JP2644245B2 - Oxide superconducting wire - Google Patents

Oxide superconducting wire

Info

Publication number
JP2644245B2
JP2644245B2 JP62320731A JP32073187A JP2644245B2 JP 2644245 B2 JP2644245 B2 JP 2644245B2 JP 62320731 A JP62320731 A JP 62320731A JP 32073187 A JP32073187 A JP 32073187A JP 2644245 B2 JP2644245 B2 JP 2644245B2
Authority
JP
Japan
Prior art keywords
superconducting wire
oxide
oxide superconductor
oxide superconducting
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62320731A
Other languages
Japanese (ja)
Other versions
JPH01161613A (en
Inventor
茂雄 中山
穣 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62320731A priority Critical patent/JP2644245B2/en
Publication of JPH01161613A publication Critical patent/JPH01161613A/en
Application granted granted Critical
Publication of JP2644245B2 publication Critical patent/JP2644245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、熱歪による臨界電流密度の劣化の小さい酸
化物超電導線に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial application field) The present invention relates to an oxide superconducting wire in which the critical current density is hardly deteriorated due to thermal strain.

(従来の技術) 近年、Ba−La−Cu−O系の層状ペロブスカイト型の酸
化物が高い臨界温度を有する可能性のあることが発表さ
れて依頼、各所で酸化物超電導体の研究が行われている
(Z.Phys.B Condensed Matter64,189−193(1986))。
その中でもY−Ba−Cu−O系で代表される酸素欠陥を有
する欠陥ペロブスカイト型(LnBa2Cu3O7−δ型)(δ
は酸素欠陥を表わし通常1以下、Lnは、Y、La、Sc、N
d、Sm、Eu、Gd、Dy、Ho、Er、Tm、YbおよびLuから選ば
れた少なくとも1種の元素、Baの一部はSr等で置換可
能)の酸化物超電導体は、臨界温度が90K以上と液体窒
素以上の高い温度を示すために非常に有望な材料として
注目されている(Phys.Rev.Lett,Vol.58No.9,908−91
0)。
(Prior art) In recent years, it has been announced that Ba-La-Cu-O layered perovskite-type oxides may have a high critical temperature, and requests have been made. (Z. Phys. B Condensed Matter 64, 189-193 (1986)).
Among them, a defective perovskite type (LnBa 2 Cu 3 O 7-δ type) having an oxygen defect typified by a Y—Ba—Cu—O system (δ)
Represents an oxygen vacancy, usually 1 or less, and Ln represents Y, La, Sc, N
d, Sm, Eu, Gd, Dy, Ho, Er, Tm, at least one element selected from Yb and Lu, and Ba can be partially replaced with Sr, etc.) It is attracting attention as a very promising material because it shows a high temperature of 90K or more and liquid nitrogen or more (Phys. Rev. Lett, Vol. 58 No. 9, 908-91).
0).

一般に、このようなペロブスカイト型の結晶構造を有
する酸化物超電導体を用いた酸化物超電導線は、銀や銀
合金のような酸素透過性金属管内に酸化物超電導体の粉
末を充填し、これに減面加工を施して所望の外径にまで
成形した後、900〜980℃の温度で10数時間熱処理し、次
いで酸化物超伝導体結晶の酸素空席に酸素を導入するた
めに400〜600℃程度の酸素雰囲気中で10数時間程度加熱
することにより製造される。
In general, an oxide superconducting wire using such an oxide superconductor having a perovskite-type crystal structure is filled with an oxide superconductor powder in an oxygen-permeable metal tube such as silver or a silver alloy, and After performing surface reduction and forming to a desired outer diameter, heat treatment is performed at a temperature of 900 to 980 ° C for 10 hours or more, and then 400 to 600 ° C to introduce oxygen into the oxygen vacancy of the oxide superconductor crystal. It is manufactured by heating in an oxygen atmosphere at about 10 hours.

