JP2563411B2 - Manufacturing method of oxide superconducting wire - Google Patents

Manufacturing method of oxide superconducting wire

Info

Publication number
JP2563411B2
JP2563411B2 JP62321711A JP32171187A JP2563411B2 JP 2563411 B2 JP2563411 B2 JP 2563411B2 JP 62321711 A JP62321711 A JP 62321711A JP 32171187 A JP32171187 A JP 32171187A JP 2563411 B2 JP2563411 B2 JP 2563411B2
Authority
JP
Japan
Prior art keywords
superconducting wire
oxide
oxide superconducting
oxide superconductor
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62321711A
Other languages
Japanese (ja)
Other versions
JPH01163913A (en
Inventor
穣 山田
茂雄 中山
暁 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62321711A priority Critical patent/JP2563411B2/en
Publication of JPH01163913A publication Critical patent/JPH01163913A/en
Application granted granted Critical
Publication of JP2563411B2 publication Critical patent/JP2563411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体を用いた超電導線の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a method for producing a superconducting wire using an oxide superconductor.

(従来の技術) 近年、Ba−La−Cu−O系の層状ペロブスカイト型の酸
化物が高い臨界温度を有する可能性のあることが発表さ
れて以来、各所で酸化物超電導体の研究が行われている
(Z.Phys.B Condensed Matter 64,189−193(198
6))。その中でもY−Ba−Cu−O系で代表される酸素
欠陥を有する欠陥ペロブスカイト型(LnBa2Cu3O7−δ
型)(δは酸素欠陥を表わし通常1以下、Lnは、Y、L
a、Sc、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、YbおよびLu
から選ばれた少なくとも1種の元素、Baの一部はSr等で
置換可能)の酸化物超電導体は、臨界温度が90K以上と
液体窒素以上の高い温度を示すため非常に有望な材料と
して注目されている(Phys.Rev.Lett.Vol.58 No.9,908
−910)。
(Prior Art) In recent years, since it was announced that Ba-La-Cu-O-based layered perovskite type oxides may have a high critical temperature, research on oxide superconductors has been conducted at various places. (Z.Phys.B Condensed Matter 64,189-193 (198
6)). Among them, a defect perovskite type having an oxygen defect represented by a Y-Ba-Cu-O system (LnBa 2 Cu 3 O 7-δ)
Type) (δ represents oxygen deficiency, usually 1 or less, Ln is Y, L
a, Sc, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu
Oxide superconductor of at least one element selected from the above, and part of Ba can be replaced by Sr etc.) has a critical temperature of 90K or higher and is higher than liquid nitrogen. (Phys.Rev.Lett.Vol.58 No.9,908)
−910).

従来、この酸化物超電導体を線材化するにあたって
は、金属管に酸化物超電導体粉末を充填して最終線径ま
で減面加工した後、金属層を除去し、しかる後焼成のた
めの熱処理および酸素導入のための熱処理を施して得て
いた。そして、このようにして得られた酸化物超電導線
は、製造時や使用時等の温度変化時に酸化物超電導体が
一様に熱膨張あるいは熱収縮するため、内部にポアやク
ラックを生じることが少ないので、高い臨界電流密度を
得ることができる。
Conventionally, in converting this oxide superconductor into a wire rod, after filling the metal tube with the oxide superconductor powder and reducing the surface to the final wire diameter, the metal layer is removed, and then heat treatment for firing and It was obtained by applying a heat treatment for introducing oxygen. The oxide superconducting wire thus obtained may have pores or cracks inside because the oxide superconductor uniformly thermally expands or contracts when the temperature changes during production or use. Since it is small, a high critical current density can be obtained.

