JPH06251929A - Manufacture of oxide superconducting coil - Google Patents
Manufacture of oxide superconducting coilInfo
- Publication number
- JPH06251929A JPH06251929A JP3505393A JP3505393A JPH06251929A JP H06251929 A JPH06251929 A JP H06251929A JP 3505393 A JP3505393 A JP 3505393A JP 3505393 A JP3505393 A JP 3505393A JP H06251929 A JPH06251929 A JP H06251929A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- oxide
- heat treatment
- oxidation
- oxide superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高磁界を発生する酸化
物超電導コイルの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide superconducting coil which generates a high magnetic field.
【0002】[0002]
【従来の技術】最近高エネルギ−物理、磁気浮上列車、
核磁気共鳴装置、基礎物性研究などの分野において、運
転コストの低い超電導コイル、磁気シ−ルド材の必要性
が高まっている。従来の超電導コイルは臨界温度の低い
合金、あるいは金属間化合物超電導体からなる超電導線
によって製作されている。1987年になって、非常に
高い臨界温度を持った酸化物超電導体が発見され、それ
は液体窒素温度(77K)でも超電導性を示した。この
酸化物超電導体は、例えば(Bi1-XPbX)SrYCaZ
CuWOPの組成で代表される酸化物である。ここでXは
0から0.4、Y、Z、Wは0.5から2である。これ
は通常Bi2O3、PbO、CuO、SrCO3、CaC
O3の各粉末を混合、成形後熱処理して作製される。な
お、この分野の製造技術については、例えば刊行物
{J.J.A.P.,27(1988)L1041}に
記載されている。すなわち、従来から高い臨界温度を持
つ酸化物超電導線材は、Bi―Pb―Sr―Ca―Cu
―O系酸化物を例にとれば、Bi2O3、PbO、SrC
O3、CaCO3、CuOの各粉末を混合し、仮焼、成形
した後、金属パイプに挿入し、線材に加工した後、熱処
理して作製される。さらに、コイルは、アルミナ等の絶
縁テープ、シートを挟み込みながら、パンケーキ状に巻
いて作製され、その絶縁テープ、シートは、コイル巻の
際の曲げ応力に耐えるようにアルミナファイバ等で編組
されたフレキシブルなものを用いるのが一般的である。2. Description of the Related Art Recently, high energy physics, magnetic levitation trains,
In fields such as nuclear magnetic resonance apparatus and basic physical property research, there is an increasing need for superconducting coils and magnetic shield materials with low operating costs. The conventional superconducting coil is made of an alloy having a low critical temperature or a superconducting wire made of an intermetallic compound superconductor. In 1987, an oxide superconductor with a very high critical temperature was discovered, which showed superconductivity even at liquid nitrogen temperature (77K). This oxide superconductor is, for example, (Bi 1-X Pb X ) Sr Y Ca Z
It is an oxide represented by the composition of Cu W O P. Here, X is 0 to 0.4, Y, Z, and W are 0.5 to 2. This is usually Bi 2 O 3 , PbO, CuO, SrCO 3 , CaC
It is produced by mixing each powder of O 3 and heat-treating after molding. Regarding the manufacturing technology in this field, for example, publications {J. J. A. P. , 27 (1988) L1041}. That is, the conventional oxide superconducting wire having a high critical temperature is Bi-Pb-Sr-Ca-Cu.
Taking an example of an —O-based oxide, Bi 2 O 3 , PbO, SrC
Each powder of O 3 , CaCO 3 , and CuO is mixed, calcined and shaped, inserted into a metal pipe, processed into a wire, and then heat-treated. Further, the coil is manufactured by winding it in a pancake shape while sandwiching an insulating tape or sheet of alumina or the like, and the insulating tape or sheet is braided with alumina fiber or the like so as to withstand bending stress during coil winding. It is common to use a flexible one.