(発明が解決しようとする問題点) しかしながら、このような従来の酸化物超電導線は、
酸化物超電導体の外周が金属被覆で拘束されており、し
かも酸化物超電導体と金属被覆の熱膨張係数が異なるた
め、ヒートサイクルを受けると酸化物超電導体が強い熱
歪を受け、さらに、これによってクラックも発生するた
め臨界電流密度が劣化してしまうという問題があった。
(Problems to be solved by the invention) However, such a conventional oxide superconducting wire is
The outer periphery of the oxide superconductor is constrained by the metal coating, and the thermal expansion coefficient of the oxide superconductor and that of the metal coating are different. As a result, cracks are generated, and the critical current density is degraded.

第2図は、酸素透過性が良いため通常酸化物超電導線
の金属被覆として用いられる銀と、ペロブスカイト型酸
化物超電導体の常温からの熱伸縮量を百分率で示したグ
ラフである。
FIG. 2 is a graph showing the percentage of thermal expansion and contraction of a perovskite-type oxide superconductor from room temperature with silver which is usually used as a metal coating of an oxide superconducting wire because of its good oxygen permeability.

この図から明らかなように、銀被覆の施された酸化物
超電導線は、高温では銀の方が熱膨脹量が大きいので銀
に引張られ、逆に低温では銀の熱収縮量が大きいため、
銀被覆によって圧縮を受けることになる。
As is clear from this figure, the silver-coated oxide superconducting wire is stretched by silver at a high temperature because silver has a larger thermal expansion, and conversely at a low temperature, the thermal shrinkage of silver is large.
The silver coating will undergo compression.

そして、これによって生ずる熱歪は、酸化物超電導体
の臨界電流密度を劣化させ、特にこのようなヒートサイ
クルが繰り返されると酸化物超電導体の内部にクラック
が形成されて、臨界電流密度が著しく低下してしまうの
である。
The resulting thermal strain degrades the critical current density of the oxide superconductor. In particular, when such a heat cycle is repeated, cracks are formed inside the oxide superconductor, and the critical current density is significantly reduced. It will do.

本発明は、このような従来の難点を解消すべくなされ
たもので、上記欠点のない酸化物超電導線およびその製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such conventional disadvantages, and has as its object to provide an oxide superconducting wire free from the above-mentioned disadvantages and a method for manufacturing the same.

[発明の構成] (問題点を解決するための手段) すなわち、本発明の酸化物超電導線は、酸化物超電導
体の外周に、金属被覆を設けてなる酸化物超電導線にお
いて、前記金属被覆に、前記酸化物超電導体に達すると
共に前記酸化物超電導線の長手方向と直交する断面形状
が略V字状スリットを、前記酸化物超電導線の長手方向
に沿って螺旋状に形成してなることを特徴としている。
[Configuration of the Invention] (Means for Solving the Problems) That is, the oxide superconducting wire of the present invention is an oxide superconducting wire in which a metal coating is provided on the outer periphery of an oxide superconductor. The cross section orthogonal to the longitudinal direction of the oxide superconducting wire while reaching the oxide superconductor has a substantially V-shaped slit formed spirally along the longitudinal direction of the oxide superconducting wire. Features.

本発明には各種の酸化物超電導体を用いることができ
るが、臨界温度の高い、希土類元素含有のペロブスカイ
ト型の酸化物超電導体を用いた場合に特に実用的効果が
大きい。
Although various oxide superconductors can be used in the present invention, a practical effect is particularly large when a rare earth element-containing perovskite-type oxide superconductor having a high critical temperature is used.

