JP2509642B2 - Superconducting power lead manufacturing method - Google Patents

Superconducting power lead manufacturing method

Info

Publication number
JP2509642B2
JP2509642B2 JP62281630A JP28163087A JP2509642B2 JP 2509642 B2 JP2509642 B2 JP 2509642B2 JP 62281630 A JP62281630 A JP 62281630A JP 28163087 A JP28163087 A JP 28163087A JP 2509642 B2 JP2509642 B2 JP 2509642B2
Authority
JP
Japan
Prior art keywords
power lead
oxide superconductor
superconducting power
heat
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62281630A
Other languages
Japanese (ja)
Other versions
JPH01123405A (en
Inventor
操 小泉
暁 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62281630A priority Critical patent/JP2509642B2/en
Publication of JPH01123405A publication Critical patent/JPH01123405A/en
Application granted granted Critical
Publication of JP2509642B2 publication Critical patent/JP2509642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、液化ガス等で冷却した超電導線材と外部機
器とを電気的に接続するために用いるリード線の製造方
法に係り、特に酸化物超電導体を用いた超電導パワーリ
ードの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a method for manufacturing a lead wire used for electrically connecting a superconducting wire cooled with a liquefied gas or the like to an external device. In particular, the present invention relates to a method of manufacturing a superconducting power lead using an oxide superconductor.

(従来の技術) 従来から、MRIや加速器等で実用化されている合金系
あるいは金属間化合物系の超電導線材は、液体ヘリウム
中に浸漬されて臨界温度以下にまで冷却されて使用さ
れ、また、液体ヘリウムは真空槽や各種の断熱材により
外部環境から熱遮蔽されている。一方、超電導線材と外
部機器とは、上記真空槽や断熱材を貫通して配設された
銅等の常電導金属からなるパワーリードにより電気的に
接続されている。
(Prior Art) Conventionally, alloy-based or intermetallic compound-based superconducting wires that have been put to practical use in MRI, accelerators, etc. are immersed in liquid helium and cooled to a temperature below the critical temperature. Liquid helium is thermally shielded from the external environment by a vacuum chamber and various heat insulating materials. On the other hand, the superconducting wire and the external device are electrically connected to each other by a power lead made of a normal conducting metal such as copper, which is provided so as to penetrate the vacuum chamber and the heat insulating material.

このように従来の超電導線材においては、全体が真空
層や断熱材により熱遮蔽されてはいるが、超電導線材が
常電導金属からなるパワーリードにより外部機器と接続
されているため、このパワーリードを通じて外部の熱
や、パワーリードへの通電に基くジュール熱が侵入し、
これによって冷媒である液体ヘリウムの蒸発が促進され
てしまうという問題があった。
As described above, in the conventional superconducting wire, the whole is thermally shielded by the vacuum layer and the heat insulating material, but since the superconducting wire is connected to the external device by the power lead made of the normal conducting metal, External heat and Joule heat based on the energization of the power leads enter,
This causes a problem that evaporation of liquid helium, which is a refrigerant, is promoted.

(発明が解決しようとする問題点) このように、液体ヘリウムで冷却した超電導線材と外
部機器とを電気的に接続するためのパワーリードには、
従来、常電導金属が用いられていたため、通電に伴い発
生するジュール熱や、パワーリードを通じての外部から
の熱侵入により冷媒の蒸発が促進されるという問題があ
った。
(Problems to be Solved by the Invention) As described above, in the power lead for electrically connecting the superconducting wire cooled with liquid helium and the external device,
Conventionally, since a normal-conducting metal has been used, there has been a problem that evaporation of the refrigerant is promoted by Joule heat generated by energization and heat intrusion from the outside through the power lead.