【0003】[0003]
【発明が解決しようとする課題】上記従来の方法で作製
された酸化物超電導線材において、コイルの発生磁界を
向上させるためには絶縁テープの厚みを薄くして、コイ
ルの断面あたりの超電導体の占積率を高くすることが必
要だが、アルミナファイバ等の硬さが原因となり、テー
プあるいはシート形状で薄い絶縁層をアルミナファイバ
で編組することが困難で、そのためにコイルの発生磁界
も低かった。In the oxide superconducting wire produced by the above-mentioned conventional method, in order to improve the magnetic field generated by the coil, the thickness of the insulating tape is reduced so that the superconductor per cross section of the coil is reduced. It is necessary to increase the space factor, but due to the hardness of the alumina fiber or the like, it is difficult to braid a thin insulating layer in a tape or sheet shape with the alumina fiber, and therefore the magnetic field generated by the coil is low.
【0004】本発明は、かかる課題を解決するためにな
されたもので、高い発生磁界を持つ酸化物超電導コイル
の製造方法を得ることを目的とするものである。The present invention has been made to solve the above problems, and an object thereof is to obtain a method for manufacturing an oxide superconducting coil having a high magnetic field generated.
【0005】[0005]
【課題を解決するための手段】本発明の酸化物超電導コ
イルの製造方法は、熱処理により超電導体になる酸化物
線材に、酸化により絶縁性となる常電導金属層を形成す
る工程、コイル状に成形する工程、熱処理して超電導体
を得る工程、および酸化処理する工程を施す方法であ
る。A method of manufacturing an oxide superconducting coil according to the present invention comprises a step of forming a normal conducting metal layer which becomes insulative by oxidation on an oxide wire which becomes a superconductor by heat treatment, and has a coil shape. This is a method of performing a forming step, a heat treatment to obtain a superconductor, and an oxidation treatment step.
【0006】また、酸化により絶縁性となる常電導金属
層を、酸化により絶縁性となる常電導金属粉を含有する
層を形成することにより設ける。Further, the normal conducting metal layer which becomes insulating by oxidation is provided by forming a layer containing a normal conducting metal powder which becomes insulating by oxidation.
【0007】さらに、酸化により絶縁性となる常電導金
属層を、酸化により絶縁性となる常電導金属を蒸着する
ことにより設ける。Further, a normal conductive metal layer which becomes insulating by oxidation is provided by vapor deposition of a normal conductive metal which becomes insulating by oxidation.
【0008】[0008]
【作用】本発明の方法を用いるので、常電導金属層の厚
みは0.1mm未満とすることが可能となり、コイル断
面に占める絶縁層が50%以下と従来と比べ非常に少な
いので、高い発生磁界を持つ酸化物超電導コイルが得ら
れる。Since the method of the present invention is used, the thickness of the normal-conducting metal layer can be made less than 0.1 mm, and the insulating layer occupying the coil cross section is 50% or less, which is very small compared with the conventional one, so that the high generation rate is high. An oxide superconducting coil having a magnetic field is obtained.