上記の希土類元素を含有してプロブスカイト型構造を
有する酸化物超電導体は、超電導状態を実現できるもの
であればよく、LnBa2Cu3O7−δ系(δは酸素欠陥を表
し通常1以下の数、Luは、Y、La、Sc、Nd、Sm、Eu、G
d、Dy、Ho、Er、Tm、YbおよびLuから選ばれた少なくと
も1種の元素、Baの一部はSr等で置換可能)等の酸素欠
陥を有する欠陥ペロブスカイト型、Sr−La−Cu−O系等
の層状ペロブスカイト型等の広義にペロブスカイト型を
有する酸化物が例示される。また希土類元素も広義の定
義とし、Sc、YおよびLa系を含むものとする。代表的な
系としてY−Ba−Cu−O系のほかに、YをEu、Dy、Ho、
Er、Tm、Yb、Lu、等の希土類で置換した系、Sc−Ba−Cu
−O系、Sr−La−Cu−O系、さらにSrをBa、Caで置換し
た系等が挙げられる。
The oxide superconductor containing a rare-earth element and having a provskite structure may be any material capable of realizing a superconducting state, and is an LnBa 2 Cu 3 O 7-δ system (δ is an oxygen defect, usually 1 or less. Lu is Y, La, Sc, Nd, Sm, Eu, G
at least one element selected from d, Dy, Ho, Er, Tm, Yb, and Lu; a part of Ba can be replaced with Sr, etc.), and a defect perovskite type having an oxygen defect, such as Sr-La-Cu- An oxide having a perovskite type in a broad sense, such as a layered perovskite type such as an O type, is exemplified. Rare earth elements are also defined in a broad sense and include Sc, Y and La-based elements. As a typical system, in addition to the Y-Ba-Cu-O system, Y is Eu, Dy, Ho,
Er-, Tm-, Yb-, Lu- and other rare earth-substituted systems, Sc-Ba-Cu
-O-based, Sr-La-Cu-O-based, and further, Sr-substituted Ba and Ca-substituted systems.

本発明に用いる酸化物超電導体は、たとえば以下に示
す方法により製造することができる。
The oxide superconductor used in the present invention can be manufactured, for example, by the following method.

まず、Y、Ba、Cu等のペロブスカイト型酸化物超電導
体の構成元素を充分混合する。混合の際には、Y2 O3、C
uO等の酸化物を原料として用いることができる。また、
これらの酸化物のほかに、焼成後酸化物に転化する炭酸
塩、硝酸塩、水酸化物等の化合物で用いてもよい。さら
には、共沈法等で得たシユウ酸塩等を用いてもよい。ペ
ロブスカイト型酸化物超電導体を構成する元素は、基本
的に化学量論比の組成となるように混合するが、多少製
造条件等との関係でずれていても差支えない。たとえ
ば、Y−Ba−Cu−O系ではY1molに対しBa2mol、Cu3mol
が標準組成であるが、実用上はY1molに対して、Ba2±0.
6mol、Cu3±0.2mol程度のずれは問題ない。
First, the constituent elements of the perovskite-type oxide superconductor such as Y, Ba, and Cu are sufficiently mixed. When mixing, Y 2 O 3 , C
An oxide such as uO can be used as a raw material. Also,
In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted into oxides after firing may be used. Further, an oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but may be slightly shifted depending on the production conditions and the like. For example, in the Y-Ba-Cu-O system, Y2 mol and Ba2 mol, Cu3 mol
Is the standard composition, but in practice, Ba2 ± 0.
A deviation of about 6 mol and Cu3 ± 0.2 mol is not a problem.

前述の原料を混合した後、仮焼、粉砕し所望の形状に
した後、850〜980℃程度で焼成する。仮焼は必ずしも必
要ではない。仮焼および焼成は充分な酸素が供給できる
ような酸素含有雰囲気中で行うことが好ましい。焼成
後、酸素含有雰囲気中で350〜700℃の酸素雰囲気中で10
数時間熱処理して超電導特性を付与する。上記熱処理
は、焼成のための熱処理後、通常600℃以下で徐冷しな
がら行うようにする。
After mixing the above-mentioned raw materials, they are calcined, pulverized to a desired shape, and then fired at about 850 to 980 ° C. Calcination is not always necessary. The calcination and the calcination are preferably performed in an oxygen-containing atmosphere capable of supplying sufficient oxygen. After firing, 10 in an oxygen atmosphere at 350 to 700 ° C in an oxygen-containing atmosphere
Heat treatment for several hours to impart superconducting properties. After the heat treatment for baking, the heat treatment is usually performed while gradually cooling at 600 ° C. or lower.