しかしながら、酸化物超電導体は結晶性の酸化物であ
って延性および可撓性に乏しい。また、そのままでは機
械的応力に対して弱く、一定値以上歪むと超電導特性が
低下または消滅する。このため、上述した従来の酸化物
超電導線では、その用途によっては実用的な機械的強度
を得ることが困難であり、機械的応力に起因する歪みに
より超電導特性が低下または消滅して、所望の臨界電流
密度を得られないという問題があった。
However, the oxide superconductor is a crystalline oxide and has poor ductility and flexibility. Further, if it is left as it is, it is weak against mechanical stress, and if it is distorted by a certain value or more, the superconducting property is deteriorated or disappears. Therefore, in the above-described conventional oxide superconducting wire, it is difficult to obtain a practical mechanical strength depending on the application, and the superconducting property is reduced or disappears due to the strain caused by the mechanical stress. There was a problem that the critical current density could not be obtained.

(発明が解決しようとする問題点) このように、従来の製造方法で得られる酸化物超導電
線は、その用途によっては実用的な機械的強度を得るこ
とが困難であり、所望の臨界電流密度が得られないとい
う問題がった。
(Problems to be Solved by the Invention) As described above, it is difficult to obtain practical mechanical strength of an oxide superconducting wire obtained by a conventional manufacturing method depending on its application, and a desired critical current There was a problem that the density could not be obtained.

本発明は、かかる従来の難点を解消すべくなされたも
ので、機械的強度が改善された高臨界電流密度の酸化物
超電導線を製造する方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method for producing an oxide superconducting wire having a high critical current density and improved mechanical strength.

[発明の構成] (問題点を解決するための手段) すなわち、本発明の酸化物超導電線の製造方法は、金
属管中に金属製心材を長さ方向に配置し、この金属製心
材と金属管との間に酸化物超電導体粉末を充填し、次い
で伸線加工を施した後外周の金属層を除去し、しかる後
酸素含有雰囲気中で熱処理を施すことを特徴としてい
る。
[Structure of the Invention] (Means for Solving the Problems) That is, in the method for producing an oxide superconducting wire of the present invention, a metal core material is arranged in a metal tube in the longitudinal direction, and the metal core material It is characterized in that an oxide superconductor powder is filled between the metal tube and the metal tube, wire drawing is performed, the outer metal layer is removed, and then heat treatment is performed in an oxygen-containing atmosphere.

本発明に用いる金属製心材は、耐熱性、熱伝導性、導
電性および延伸加工性に優れていることが好ましく、こ
のような金属としては銀、金、白金、パラジウム、ある
いはこれらの合金が例示される。
The metal core material used in the present invention is preferably excellent in heat resistance, thermal conductivity, conductivity and drawability, and examples of such a metal include silver, gold, platinum, palladium, or alloys thereof. To be done.

なお、心材として銅あるいは銅合金のような酸化性金
属を用いることも可能であるが、この場合には熱処理時
に酸化物超電導体表面に酸素欠損層や汚染層を生じさせ
るため、銀、金、白金、パラジウム、あるいはこれらの
合金を用いた場合に比べて、超電導特性が低下する。
It is also possible to use an oxidizing metal such as copper or a copper alloy as the core material, but in this case, in order to generate an oxygen deficiency layer or a contamination layer on the oxide superconductor surface during heat treatment, silver, gold, The superconducting property is deteriorated as compared with the case of using platinum, palladium, or an alloy thereof.

また、金属管はいかなる金属からなっていてもよい
が、延伸加工性および経済性の点から銅を用いることが
好ましい。ただし、伸線加工後必要に応じて仮焼する場
合には、銀、金、白金、パラジウム、あるいはこれらの
合金を用いた方が、より超電導特性の優れた線材を得る
ことができる。
The metal tube may be made of any metal, but it is preferable to use copper from the viewpoint of drawability and economical efficiency. However, in the case of calcination as needed after the wire drawing process, the use of silver, gold, platinum, palladium, or an alloy thereof makes it possible to obtain a wire having more excellent superconducting properties.