【0009】[0009]
実施例1.熱処理して酸化物としたときに、Bi2Sr2
Ca1Cu2O8の組成比になるように配合したBi
2O3、CuOの酸化物、SrCO3、CaCO3の炭酸塩
の原料粉末(純度99.99%、平均粒径〜5μm)を
よく混合した後、700〜850℃で10〜60時間空
気中で仮焼した。この酸化物粉末を、油圧プレスにより
約1000Kg/cm2の荷重を加えて、長さ50m
m、直径5.8mmの円柱状ペレットを作製した。こう
して得られたペレットをAgパイプ(φ9mm×φ6m
m)に挿入し、さらにNbパイプ(φ11.5mm×φ
9.5mm)に挿入し、酸化物―Ag―Nb複合体を得
た。その複合体をスウェージング、線引きにより直径1
mmの線材(Nbを含まない直径0.8mm)を得た。
さらに得られた線材をソレノイド状に巻いて、図1に示
すような直径80mmのコイルを作製した。なお、図1
は、本発明の一実施例に係わる酸化熱処理前のコイルの
構成図であり、図中、1は酸化物、2はAg、3は常電
導金属層のNbである。次に上記コイルを、空気中、8
00〜900℃で10〜120時間、熱処理して本発明
の一実施例による酸化物超電導コイルを得た。このコイ
ルの線材間の絶縁抵抗は充分高かった。また、このコイ
ルの4.2K、磁場中における発生磁界を表1に、線材
のターン数および酸化物超電導体のコイル断面積に占め
る面積率を表2に示す。Example 1. When heat treated to form an oxide, Bi 2 Sr 2
Bi formulated to have a composition ratio of Ca 1 Cu 2 O 8
2 O 3 , CuO oxide, SrCO 3 , CaCO 3 carbonate raw material powder (purity 99.99%, average particle size ~ 5 μm) were mixed well and then in air at 700 to 850 ° C for 10 to 60 hours. It was calcined in. A length of 50 m is obtained by applying a load of about 1000 kg / cm 2 to the oxide powder with a hydraulic press.
A cylindrical pellet having a diameter of m and a diameter of 5.8 mm was produced. The pellets obtained in this way were put into an Ag pipe (φ9mm × φ6m
m), and further Nb pipe (φ11.5mm × φ
9.5 mm) to obtain an oxide-Ag-Nb composite. The composite is swaged and drawn to a diameter of 1
A wire having a diameter of 0.8 mm (a diameter of 0.8 mm not including Nb) was obtained.
Further, the obtained wire was wound in a solenoid shape to manufacture a coil having a diameter of 80 mm as shown in FIG. Note that FIG.
FIG. 3 is a configuration diagram of a coil before an oxidation heat treatment according to an embodiment of the present invention, in which 1 is an oxide, 2 is Ag, and 3 is Nb of a normal-conducting metal layer. Next, the coil is placed in air for 8
Heat treatment was performed at 00 to 900 ° C. for 10 to 120 hours to obtain an oxide superconducting coil according to an example of the present invention. The insulation resistance between the wire rods of this coil was sufficiently high. Table 1 shows the magnetic field generated by this coil in a magnetic field of 4.2 K, and Table 2 shows the number of turns of the wire and the area ratio of the oxide superconductor to the coil cross-sectional area.
【0010】[0010]
【表1】 [Table 1]
【0011】[0011]
【表2】 [Table 2]
【0012】比較例1.実施例1における酸化物とAg
パイプの複合体をスウェージング、線引きと圧延により
直径0.8mmの線材を作製し、従来から用いているア
ルミナファイバ(80%Al2O3―20%SiO2)を
線材に編組(袋編み)し、ソレノイド状に巻いて、実施
例1と同様にしてコイルを作製した。このコイルの線材
間の絶縁抵抗は充分高かった。なお、実施例1と同様の
測定結果を表1および2に示す。Comparative Example 1. Oxide and Ag in Example 1
A pipe composite having a diameter of 0.8 mm is produced by swaging, drawing and rolling a pipe composite, and a conventionally used alumina fiber (80% Al 2 O 3 -20% SiO 2 ) is braided (bag knitting) into the wire. Then, it was wound in the form of a solenoid, and a coil was produced in the same manner as in Example 1. The insulation resistance between the wire rods of this coil was sufficiently high. The measurement results similar to those in Example 1 are shown in Tables 1 and 2.
【0013】なお、実施例1により得たコイルは、比較
例1の絶縁材として従来から使用しているアルミナファ
イバを用いたコイルに比べて、コイル断面積に占める絶
縁材の面積を少なくできたため、高い発生磁界を得るこ
とができた。The coil obtained in Example 1 has a smaller area of insulating material in the coil cross-sectional area than the coil using alumina fiber conventionally used as the insulating material in Comparative Example 1. It was possible to obtain a high generated magnetic field.