このようにして得られた酸化物超電導体は、酸素欠陥
δを有する酸素欠陥型ペロブスカイト構造(LuBa2Cu3O
7−δ(δは通常1以下))となる。なお、BaをSr、Ca
の少なくとも1種で置換することもでき、さらにCuの一
部をTi、V、Cr、Mn、Fe、Co、Ni、Zn等で置換すること
もできる。
The thus obtained oxide superconductor has an oxygen-defective perovskite structure (LuBa 2 Cu 3 O
7-δ (δ is usually 1 or less)). In addition, Ba is Sr, Ca
And at least one of Cu may be replaced with Ti, V, Cr, Mn, Fe, Co, Ni, Zn or the like.

この置換量は、超電導特性を低下させない程度の範囲
で適宣設定可能であるが、あまりに多量の置換は超電導
特性を低下させてしまうので80mol%以下、さらに実用
上は20mol%以下程度までとする。
This substitution amount can be appropriately set within a range that does not lower the superconducting characteristics. However, too much substitution lowers the superconducting characteristics. .

本発明の酸化物超電導線を得るには、まず、酸化物超
電導体の焼成し結晶化した焼成物をボールミル等の公知
の手段により粉砕する。このとき、酸化物超電導体粉末
はへき開面から分割されて微粉末となる。粉砕は、平均
粒径(結晶のc面の最大の長さ)が1〜5μm程度、直
径対厚さの比が3〜5となるまで行なうことが望まし
い。なお、必要に応じて、粉砕した粉末を上記の範囲と
なるように分級して用いてもよい。
In order to obtain the oxide superconducting wire of the present invention, first, a fired product obtained by firing and crystallizing the oxide superconductor is ground by a known means such as a ball mill. At this time, the oxide superconductor powder is divided into fine powders from the cleavage plane. The pulverization is preferably performed until the average particle size (maximum length of the c-plane of the crystal) is about 1 to 5 μm and the ratio of diameter to thickness is 3 to 5. If necessary, the pulverized powder may be classified and used in the above range.

次に、この酸化物超電導体粉末を、そのまま、あるい
は円柱状に加圧成形した後、金属管内に充填し、両端を
同質材により封止する。
Next, this oxide superconductor powder is directly or press-formed into a cylindrical shape, and then filled in a metal tube, and both ends are sealed with a homogeneous material.

上記金属管としては、銀または銀合金のような酸素透
過性の良好な金属からなるものが適している。
As the above-mentioned metal tube, a tube made of a metal having good oxygen permeability such as silver or a silver alloy is suitable.

この後、この酸化物超電導体粉末を充填した金属管
を、熱間または温間でスェージングマシン等により鍛造
し、冷間で線引きして前記金属管の外径を元の外径の1/
10以下、好ましくは1/20以下程度となるまで減面加工を
施し、さらに必要に応じて、所定の外形の加工を施した
後、長手方向に沿ってスリットを形成する。
Thereafter, the metal tube filled with the oxide superconductor powder is forged by a swaging machine or the like in a hot or warm state, and is drawn in a cold state so that the outer diameter of the metal tube is 1 / the original outer diameter.
The surface is reduced until it becomes 10 or less, preferably about 1/20 or less, and if necessary, a predetermined outer shape is formed, and then a slit is formed along the longitudinal direction.

スリットの形成は、例えば レーザー加工 機械加工 ホトリソグラフィを用いたエッチング加工等により
行うことができる。
The slits can be formed by, for example, laser processing, mechanical processing, etching processing using photolithography, or the like.