本発明には各種の酸化物超電導体を用いることができ
るが、臨界温度の高い、希土類元素含有のペロブスカイ
ト型の酸化物超電導体を用いた場合に特に実用的効果が
大きい。
Although various oxide superconductors can be used in the present invention, a practical effect is particularly large when a rare earth element-containing perovskite-type oxide superconductor having a high critical temperature is used.

上記の希土類元素を含有しペロブスカイト型構造を有
する酸化物超電導体は、超電導状態を実現できるもので
あればよく、LnBa2Cu3O7−δ系(δは酸素欠陥を表し
通常1以下の数、Lnは、Y、La、Sc、Nd、Sm、Eu、Gd、
Dy、Ho、Er、Tm、YbおよびLuから選ばれた少なくとも1
種の元素、Baの一部はSr等で置換可能)等の酸素欠陥を
有する欠陥ペロブスカイト型、Sr−La−Cu−O系等の層
状ペロブスカイト型等の広義にペロブスカイト型を有す
る酸化物が例示される。また希土類元素も広義の定義と
し、Sc、YおよびLa系を含むものとする。代表的な系と
してY−Ba−Cu−O系のほかに、YをEu、Dy、Ho、Er、
Tm、Yb、Lu等の希土類で置換した系、Sc−Ba−Cu−O
系、Sr−La−Cu−O系、さらにSrをBa、Caで置換した系
等が挙げられる。
The oxide superconductor containing a rare-earth element and having a perovskite structure may be any as long as it can realize a superconducting state, and is an LnBa 2 Cu 3 O 7-δ system (δ is an oxygen deficiency and is usually a number of 1 or less. , Ln are Y, La, Sc, Nd, Sm, Eu, Gd,
At least one selected from Dy, Ho, Er, Tm, Yb and Lu
Examples are oxides having a perovskite type in a broad sense, such as a defective perovskite type having an oxygen defect such as a kind of element and part of Ba can be replaced with Sr, etc., and a layered perovskite type such as an Sr-La-Cu-O type. Is done. In addition, rare earth elements are also defined in a broad sense, and include Sc, Y, and La systems. As a typical system, in addition to the Y-Ba-Cu-O system, Y is Eu, Dy, Ho, Er,
Systems substituted with rare earths such as Tm, Yb and Lu, Sc-Ba-Cu-O
System, Sr-La-Cu-O system, and a system in which Sr is replaced by Ba or Ca.

本発明に用いる酸化物超電導体は、たとえば以下に示
す製造方法により得ることができる。
The oxide superconductor used in the present invention can be obtained, for example, by the following manufacturing method.

まず、Y、Ba、Cu等のペロブスカイト型酸化物超電導
体の構成元素を充分混合する。混合の際には、Y2O3、Cu
O等の酸化物を原料として用いることができる。また、
これらの酸化物のほかに、焼成後酸化物に転化する炭酸
塩、硝酸塩、水酸化物等の化合物を用いてもよい。さら
には、共沈法等で得たシュウ酸塩等を用いてもよい。ペ
ロブスカイト型酸化物超電導体を構成する元素は、基本
的に化学量論比の組成となるように混合するが、多少製
造条件等との関係でずれていても差支えない。たとえ
ば、Y−Ba−Cu−O系ではY1molに対しBa2mol、Cu3mol
が標準組成であるが、実用上はY1molに対して、Ba2±0.
6mol、Cu3±0.2mol程度のずれは問題ない。
First, the constituent elements of the perovskite-type oxide superconductor such as Y, Ba, and Cu are sufficiently mixed. During mixing, Y 2 O 3 , Cu
An oxide such as O can be used as a raw material. Also,
In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted into oxides after firing may be used. Further, an oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but may be slightly shifted depending on the production conditions and the like. For example, in the Y-Ba-Cu-O system, Y2 mol and Ba2 mol, Cu3 mol
Is the standard composition, but in practice, Ba2 ± 0.
A deviation of about 6 mol and Cu3 ± 0.2 mol is not a problem.