【0014】実施例2.熱処理して酸化物としたとき
に、Bi1.6Pb0.4Sr2Ca2Cu2O8の組成比に
なるように配合したBi2O3、PbO、CuOの酸化
物、SrCO3、CaCO3の炭酸塩の原料粉末(純度9
9.99%、平均粒径〜5μm)をよく混合した後、7
00〜850℃で10〜60時間空気中で仮焼した。こ
の酸化物粉末を、油圧プレスにより約1000Kg/c
m2の荷重を加えて、長さ50mm、直径5.8mmの
円柱状ペレットを作成した。こうして得られたペレット
をAgパイプ(φ9mm×φ6mm)に挿入し、線引き
と圧延により幅4.5mm、厚さ0.18mmのテープ
を得た。さらに、厚さ0.05mmの金属Nbテープを
挟み込みながらパンケーキ状に巻いて、図2に示すよう
な直径100mmのコイルを作製した。なお、図2は、
本発明の他の実施例に係わる酸化熱処理前のコイルの構
成図である。次に上記コイルを、空気中、800〜90
0℃で10〜120時間、熱処理して本発明の他の実施
例による酸化物超電導コイルを得た。また、このコイル
の77K、磁場中における発生磁界を表1に、テープの
ターン数および酸化物超電導体のコイル断面積に占める
面積率を表2に示す。Example 2. When the oxide is heat-treated, Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 2 O 8 Bi 2 O 3 were blended so that the composition ratio of, PbO, oxides of CuO, SrCO 3, CaCO 3 Raw powder of carbonate (purity 9
9.99%, average particle size ~ 5 μm) were mixed well and then
It was calcined in air at 00 to 850 ° C for 10 to 60 hours. About 1000 Kg / c of this oxide powder is obtained by a hydraulic press.
By applying a load of m 2 , a cylindrical pellet having a length of 50 mm and a diameter of 5.8 mm was prepared. The pellets thus obtained were inserted into an Ag pipe (φ9 mm × φ6 mm), and drawn and rolled to obtain a tape having a width of 4.5 mm and a thickness of 0.18 mm. Furthermore, a metal Nb tape having a thickness of 0.05 mm was sandwiched and wound in a pancake shape to prepare a coil having a diameter of 100 mm as shown in FIG. In addition, in FIG.
It is a block diagram of the coil before the oxidation heat processing concerning the other Example of this invention. Next, the coil is placed in the air at 800 to 90
Heat treatment was performed at 0 ° C. for 10 to 120 hours to obtain an oxide superconducting coil according to another embodiment of the present invention. Table 1 shows the magnetic field generated by this coil at 77K in a magnetic field, and Table 2 shows the number of turns of the tape and the area ratio of the oxide superconductor to the coil cross-sectional area.
【0015】比較例2.実施例2において、Nbテープ
の代わりに従来から用いているアルミナファイバ(80
%Al2O3―20%SiO2)を編組したテープを挟み
込みながらパンケーキ状に巻いく他は実施例2と同様に
して実施例2と同様なコイルを作製した。なお、実施例
2と同様の測定結果を表1および2に示す。Comparative Example 2. In Example 2, instead of the Nb tape, the alumina fiber (80
% Al 2 O 3 -20% SiO 2 ). A coil similar to that of Example 2 was produced in the same manner as in Example 2 except that a tape braided with (Al 2 O 3 -20% SiO 2 ) was sandwiched and wound in a pancake shape. The measurement results similar to those in Example 2 are shown in Tables 1 and 2.
【0016】なお、実施例2により得たコイルは、比較
例2の絶縁材として従来から使用しているアルミナファ
イバを用いたコイルに比べて、コイル断面積に占める絶
縁材の面積を少なくできたため、高い発生磁界を得るこ
とができた。The coil obtained in Example 2 has a smaller area of the insulating material in the coil cross-sectional area than the coil using alumina fiber conventionally used as the insulating material in Comparative Example 2. It was possible to obtain a high generated magnetic field.