スリットの幅は徳に限定されないが、酸化物超電導体
と金属被覆の熱伸縮の差を吸収するのに充分なゆとりを
有していることが望ましい。また、このスリットは全体
が連続して形成されている必要はなく、所定の長さごと
にブリッジを形成するようにしてもよい。
The width of the slit is not particularly limited, but it is desirable that the slit has a sufficient space to absorb the difference in thermal expansion and contraction between the oxide superconductor and the metal coating. In addition, the slit does not need to be continuously formed as a whole, and a bridge may be formed for each predetermined length.

第1図は、本発明の酸化物超電導体の外形を示すもの
で、金属被覆1の長さ方向に螺旋状に連続し、かつ長さ
方向と直交する断面形状が略V字状のスリット2を形成
したものである。なお、同図において3は酸化物超電導
体を示している。
FIG. 1 shows the outer shape of an oxide superconductor according to the present invention. The slit 2 has a substantially V-shaped cross-section that is spirally continuous in the length direction of the metal coating 1 and that is orthogonal to the length direction. Is formed. In FIG. 1, reference numeral 3 denotes an oxide superconductor.

次に、スリット加工の終了した酸化物超電導線を、酸
素含有雰囲気中850〜980℃で8〜80時間、焼成のため熱
処理を行なう。焼成後、酸素含有雰囲気中で600℃から3
00℃までを1℃/分程度の割合いで徐冷し、酸化物超伝
導体の結晶構造中の酸素空席に酸素を導入して超電導特
性を向上させる。なお、酸素導入は、このような徐冷を
行わずに、焼成のための熱処理からの冷却工程または別
工程において、300〜700℃で10数時間保持することによ
り行うようにしてもよい。
Next, the slit superconducting wire is subjected to a heat treatment for firing at 850 to 980 ° C. for 8 to 80 hours in an oxygen-containing atmosphere. After firing, in an oxygen-containing atmosphere from 600 ° C to 3
The temperature is gradually cooled to 00 ° C. at a rate of about 1 ° C./min, and oxygen is introduced into oxygen vacancies in the crystal structure of the oxide superconductor to improve the superconducting properties. In addition, oxygen may be introduced by holding at 300 to 700 ° C. for 10 hours or more in a cooling step or another step from heat treatment for firing without performing such slow cooling.

熱処理の後、スリットの部分が開きすぎるのを防止す
るため、酸化物超電導線の外周に押えテープや押え糸を
巻回すようにしてもよい。
After the heat treatment, a pressing tape or a pressing thread may be wound around the outer periphery of the oxide superconducting wire in order to prevent the slit portion from being excessively opened.

なお、前述したスリット加工は、熱処理後に行うこと
も可能である。
Note that the above-described slit processing can be performed after the heat treatment.

(作 用) 本発明の酸化物超電導線は、金属被覆にスリットが形
成されているので、金属被覆と酸化物超電導体の熱膨脹
係数の違いによる熱歪がスリットの開閉により吸収され
る。
(Operation) In the oxide superconducting wire of the present invention, since the slit is formed in the metal coating, the thermal strain due to the difference in the thermal expansion coefficient between the metal coating and the oxide superconductor is absorbed by opening and closing the slit.

(実施例) 以下、本発明の実施例について説明する。(Example) Hereinafter, an example of the present invention will be described.

実施例 まず、BaCO3粉末2mol%、Y2 O3粉末0.5mol%、CuO粉
末3mol%を充分混合し、混合物を900℃で48時間焼成し
た後粉砕した。次いで、この粉末原料を大気中600℃で2
4時間熱処理して酸素空席に酸素を導入した後、ボール
ミルを用いて粉砕し、分級して平均粒径2μm、直径対
厚さの比が3〜5のペロブスカイト型の酸化物超電導体
粉末を得た。
Example First, 2 mol% of BaCO 3 powder, 0.5 mol% of Y 2 O 3 powder and 3 mol% of CuO powder were sufficiently mixed, and the mixture was baked at 900 ° C. for 48 hours and then pulverized. Next, this powdered raw material is
After heat treatment for 4 hours to introduce oxygen into the oxygen vacant space, pulverize using a ball mill and classify to obtain a perovskite-type oxide superconductor powder having an average particle size of 2 μm and a diameter to thickness ratio of 3 to 5. Was.