前述の原料を混合した後、仮焼、粉砕し所望の形状に
し、850〜980℃程度で焼成する。仮焼は必ずしも必要で
はない。仮焼および焼成は充分な酸素が供給できるよう
な酸素含有雰囲気中で行うことが好ましい。所望の形状
に焼成した後、酸素含有雰囲気中で熱処理して超電導特
性を付与する。上記熱処理は、通常、酸素含有雰囲気中
300〜700℃で保持するか、焼成後600℃以下を徐冷する
ことにより行う。
After mixing the above-mentioned raw materials, they are calcined, pulverized into a desired shape, and fired at about 850 to 980 ° C. Calcination is not always necessary. The calcination and the calcination are preferably performed in an oxygen-containing atmosphere capable of supplying sufficient oxygen. After firing into a desired shape, heat treatment is performed in an oxygen-containing atmosphere to impart superconductivity. The heat treatment is usually performed in an oxygen-containing atmosphere.
It is carried out by holding at 300 to 700 ° C, or by gradually cooling to 600 ° C or less after firing.

このようにして得られた酸化物超電導体は、酸素欠陥
δを有する酸素欠陥型ペロブスカイト構造(LnBa2Cu3O
7−δ(δは通常1以下))となる。なお、BaをSr、Ca
の少なくとも1種で置換することもでき、さらにCuの一
部をTi、V、Cr、Mn、Fe、Co、Ni、Zn等で置換すること
もできる。
The thus obtained oxide superconductor has an oxygen-defective perovskite structure (LnBa 2 Cu 3 O
7-δ (δ is usually 1 or less)). In addition, Ba is Sr, Ca
And at least one of Cu may be replaced with Ti, V, Cr, Mn, Fe, Co, Ni, Zn or the like.

この置換量は、超電導特性を低下させない程度の範囲
で適宜設定可能であるが、あまりに多量の置換は超電導
特性を低下させてしまうので80mol%以下、さらに実用
上は20mol%以下程度までとする。
This substitution amount can be appropriately set within a range that does not deteriorate the superconducting property, but an excessively large amount of replacement deteriorates the superconducting property, so the amount is set to 80 mol% or less, and in practice, to about 20 mol% or less.

本発明による酸化物超電導線の製造は、たとえば以下
のようにして行われる。
The oxide superconducting wire according to the present invention is manufactured, for example, as follows.

まず、酸化物超電導体の焼成し結晶化した焼成物をボ
ールミル等の公知の手段により粉砕する。このとき、酸
化物超電導体はへき開面から分割されて微粉末となる。
粉砕は、平均粒径が1〜5μm程度、直径対厚さの比が
3〜5となるまで行なうことが望ましい。なお、必要に
応じて、粉砕した粉末を上記の範囲となるように分級し
て用いてもよい。
First, the fired product obtained by firing and crystallizing the oxide superconductor is pulverized by a known means such as a ball mill. At this time, the oxide superconductor is divided into fine powders from the cleavage plane.
The pulverization is desirably performed until the average particle size becomes about 1 to 5 μm and the ratio of diameter to thickness becomes 3 to 5. If necessary, the pulverized powder may be classified and used in the above range.

次に、この酸化物超電導体粉末を、管の長さ方向に金
属製心材を配置した金属管内に充填し、両端を金属材に
より封止する。封止後、金属管を温間でスェージングマ
シン等により鍛造した後、冷間で線引きして金属管の外
径を元の外径の1/10以下、好ましくは1/20以下程度とな
るまで縮径加工を施す。縮径加工後、必要に応じて圧延
加工を施してもよい。
Next, this oxide superconductor powder is filled in a metal tube in which a metal core material is arranged in the length direction of the tube, and both ends are sealed with the metal material. After sealing, the metal pipe is forged by a swaging machine or the like in the warm, and then drawn cold to reduce the outer diameter of the metal pipe to 1/10 or less of the original outer diameter, preferably 1/20 or less. Reduce the diameter. After the diameter reduction processing, rolling processing may be performed as necessary.