【0017】実施例3.熱処理して酸化物としたとき
に、Bi1.6Pb0.4Sr2Ca2Cu2O8の組成比になる
ように配合したBi2O3、PbO、CuOの酸化物、S
rCO3、CaCO3の炭酸塩の原料粉末(純度99.9
9%、平均粒径〜5μm)をよく混合した後、700〜
850℃で10〜60時間空気中で仮焼した。この酸化
物粉末を、油圧プレスにより約1000Kg/cm2の
荷重を加えて、長さ50mm、直径5.8mmの円柱状
ペレットを作成した。こうして得られたペレットをAg
パイプ(φ9mm×φ6mm)に挿入し、線引きと圧延
により幅4.5mm、厚さ0.18mmのテープを得
た。次に粒径3μmの金属タンタル粉をアルコールに溶
いて上記Agテープ表面に塗り付け、パンケーキ状に巻
いて、図3に示すような直径100mmのコイルを作製
した。なお、図3は、本発明の別の発明の一実施例に係
わる酸化熱処理前のコイルの構成図であり、図中、3は
常電導金属層のTa粉コート面である。次に上記コイル
を、空気中、800〜900℃で10〜120時間、熱
処理して本発明の別の発明の一実施例による酸化物超電
導コイルを得た。また、このコイルの77K、磁場中に
おける発生磁界を表1に、テープのターン数および酸化
物超電導体のコイル断面積に占める面積率を表2に示
す。Embodiment 3. Bi 2 O 3 , PbO, CuO oxides, S, which were compounded so as to have a composition ratio of Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 2 O 8 when heat treated to form oxides.
Raw material powder of rCO 3 and CaCO 3 carbonate (purity 99.9
9%, average particle size ~ 5 μm) and then 700 ~
It was calcined in air at 850 ° C. for 10 to 60 hours. A load of about 1000 kg / cm 2 was applied to the oxide powder by a hydraulic press to form a cylindrical pellet having a length of 50 mm and a diameter of 5.8 mm. The pellets thus obtained are Ag
The tape having a width of 4.5 mm and a thickness of 0.18 mm was obtained by inserting it into a pipe (φ9 mm × φ6 mm) and drawing and rolling it. Next, a metal tantalum powder having a particle diameter of 3 μm was dissolved in alcohol and applied on the surface of the Ag tape and wound in a pancake shape to prepare a coil having a diameter of 100 mm as shown in FIG. 3 is a block diagram of a coil before oxidation heat treatment according to another embodiment of the present invention, in which 3 is a Ta powder coated surface of the normal conducting metal layer. Next, the coil was heat-treated in air at 800 to 900 ° C. for 10 to 120 hours to obtain an oxide superconducting coil according to another example of the present invention. Table 1 shows the magnetic field generated by this coil at 77K in a magnetic field, and Table 2 shows the number of turns of the tape and the area ratio of the oxide superconductor to the coil cross-sectional area.