本発明はこのような従来の難点を解決すべくなされた
もので、通電に伴うジュール熱の発生およびパワーリー
ドを通じての熱侵入を低減させることができる超電導パ
ワーリードの製造方法を提供することを目的とする。
The present invention has been made to solve such conventional problems, and an object of the present invention is to provide a method for manufacturing a superconducting power lead capable of reducing generation of Joule heat due to energization and heat intrusion through the power lead. And

[発明の構成] (問題点を解決するための手段) すなわち、本発明の超電導パワーリードの製造方法
は、低抵抗金属管内に酸化物超電導体粉末またはその出
発原料粉末を高密度に充填し熱処理する工程と、前記低
抵抗金属管の一部または全部を除去して得られた棒状体
を酸素含有雰囲気中で熱処理する工程と、前記熱処理の
前または後に前記棒状体の両端に低抵抗金属により端子
を形成する工程と、前記熱処理の施された棒状体の外周
に前記端子間に跨って高抵抗物質または絶縁物質の被覆
を形成する工程とを有することを特徴としている。
[Structure of the Invention] (Means for Solving Problems) That is, in the method for manufacturing a superconducting power lead of the present invention, a low resistance metal tube is filled with oxide superconductor powder or its starting raw material powder at a high density and heat treated. And a step of heat-treating a rod-shaped body obtained by removing a part or all of the low-resistance metal tube in an oxygen-containing atmosphere, and a low-resistance metal on both ends of the rod-shaped body before or after the heat treatment. The method is characterized by including a step of forming terminals and a step of forming a coating of a high resistance material or an insulating material on the outer periphery of the heat-treated rod-shaped body across the terminals.

本発明には各種の酸化物超電導体を用いることができ
るが、臨界温度の高い、希土類元素含有のペロブスカイ
ト型の酸化物超電導体を用いた場合に特に実用的効果が
大きい。
Although various oxide superconductors can be used in the present invention, a practical effect is particularly large when a rare earth element-containing perovskite-type oxide superconductor having a high critical temperature is used.

上記の希土類元素を含有しペロブスカイト型構造を有
する酸化物超電導体は、超電導状態を実現できるもので
あればよく、LnBa2Cu37−δ系(δは酸素欠陥を表し
通常1以下の数、Lnは、Y、La、Sc、Nd、Sm、Eu、Gd、
Dy、Ho、Er、Tm、YbおよびLuから選ばれた少なくとも1
種の元素、Baの一部はSr等で置換可能)等の酸素欠陥を
有する欠陥ペロブスカイト型、Sr-La-Cu-O系等の層状ペ
ロブスカイト型等の広義にペロブスカイト型を有する酸
化物が例示される。また希土類元素も広義の定義とし、
Sc、YおよびLa系を含むものとする。代表的な系として
Y-Ba-Cu-O系のほかに、YをEu、Dy、Ho、Er、Tm、Yb、L
u等の希土類で置換した系、Sc-Ba-Cu-O系、Sr-La-Cu-O
系、さらにSrをBa、Caで置換した系等が挙げられる。
The above oxide superconductor containing a rare earth element and having a perovskite structure may be any as long as it can realize a superconducting state, and is an LnBa 2 Cu 3 O 7-δ system (where δ represents an oxygen defect and is usually a number of 1 or less). , Ln are Y, La, Sc, Nd, Sm, Eu, Gd,
At least one selected from Dy, Ho, Er, Tm, Yb and Lu
Examples include oxides having a perovskite type in a broad sense, such as defect perovskite type having oxygen defects such as some elements, Ba can be partially replaced by Sr, etc.), layered perovskite type such as Sr-La-Cu-O system, etc. To be done. Rare earth elements are also defined in a broad sense,
Sc, Y and La systems shall be included. As a typical system
In addition to Y-Ba-Cu-O system, Y is Eu, Dy, Ho, Er, Tm, Yb, L
System substituted with rare earth such as u, Sc-Ba-Cu-O system, Sr-La-Cu-O
And further, a system in which Sr is replaced with Ba or Ca.