このようにして所望の外径となったところで、必要に
応じて850〜940℃で仮焼してから、外周の金属層をエッ
チング、レーザー加工等により除去する。しかる後、酸
素含有雰囲気中850〜980℃で8〜80時間、焼成のための
熱処理を行なう。焼成後、酸素含有雰囲気中で660℃以
下を1℃/分程度の割合いで徐冷し、酸化物超電導体の
結晶構造中の酸素空席に酸素を導入して超電導特性を向
上させる。なお、酸素導入のための熱処理は、300〜700
℃で3〜50時間保持することにより行ってもよい。
When the desired outer diameter is obtained in this way, if necessary, calcination is performed at 850 to 940 ° C., and then the metal layer on the outer periphery is removed by etching, laser processing, or the like. Then, heat treatment for firing is performed at 850 to 980 ° C. for 8 to 80 hours in an oxygen-containing atmosphere. After firing, 660 ° C. or less is gradually cooled at a rate of about 1 ° C./minute in an oxygen-containing atmosphere, and oxygen is introduced into oxygen vacancies in the crystal structure of the oxide superconductor to improve superconductivity. The heat treatment for introducing oxygen is 300 to 700.
You may perform by hold | maintaining at 50 degreeC for 3 to 50 hours.

(作 用) 本発明により得られる酸化物超電導線は、熱処理時の
酸化物超導電体の外周を金属により拘束しないので、酸
化物超電導体の体積収縮が円滑に行われる。このため、
酸化物超電導体が緻密化するとともに酸化物超電導体内
部にポアやクラックを生じさせることが少なく、臨界電
流密度が向上する。
(Operation) In the oxide superconducting wire obtained by the present invention, the outer periphery of the oxide superconductor during heat treatment is not restricted by the metal, so that the volume contraction of the oxide superconductor is smoothly performed. For this reason,
As the oxide superconductor is densified, pores and cracks are less likely to occur inside the oxide superconductor, and the critical current density is improved.

また、線材中に金属製心材を有しているため、線材の
機械的強度が向上する。
Further, since the wire rod has the metal core material, the mechanical strength of the wire rod is improved.

したがって、機械的強度が向上された高臨界電流密度
の酸化物超電導線を得ることができる。
Therefore, it is possible to obtain an oxide superconducting wire having a high critical current density with improved mechanical strength.

(実施例) 以下、本発明の実施例について説明する。(Example) Hereinafter, the Example of this invention is described.

実施例1 まず、酸化物超電導体の原料としてBaCO3粉末、Y2O3
粉末、CuO粉末を用い、これらをY:Ba:Cu=1:2:3のモル
比となるように調合し、充分に混合、粉砕した。次い
で、混合物を900℃で8時間焼成した後粉砕し、粉砕物
を大気中900℃で24時間焼成した後ボールミルを用いて
粉砕し、分級して平均粒径2μm、直径対厚さの比が3
〜5のペロブスカイト型の酸化物超電導体粉末を得た。
Example 1 First, BaCO 3 powder and Y 2 O 3 were used as raw materials for an oxide superconductor.
Powders and CuO powders were used, and these were compounded so that the molar ratio of Y: Ba: Cu = 1: 2: 3, thoroughly mixed and pulverized. Then, the mixture was fired at 900 ° C. for 8 hours and then pulverized, and the pulverized material was fired at 900 ° C. for 24 hours in the air and then pulverized using a ball mill, and classified to have an average particle size of 2 μm and a diameter-to-thickness ratio. Three
.About.5 perovskite type oxide superconductor powders were obtained.