【0018】実施例3によるコイルは、絶縁材として従
来のアルミナファイバテープを用いた比較例2に比べ
て、コイル断面積に占める絶縁材の面積を少なくできた
結果高い発生磁界を得ることができた。In the coil according to the third embodiment, the area of the insulating material in the coil cross-sectional area can be reduced as compared with the comparative example 2 in which the conventional alumina fiber tape is used as the insulating material, so that a high generated magnetic field can be obtained. It was
【0019】実施例4.熱処理して酸化物としたとき
に、YBa2Cu3O6.5の組成比になるように配合した
Y2O3、CuOの酸化物、BaCO3炭酸塩の原料粉末
(純度99.99%、平均粒径〜5μm)をよく混合し
た後、700〜950℃で10〜60時間空気中で焼成
した。この酸化物粉末にエタノールを加え、ペースト状
にしたものをAgテープに塗り付け、空気中、800〜
1000℃で10〜120時間熱処理した後、CVD法
により塗り付けたペーストの上にAgを約10μm蒸着
し、さらにその上にNbを約50μm蒸着した。得られ
たテープをパンケーキ状に巻いて、図4に示すような直
径100mmのコイルを作製した。なお、図4は、本発
明のさらに別の発明の一実施例に係わる酸化熱処理前の
コイルの構成図であり、図中、3は常電導金属層のNb
粉コート面である。次に上記コイルを、空気中、800
〜1000℃で10〜120時間、熱処理して本発明の
さらに別の発明の一実施例による酸化物超電導コイルを
得た。また、このコイルの77K磁場中における発生磁
界を表1に、テープのターン数および酸化物超電導体の
コイル断面積に占める面積率を表2に示す。Example 4. Raw powder of Y 2 O 3 , CuO oxide, and BaCO 3 carbonate compounded so that the composition ratio of YBa 2 Cu 3 O 6.5 when heat-treated into oxide (purity 99.99%, average (A particle size of ˜5 μm) was thoroughly mixed and then fired in air at 700 to 950 ° C. for 10 to 60 hours. Ethanol was added to this oxide powder, and the paste was applied to an Ag tape, which was then heated to 800-
After heat treatment at 1000 ° C. for 10 to 120 hours, Ag was vapor-deposited by about 10 μm on the paste applied by the CVD method, and Nb was vapor-deposited by about 50 μm on the paste. The obtained tape was wound into a pancake shape to prepare a coil having a diameter of 100 mm as shown in FIG. 4 is a block diagram of a coil before oxidation heat treatment according to another embodiment of the present invention, in which 3 is Nb of the normal conducting metal layer.
It is a powder coated surface. Next, the coil is placed in the air at 800
Heat treatment was performed at ˜1000 ° C. for 10 to 120 hours to obtain an oxide superconducting coil according to another embodiment of the present invention. Table 1 shows the magnetic field generated in the 77K magnetic field of this coil, and Table 2 shows the number of turns of the tape and the area ratio of the oxide superconductor to the coil cross-sectional area.
【0020】実施例4によるコイルは、絶縁材として従
来のアルミナファイバテープを用いたコイルDに比べ
て、コイル断面積に占める絶縁材の面積を少なくできた
結果高い発生磁界を得ることができた。The coil according to Example 4 was able to obtain a high generated magnetic field as a result of being able to reduce the area of the insulating material in the coil cross-sectional area as compared with the coil D using the conventional alumina fiber tape as the insulating material. .
【0021】なお上記実施例では、Bi―Sr―Ca―
Cu―O、Bi―Pb―Sr―Ca―Cu―O、Y―B
a―Cu―O系酸化物について述べたが、それ以外の臨
界温度の高い超電導性を有する酸化物、例えばTl―B
a―Ca―Cu―O酸化物に適用してもよく、また、常
電導金属として、NbおよびTaについて述べたが、線
材に形成可能でかつ酸化により絶縁性を呈するものであ
れば他のものでも使用可能である。さらに上記実施例で
は、熱処理は空気中、800〜1000℃で10〜12
0時間行ったが、熱処理雰囲気の酸素を1%から100
%まで変化させることで、熱処理温度範囲は必ずしもこ
の温度範囲に限定されず、700〜1000℃におい
て、高い発生磁界を得ることができる。なお、上記実施
例では熱処理により超電導体になる酸化物線材を用い、
常電導金属層の酸化と酸化物線材の熱処理を同時に施
し、超電導体と常電導金属の酸化による絶縁層の生成を
同時に行った場合を示したが、超電導体と絶縁層の生成
を別々に行っても良く、また既に酸化物超電導線材の場
合は、熱処理することなく、酸化による絶縁層の形成だ
けで良いことは明かである。In the above embodiment, Bi-Sr-Ca-
Cu-O, Bi-Pb-Sr-Ca-Cu-O, Y-B
Although the a-Cu-O-based oxide has been described, other superconductive oxides having a high critical temperature, such as Tl-B, are used.