次に、得られた酸化物超電導体粉末を、外径20mm、内
径15mm、長さ100mmの、一端を銀材により封止した銀管
中に充填し、他端に銀材の栓をした後、常温でスェージ
ングマシンにより銀管外から酸化物超電導体粉末をつき
固め、この後外径2mmにまで冷間で線引きし、その外周
に公知のホトリソグラフィ技術を用いて幅0.1mmのスリ
ットを形成した。
Next, the obtained oxide superconductor powder was filled into a silver tube having an outer diameter of 20 mm, an inner diameter of 15 mm, and a length of 100 mm, one end of which was sealed with a silver material, and the other end was plugged with a silver material. At normal temperature, the oxide superconductor powder was hardened from outside the silver tube with a swaging machine at room temperature, and then drawn cold to an outer diameter of 2 mm, and a slit having a width of 0.1 mm was formed on the outer periphery thereof using a known photolithography technique. Formed.

しかる後、酸素雰囲気中940℃で7時間熱処理して焼
成した後、600℃から1℃/分で徐冷して超電導線を得
た。
Thereafter, the resultant was heat-treated at 940 ° C. for 7 hours in an oxygen atmosphere and fired, and then gradually cooled from 600 ° C. at 1 ° C./min to obtain a superconducting wire.

この酸化物超電導線の臨界電流密度は1000A/cm2であ
った。
The critical current density of this oxide superconducting wire was 1000 A / cm 2 .

一方、スリットを形成しない点を除いて実施例と同一
条件で製造した酸化物超電導の臨界電流密度は87A/cm2
であった。
On the other hand, the critical current density of oxide superconductivity manufactured under the same conditions as in the example except that no slit is formed is 87 A / cm 2
Met.

[発明の効果] 本発明の酸化物超電導線は、金属被覆にスリットが形
成されているので、金属被覆の酸化物超電導体の熱膨脹
係数の違いによる熱歪がスリットの問題により吸収され
る。したがって、ヒートサイクルの際の熱歪による臨界
電流密度の低下や、熱歪により発生するクラックの発生
を防ぎ、長期にわたって高い電流密度を得ることができ
る。
[Effects of the Invention] In the oxide superconducting wire of the present invention, since the slit is formed in the metal coating, the thermal distortion due to the difference in the thermal expansion coefficient of the metal-coated oxide superconductor is absorbed by the problem of the slit. Therefore, it is possible to prevent a decrease in critical current density due to thermal strain during a heat cycle and to prevent the occurrence of cracks caused by thermal strain, and to obtain a high current density over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の酸化物超電導線の実施例を示す斜視
図、第2図は酸化物超電導線の金属被覆と酸化物超電導
体の温度変化による熱伸縮量を示すグラフである。 1……金属被覆 2……スリット 3……酸化物超電導体
FIG. 1 is a perspective view showing an embodiment of the oxide superconducting wire according to the present invention, and FIG. 2 is a graph showing the amount of thermal expansion and contraction of the oxide superconducting wire due to a temperature change of the metal coating and the oxide superconductor. 1 Metal coating 2 Slit 3 Oxide superconductor