次に、第1図(a)に示すように、得られた酸化物超
電導体粉末1を、管の長さ方向に直径3mm、長さ100mmの
銀製心材2を配置した外径20mm、内径15mm、長さ100mm
の一端を銅材により封止した銅管3中に充填し、他端を
銅材の栓により封止した。
Next, as shown in FIG. 1 (a), the obtained oxide superconductor powder 1 was prepared by arranging a silver core material 2 having a diameter of 3 mm and a length of 100 mm in the length direction of the tube. , Length 100mm
Was filled in a copper tube 3 having one end sealed with a copper material, and the other end was sealed with a copper plug.

この後、常温でスェージングマシンにより、外径2mm
にまで冷間で鍛造して素線を得た。
After this, using a swaging machine at room temperature, the outer diameter is 2 mm.
The wire was obtained by cold forging.

次いで、素線の外周の銀層をHNO3を用いたエッチング
により除去し、酸素含有雰囲気中950℃で24時間焼成し
た後、600℃からは1℃/分で徐冷して、第1図(b)
に示すように銀層4の外周に酸化物超電導体層5を形成
して、酸化物超電導線6を得た。
Next, the silver layer around the wire was removed by etching using HNO 3, and after firing at 950 ° C for 24 hours in an oxygen-containing atmosphere, it was gradually cooled from 600 ° C at 1 ° C / min. (B)
As shown in, an oxide superconducting layer 5 was formed on the outer periphery of the silver layer 4 to obtain an oxide superconducting wire 6.

このようにして得た酸化物超電導線の外部磁界0T、77
Kにおける臨界電流密度は5000A/cm2であった。また、20
00kgf/cm2の張力を加えたときの外部磁界0T、77Kにおけ
る臨界電流密度は4800A/cm2であり、超電導特性の低下
は僅かであった。
The external magnetic field of the oxide superconducting wire thus obtained is 0T, 77
The critical current density at K was 5000 A / cm 2 . Also, 20
Critical current density in an external magnetic field 0T, 77K when tensioned in 00kgf / cm 2 is 4800A / cm 2, reduction of the superconducting properties were slightly.

実施例2 第2図(a)に示すように、金属製心材として、銅管
11の内壁に密着する形状であって外周円弧長15mm、厚さ
3mm、長さ100mmの断面弓形の銀製心材12を用いた以外は
実施例1と同様にして、酸化物超電導体粉末13の充填さ
れた外径1.8mmの素線を得た。
Example 2 As shown in FIG. 2 (a), a copper pipe was used as the metal core material.
It has a shape that closely adheres to the inner wall of 11 and has an outer circumferential arc length of 15 mm and a thickness.
A strand having an outer diameter of 1.8 mm filled with oxide superconductor powder 13 was obtained in the same manner as in Example 1 except that a silver core material 12 having an arcuate cross section having a length of 3 mm and a length of 100 mm was used.

この後、得られた素線をローラーダイスによりさらに
圧延して、第2図(b)に示すように厚さ1mm、幅2.5mm
のテープ状にした。
After that, the obtained wire is further rolled by a roller die to have a thickness of 1 mm and a width of 2.5 mm as shown in FIG. 2 (b).
Made into a tape shape.

しかる後、外周の銅層をHNO3を用いたエッチングによ
り除去し、酸素含有雰囲気中950℃で24時間焼成した
後、600℃からは1℃/分で徐冷して、第2図(c)に
示すように酸化物超電導体層14の一側面に銀層15を有す
る酸化物超電導線を得た。なお、第2図(b)におい
て、第2図(a)と共通の部材については同じ符号を付
してある。
After that, the copper layer on the outer periphery was removed by etching using HNO 3, and after firing at 950 ° C. for 24 hours in an oxygen-containing atmosphere, it was slowly cooled from 600 ° C. at 1 ° C./min. ), An oxide superconducting wire having a silver layer 15 on one side surface of the oxide superconducting layer 14 was obtained. In addition, in FIG. 2B, the same reference numerals are given to members common to those in FIG.