Although it may be applied to a-Ca-Cu-O oxide, and Nb and Ta have been described as the normal-conducting metals, other ones can be used as long as they can be formed on a wire and exhibit an insulating property by oxidation. But it can be used. Further, in the above embodiment, the heat treatment is carried out in air at 800 to 1000 ° C. for 10 to 12
It was performed for 0 hours, but the oxygen in the heat treatment atmosphere was changed from 1% to 100
%, The heat treatment temperature range is not necessarily limited to this temperature range, and a high generated magnetic field can be obtained at 700 to 1000 ° C. In the above example, an oxide wire that becomes a superconductor by heat treatment is used,
The case where the superconducting metal layer is oxidized and the oxide wire is heat-treated at the same time to form the insulating layer by oxidizing the superconductor and the normal conducting metal is shown.However, the superconductor and the insulating layer are generated separately. Obviously, in the case of the oxide superconducting wire, it is clear that it is sufficient to form the insulating layer by oxidation without heat treatment.
【0022】[0022]
【発明の効果】本発明は、以上説明した通り、熱処理に
より超電導体になる酸化物線材に、酸化により絶縁性と
なる常電導金属層を形成する工程、コイル状に成形する
工程、熱処理して超電導体を得る工程、および酸化処理
する工程を施すことにより、高い発生磁界を持つ酸化物
超電導コイルの製造方法を得ることができる。また、酸
化により絶縁性となる常電導金属層を、酸化により絶縁
性となる常電導金属粉を含有する層を形成することによ
り設けたり、酸化により絶縁性となる常電導金属を蒸着
することにより設けることができる。As described above, according to the present invention, a step of forming a normal conductive metal layer which becomes insulative by oxidation on an oxide wire which becomes a superconductor by heat treatment, a step of forming into a coil shape, and a heat treatment. By performing the step of obtaining the superconductor and the step of performing the oxidation treatment, it is possible to obtain a method for manufacturing an oxide superconducting coil having a high generated magnetic field. Further, by providing a normal conductive metal layer that becomes insulative by oxidation, by forming a layer containing a normal conductive metal powder that becomes insulative by oxidation, or by depositing a normal conductive metal that becomes insulative by oxidation. Can be provided.
【図1】本発明の一実施例に係わる酸化熱処理前のコイ
ルの構成図である。FIG. 1 is a configuration diagram of a coil before an oxidation heat treatment according to an embodiment of the present invention.
【図2】本発明の他の実施例に係わる酸化熱処理前のコ
イルの構成図である。FIG. 2 is a configuration diagram of a coil before an oxidation heat treatment according to another embodiment of the present invention.
【図3】本発明の他の実施例に係わる酸化熱処理前のコ
イルの構成図である。FIG. 3 is a configuration diagram of a coil before an oxidation heat treatment according to another embodiment of the present invention.
【図4】本発明のさらに他の実施例に係わる酸化熱処理
前のコイルの構成図である。FIG. 4 is a configuration diagram of a coil before an oxidation heat treatment according to still another embodiment of the present invention.
1 酸化物 3 常電導金属層 1 Oxide 3 Normal conductive metal layer
Claims (3)
に、酸化により絶縁性となる常電導金属層を形成する工
程、コイル状に成形する工程、熱処理して超電導体を得
る工程、および酸化処理する工程を施す酸化物超電導コ
イルの製造方法。1. A step of forming a normal conducting metal layer which becomes insulating by oxidation on an oxide wire which becomes a superconductor by heat treatment, a step of forming into a coil shape, a step of heat treatment to obtain a superconductor, and an oxidation treatment. A method of manufacturing an oxide superconducting coil, which comprises the step of:
により絶縁性となる常電導金属層を、酸化により絶縁性
となる常電導金属粉を含有する層を形成することにより
設けることを特徴とする酸化物超電導コイルの製造方
法。2. The method according to claim 1, wherein the normal conductive metal layer which becomes insulating by oxidation is provided by forming a layer containing a normal conductive metal powder which becomes insulating by oxidation. And a method for manufacturing an oxide superconducting coil.