本発明に用いる酸化物超電導体は、たとえば以下に示
す製造方法により得ることができる。
The oxide superconductor used in the present invention can be obtained, for example, by the following manufacturing method.

まず、Y、Ba、Cu等のペロブスカイト型酸化物超電導
体の構成元素を充分混合する。混合の際には、Y2O3、Cu
O等の酸化物を原料として用いることができる。また、
これらの酸化物のほかに、焼成後酸化物に転化する炭酸
塩、硝酸塩、水酸化物等の化合物を用いてもよい。さら
には、共沈法等で得たシュウ酸塩等を用いてもよい。ペ
ロブスカイト型酸化物超電導体を構成する元素は、基本
的に化学量論比の組成となるように混合するが、多少製
造条件等との関係でずれていても差支えない。たとえ
ば、Y-Ba-Cu-O系ではY 1 molに対しBa 2 mol、Cu 3 mol
が標準組成であるが、実用上はY 1 molに対して、Ba 2
± 0.6 mol、Cu 3± 0.2 mol程度のずれは問題ない。
First, the constituent elements of the perovskite-type oxide superconductor such as Y, Ba, and Cu are sufficiently mixed. During mixing, Y 2 O 3 , Cu
An oxide such as O can be used as a raw material. Also,
In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted into oxides after firing may be used. Further, an oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but may be slightly shifted depending on the production conditions and the like. For example, in the Y-Ba-Cu-O system, Ba 2 mol, Cu 3 mol against Y 1 mol.
Is the standard composition, but in practice, Ba 2
There is no problem with deviations of about ± 0.6 mol and Cu 3 ± 0.2 mol.

前述の原料を混合した後、仮焼、粉砕し所望の形状に
した後、850〜980℃程度で焼成する。仮焼は必ずしも必
要ではない。仮焼および焼成は充分な酸素が供給できる
ような酸素含有雰囲気中で行うことが好ましい。所望の
形状に焼成した後、酸素含有雰囲気中で熱処理して超電
導特性を付与する。上記熱処理は、通常600℃以下で除
冷しながら行うようにする。
After mixing the above-mentioned raw materials, they are calcined, pulverized to a desired shape, and then fired at about 850 to 980 ° C. Calcination is not always necessary. The calcination and the calcination are preferably performed in an oxygen-containing atmosphere capable of supplying sufficient oxygen. After firing into a desired shape, heat treatment is performed in an oxygen-containing atmosphere to impart superconductivity. The heat treatment is usually performed at 600 ° C. or lower while being cooled.

このようにして得られた酸化物超電導体は、酸素欠陥
δを有する酸素欠陥型ペロブスカイト構造(LnBa2Cu3
7−δ(δは通常1以下))となる。なお、BaをSr、Ca
の少なくとも1種で置換することもでき、さらにCuの一
部をTi、V、Cr、Mn、Fe、Co、Ni、Zn等で置換すること
もできる。
The oxide superconductor thus obtained has an oxygen-defective perovskite structure (LnBa 2 Cu 3 O) having oxygen defects δ.
7-δ (δ is usually 1 or less)). In addition, Ba is Sr, Ca
And at least one of Cu may be replaced with Ti, V, Cr, Mn, Fe, Co, Ni, Zn or the like.

この置換量は、超電導特性を低下させない程度の範囲
で適宜設定可能であるが、あまりに多量の置換は超電導
特性を低下させてしまうので80mol%以下、さらに実用
上は20mol%以下程度までとする。
This substitution amount can be appropriately set within a range that does not deteriorate the superconducting property, but an excessively large amount of replacement deteriorates the superconducting property, so the amount is set to 80 mol% or less, and in practice, to about 20 mol% or less.

また、本発明に用いる低抵抗金属は、銀または金であ
ることが好ましく、高抵抗物質または絶縁物質は、エポ
キシ樹脂等の合成樹脂あるいは無機繊維材料で補強した
合成樹脂等の高抵抗物質または絶縁物質であることが好
ましい。
Further, the low resistance metal used in the present invention is preferably silver or gold, and the high resistance substance or insulating material is a high resistance substance or insulating material such as synthetic resin such as epoxy resin or synthetic resin reinforced with inorganic fiber material. It is preferably a substance.