このようにして得た酸化物超電導線の外部磁界0T、77
Kにおける臨界電流密度は5500A/cm2であった。また、20
00kgf/cm2の張力を加えたときの外部磁界0T、77Kにおけ
る臨界電流密度は5200A/cm2であり、超電導特性の低下
は僅かであった。
The external magnetic field of the oxide superconducting wire thus obtained is 0T, 77
The critical current density at K was 5500 A / cm 2 . Also, 20
When a tension of 00 kgf / cm 2 was applied, the critical current density was 5200 A / cm 2 in an external magnetic field of 0 T and 77 K, and the deterioration of superconducting properties was slight.

比較例 銀製ロッドを用いなかった以外は実施例1と同様にし
て、酸化物超電導線を得た。
Comparative Example An oxide superconducting wire was obtained in the same manner as in Example 1 except that the silver rod was not used.

この酸化物超電導線の外部磁界0T、77Kにおける臨界
電流密度は1000A/cm2であった。また、2000kgf/cm2の張
力を加えたときの外部磁界0T、77Kにおける臨界電流密
度は10A/cm2であり、本発明の酸化物超電導線に比べて
超電導特性の低下が大きかった。
The critical current density of this oxide superconducting wire at an external magnetic field of 0 T and 77 K was 1000 A / cm 2 . Further, the critical current density at an external magnetic field of 0 T and 77 K when a tension of 2000 kgf / cm 2 was applied was 10 A / cm 2 , and the deterioration of the superconducting properties was greater than that of the oxide superconducting wire of the present invention.

[発明の効果] 以上説明したように、本発明の酸化物超電導線の製造
方法により得られる酸化物超電導線は、従来の酸化物超
電導線に比べて機械的強度が向上されており、かつ臨界
電流密度も高い。
[Effects of the Invention] As described above, the oxide superconducting wire obtained by the method for producing an oxide superconducting wire of the present invention has improved mechanical strength as compared with the conventional oxide superconducting wire, and has a critical value. The current density is also high.

したがって、本発明に用いることにより、酸化物超電
導線の用途を広げることが可能となる。
Therefore, the use of the present invention makes it possible to expand the uses of the oxide superconducting wire.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明により酸化物超電導線を製造する一実施
例の手順の一部を表す斜視図、第2図(a)は本発明に
より酸化物超電導線を製造する別の実施例の手順の一部
を表す斜視図、第2図(b)および第2図(c)は第2
図(a)に続く手順の一部を表す断面図である。 1、13……酸化物超電導体粉末 2、12……銀製心材 3、11……銅管 4、15……銀層 5、14……酸化物超電導体 6、16……酸化物超電導線
FIG. 1 is a perspective view showing a part of the procedure of one embodiment for producing an oxide superconducting wire according to the present invention, and FIG. 2 (a) is the procedure of another embodiment for producing an oxide superconducting wire according to the present invention. 2 (b) and 2 (c) are perspective views showing a part of FIG.
It is sectional drawing showing a part of procedure following FIG. 1,13 …… Oxide superconductor powder 2,12 …… Silver core material 3,11 …… Copper tube 4,15 …… Silver layer 5,14 …… Oxide superconductor 6,16 …… Oxide superconducting wire