により絶縁性となる常電導金属層を、酸化により絶縁性
となる常電導金属を蒸着することにより設けることを特
徴とする酸化物超電導コイルの製造方法。3. The oxide superconducting material according to claim 1, wherein the normally conducting metal layer which becomes insulative by oxidation is provided by depositing a normally conducting metal which becomes insulative by oxidation. Coil manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3505393A JPH06251929A (en) | 1993-02-24 | 1993-02-24 | Manufacture of oxide superconducting coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3505393A JPH06251929A (en) | 1993-02-24 | 1993-02-24 | Manufacture of oxide superconducting coil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06251929A true JPH06251929A (en) | 1994-09-09 |
Family
ID=12431303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3505393A Pending JPH06251929A (en) | 1993-02-24 | 1993-02-24 | Manufacture of oxide superconducting coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06251929A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011526072A (en) * | 2008-06-26 | 2011-09-29 | オックスフォード スーパーコンダクティング テクノロジー、インコーポレイテッド | Production of high-temperature superconducting coils |
JP2013258390A (en) * | 2012-05-14 | 2013-12-26 | Sumitomo Electric Ind Ltd | Superconducting magnet |
JP2017085143A (en) * | 2012-05-14 | 2017-05-18 | 住友電気工業株式会社 | Superconducting magnet |
-
1993
- 1993-02-24 JP JP3505393A patent/JPH06251929A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011526072A (en) * | 2008-06-26 | 2011-09-29 | オックスフォード スーパーコンダクティング テクノロジー、インコーポレイテッド | Production of high-temperature superconducting coils |
JP2013258390A (en) * | 2012-05-14 | 2013-12-26 | Sumitomo Electric Ind Ltd | Superconducting magnet |
JP2017085143A (en) * | 2012-05-14 | 2017-05-18 | 住友電気工業株式会社 | Superconducting magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5063200A (en) | Ceramic superconductor article | |
JP3386942B2 (en) | Oxide superconducting coil and manufacturing method thereof | |
US5663528A (en) | Oxide superconductive wire and process for manufacturing the same | |
US20030130128A1 (en) | Method of fabricating fine high temperature superconducting composites | |
JPH06251929A (en) | Manufacture of oxide superconducting coil | |
JP2003331660A (en) | Metal-sheathed superconductor wire, superconducting coil, and its manufacturing method | |
JP2889286B2 (en) | Superconducting body and superconducting coil formed using the superconducting body | |
JP2003203532A (en) | Manufacturing method of superconducting wire | |
JP3015389B2 (en) | Superconducting coil manufacturing method | |
JPH05334921A (en) | Ceramic superconductor | |
JPS63285812A (en) | Manufacture of oxide superconductive wire material | |
JP3029153B2 (en) | Manufacturing method of multilayer ceramic superconductor | |
JP2563411B2 (en) | Manufacturing method of oxide superconducting wire | |
JPH04262308A (en) | Oxide superconductive wire rod | |
JP2644245B2 (en) | Oxide superconducting wire | |
JP2835069B2 (en) | Superconducting coil | |
JP2670362B2 (en) | Method for manufacturing conductor for current lead | |
JPS63241826A (en) | Manufacture of superconducting wire | |
JP2891365B2 (en) | Manufacturing method of ceramic superconductor | |
JP2599138B2 (en) | Method for producing oxide-based superconducting wire | |
JP3248190B2 (en) | Oxide superconducting wire, its manufacturing method and its handling method | |
AU742588B2 (en) | Cryogenic deformation of ceramic superconductors | |
JPH01163914A (en) | Manufacture of oxide superconductive wire | |
JP2966134B2 (en) | Method for producing Bi-based oxide superconductor | |
JPH0764625B2 (en) | Superconducting material |