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体の外周に、金属被覆を設け
てなる酸化物超電導線において、前記金属被覆に、前記
酸化物超電導体に達すると共に前記酸化物超電導線の長
手方向と直交する断面形状が略V字状のスリットを、前
記酸化物超電導線の長手方向に沿って螺旋状に形成して
なることを特徴とする酸化物超電導線。
1. An oxide superconducting wire in which a metal coating is provided on an outer periphery of an oxide superconductor, wherein the metal coating has a cross section that reaches the oxide superconductor and is orthogonal to a longitudinal direction of the oxide superconducting wire. An oxide superconducting wire, wherein a substantially V-shaped slit is formed in a spiral shape along the longitudinal direction of the oxide superconducting wire.
【請求項2】金属被覆が、銀または銀合金からなること
を特徴とする特許請求の範囲第1項記載の酸化物超電導
線。
2. The oxide superconducting wire according to claim 1, wherein the metal coating is made of silver or a silver alloy.
【請求項3】酸化物超電導体は、希土類元素を含有する
ペロブスカイト型の酸化物超電導体であることを特徴と
する特許請求の範囲第1項または第2項記載の酸化物超
電導線。
3. The oxide superconducting wire according to claim 1, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
【請求項4】酸化物超電導体は、Lu元素(Luは、希土類
元素から選ばれた少なくとも1種の元素)、BaおよびCu
を原子比で実質的に1:2:3の割合で含有することを特徴
とする特許請求の範囲第1項ないし第3項のいずれか1
項記載の酸化物超電導線。
4. The oxide superconductor comprises a Lu element (Lu is at least one element selected from rare earth elements), Ba and Cu.
Is substantially contained in an atomic ratio of 1: 2: 3.
Item 2. The oxide superconducting wire according to item 1.
【請求項5】酸化物超電導体は、LuBa2Cu3O7−δ(δ
は酸素欠陥を表わす)で表わされる酸素欠陥型ペロブス
カイト構造を有することを特徴とする特許請求の範囲第
4項記載の酸化物超電導体。
5. The oxide superconductor comprises LuBa 2 Cu 3 O 7-δ
5. The oxide superconductor according to claim 4, having an oxygen-defective perovskite structure represented by the following formula:
JP62320731A 1987-12-18 1987-12-18 Oxide superconducting wire Expired - Lifetime JP2644245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320731A JP2644245B2 (en) 1987-12-18 1987-12-18 Oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320731A JP2644245B2 (en) 1987-12-18 1987-12-18 Oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH01161613A JPH01161613A (en) 1989-06-26
JP2644245B2 true JP2644245B2 (en) 1997-08-25

Family

ID=18124686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320731A Expired - Lifetime JP2644245B2 (en) 1987-12-18 1987-12-18 Oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP2644245B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652461B2 (en) * 2012-12-06 2015-01-14 トヨタ自動車株式会社 Coil conductor for rotating electrical machine and coil body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1338396C (en) * 1987-02-05 1996-06-18 Kazuo Sawada Process for manufacturing a superconducting wire of compound oxide-type ceramics
JPS643919A (en) * 1987-06-26 1989-01-09 Furukawa Electric Co Ltd Manufacture of superconductive wire

Also Published As

Publication number Publication date
JPH01161613A (en) 1989-06-26

Similar Documents

Publication Publication Date Title
US5093314A (en) Superconducting wire and method of manufacturing the same
JP2644245B2 (en) Oxide superconducting wire
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JPH02207420A (en) Manufacture of superconducting wire rod
JP2653462B2 (en) Superconductor
JP2592872B2 (en) Manufacturing method of oxide superconducting wire
JPS63279512A (en) Superconductor wire rod and its manufacture
JP2509642B2 (en) Superconducting power lead manufacturing method
JP2554659B2 (en) Composite oxide superconductor wire connection
JP2590157B2 (en) Manufacturing method of superconductor wire
EP0286372A2 (en) Oxide superconductor and manufacturing method thereof
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP2597578B2 (en) Superconductor manufacturing method
JP2554658B2 (en) How to connect complex oxide superconductors
JP2597579B2 (en) Superconductor manufacturing method
JPH06251929A (en) Manufacture of oxide superconducting coil
JPH01119002A (en) Superconductor coil and manufacture thereof
JP2565954B2 (en) Method for manufacturing superconductor coil
JPH01163906A (en) Oxide superconductor wire material