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属管中に金属製心材を長さ方向に配置
し、この金属製心材と前記金属管との間に酸化物超電導
体粉末を充填し、次いで伸線加工を施した後外周の金属
層を除去し、しかる後酸素含有雰囲気中で熱処理を施す
ことを特徴とする酸化物超電導線の製造方法。
1. A metal core material is arranged in a length direction in a metal tube, oxide superconductor powder is filled between the metal core material and the metal tube, and then wire drawing is applied to the outer periphery. The method for producing an oxide superconducting wire, characterized in that the metal layer is removed, and then heat treatment is performed in an oxygen-containing atmosphere.
【請求項2】金属製心材は、銀、金、白金、パラジウ
ム、またはこれらの合金からなることを特徴とする特許
請求の範囲第1項記載の酸化物超電導線の製造方法。
2. The method for producing an oxide superconducting wire according to claim 1, wherein the metal core material is made of silver, gold, platinum, palladium, or an alloy thereof.
【請求項3】酸化物超電導体は、希土類元素を含有する
ペロブスカイト型の酸化物超電導体であることを特徴と
する特許請求の範囲第1項または第2項記載の酸化物超
電導線の製造方法。
3. The method for producing an oxide superconducting wire according to claim 1 or 2, wherein the oxide superconductor is a perovskite type oxide superconductor containing a rare earth element. .
【請求項4】酸化物超電導体は、Ln元素(Lnは、希土類
元素から選ばれた少なくとも1種の元素)、BaおよびCu
を原子比で実質的に1:2:3の割合で含有することを特徴
とする特許請求の範囲第1項ないし第3項のいずれか1
項記載の酸化物超電導線の製造方法。
4. An oxide superconductor comprising Ln element (Ln is at least one element selected from rare earth elements), Ba and Cu
Is substantially contained in an atomic ratio of 1: 2: 3.
A method for producing an oxide superconducting wire according to the item.
【請求項5】酸化物超電導体は、LnBa2Cu3O7−δ(δ
は酸素欠陥を表わす)で表わされる酸素欠陥型ペロブス
カイト構造を有することを特徴とする特許請求の範囲第
1項ないし第4項のいずれか1項記載の酸化物超電導線
の製造方法。
5. The oxide superconductor is LnBa 2 Cu 3 O 7-δ
Represents an oxygen defect) and has an oxygen deficiency type perovskite structure. 5. The method for producing an oxide superconducting wire according to claim 1, wherein the perovskite structure is an oxygen deficiency type perovskite structure.
JP62321711A 1987-12-19 1987-12-19 Manufacturing method of oxide superconducting wire Expired - Lifetime JP2563411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62321711A JP2563411B2 (en) 1987-12-19 1987-12-19 Manufacturing method of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62321711A JP2563411B2 (en) 1987-12-19 1987-12-19 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH01163913A JPH01163913A (en) 1989-06-28
JP2563411B2 true JP2563411B2 (en) 1996-12-11

Family

ID=18135580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62321711A Expired - Lifetime JP2563411B2 (en) 1987-12-19 1987-12-19 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP2563411B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2667972B2 (en) * 1990-10-12 1997-10-27 科学技術庁金属材料技術研究所長 Bi-based oxide composite superconducting wire

Also Published As

Publication number Publication date
JPH01163913A (en) 1989-06-28

Similar Documents

Publication Publication Date Title
US4906609A (en) Fabrication of superconducting oxide wires by powder-in-tube method
EP0282286B2 (en) Superconducting wire and method of manufacturing the same
JPH09185916A (en) Manufacture of composite oxide ceramic superconducting wire
US6569360B2 (en) Method of preparing metal matrix composite with textured compound
EP0308326B1 (en) A process for producing an elongated superconductor
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
EP0304076B1 (en) Method of manufacturing superconductive products
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JP2514690B2 (en) Superconducting wire manufacturing method
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JP2644245B2 (en) Oxide superconducting wire
JP2554659B2 (en) Composite oxide superconductor wire connection
JP2592872B2 (en) Manufacturing method of oxide superconducting wire
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2509642B2 (en) Superconducting power lead manufacturing method
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP2554658B2 (en) How to connect complex oxide superconductors
JP2597578B2 (en) Superconductor manufacturing method
JP2590157B2 (en) Manufacturing method of superconductor wire
JP3979609B2 (en) Method for producing Tl-based oxide superconductor
JP2597579B2 (en) Superconductor manufacturing method
JP2565954B2 (en) Method for manufacturing superconductor coil

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12