect). manufacturing method.
JP62321710A 1987-12-19 1987-12-19 Manufacture of oxide superconducting power lead wire Pending JPH01162310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62321710A JPH01162310A (en) 1987-12-19 1987-12-19 Manufacture of oxide superconducting power lead wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62321710A JPH01162310A (en) 1987-12-19 1987-12-19 Manufacture of oxide superconducting power lead wire

Publications (1)

Publication Number Publication Date
JPH01162310A true JPH01162310A (en) 1989-06-26

Family

ID=18135568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62321710A Pending JPH01162310A (en) 1987-12-19 1987-12-19 Manufacture of oxide superconducting power lead wire

Country Status (1)

Country Link
JP (1) JPH01162310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319206A (en) * 1989-06-15 1991-01-28 Furukawa Electric Co Ltd:The Conductor for current lead

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319206A (en) * 1989-06-15 1991-01-28 Furukawa Electric Co Ltd:The Conductor for current lead

Similar Documents

Publication Publication Date Title
JPH01162310A (en) Manufacture of oxide superconducting power lead wire
EP0286372B1 (en) Oxide superconductor and manufacturing method thereof
JP2509642B2 (en) Superconducting power lead manufacturing method
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2603688B2 (en) Superconducting material reforming method
JP2592872B2 (en) Manufacturing method of oxide superconducting wire
JP2554659B2 (en) Composite oxide superconductor wire connection
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JP2644245B2 (en) Oxide superconducting wire
JP2563391B2 (en) Superconducting power lead
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JPH01151169A (en) Oxide superconducting member
JPS63291311A (en) Superconducting wire
JP2549669B2 (en) Oxide superconducting wire
JPH01143308A (en) Oxide superconducting coil
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2597578B2 (en) Superconductor manufacturing method
JP2746881B2 (en) Superconducting material manufacturing method
JPH06251929A (en) Manufacture of oxide superconducting coil
JPH01119002A (en) Superconductor coil and manufacture thereof
JPH01157455A (en) Production of oxide superconducting sintered body
JPH01163907A (en) Oxide superconductive wire
JPH01161627A (en) Manufacture of oxide superconducting wire
JPH02296760A (en) Porcelain composition of oxide superconductor and its production
JPH0764625B2 (en) Superconducting material