本発明による超電導パワーリードの製造は、上述の酸
化物超電導体、低抵抗金属および高抵抗物質または絶縁
物質を用いて、たとえば次のようにして行われる。
The superconducting power lead according to the present invention is manufactured, for example, as follows, using the above-mentioned oxide superconductor, low resistance metal and high resistance material or insulating material.

まず、出発原料を焼成して得た酸化物超電導体、もし
くは出発原料そのままを、ボールミル等の公知の手段に
より粉砕する。
First, the oxide superconductor obtained by firing the starting material or the starting material as it is is pulverized by a known means such as a ball mill.

次いで、この酸化物超電導体粉末もしくはその原料粉
末を、銀や金のような低抵抗金属管に充填し、ダイス、
タークスヘッド等を用いて減面加工を施した後850〜980
℃で熱処理して複合材とする。得られた複合材の低抵抗
金属層のうち両端の端子となる部分以外をエッチング、
切削加工等により除去し、酸素含有雰囲気中で850〜980
℃で酸化物超電導体粉末もしくはその原料粉末を焼成
し、600℃以下を1℃/分程度の冷却速度で除冷して酸
化物超電導体の結晶構造中の酸素空席に酸素を導入し、
超電導特性を向上させる。
Next, the oxide superconductor powder or the raw material powder thereof is filled in a low resistance metal tube such as silver or gold, and a die,
850-980 after surface reduction using Turks head etc.
Heat treated at ℃ to obtain a composite material. Etching of the obtained low-resistance metal layer of the composite material except for the portions to be terminals at both ends,
850 to 980 in an oxygen-containing atmosphere after removal by cutting, etc.
The oxide superconductor powder or the raw material powder thereof is fired at 0 ° C, 600 ° C or less is cooled at a cooling rate of about 1 ° C / minute, and oxygen is introduced into oxygen vacancies in the crystal structure of the oxide superconductor.
Improve superconducting properties.

しかる後、金属層を除去した部分の露出した酸化物超
電導体の外周にエポキシ樹脂等の合成樹脂あるいは無機
繊維材料で補強した合成樹脂等の高抵抗物質もしくは絶
縁物質を被覆して超電導パワーリードが得られる。
Then, the superconducting power lead is coated by coating the outer periphery of the oxide superconductor where the metal layer is removed with a high resistance substance or insulating substance such as synthetic resin such as epoxy resin or synthetic resin reinforced with inorganic fiber material. can get.

なお、低抵抗金属として銀および金以外の低抵抗金属
を用いることも可能であるが、この場合は、低抵抗金属
を全て除去してから2度めの熱処理を行い、熱処理後、
両端の端子とすべき部分をめっき法、蒸着法等を用いて
低抵抗金属で被覆することが好ましい。これは、銀およ
び金以外の低抵抗金属を用いた場合には、熱処理時にお
いて酸化物超電導体中の酸素と反応して超電導特性を劣
化させるおそれがあるためである。
It is also possible to use a low resistance metal other than silver and gold as the low resistance metal, but in this case, after removing all the low resistance metal, a second heat treatment is performed, and after the heat treatment,
It is preferable to coat the portions to be terminals at both ends with a low resistance metal by using a plating method, a vapor deposition method or the like. This is because when a low resistance metal other than silver and gold is used, it may react with oxygen in the oxide superconductor during heat treatment to deteriorate the superconducting characteristics.

また、必要に応じて、端子に銅、アルミニウムなどか
らなる端子金具を半田付け法、圧着法、冷しばめ法等に
より取付けてもよい。さらに、着脱式パワーリードとし
て用いる場合には、必要に応じて、端子にインジウム等
の低融点の軟金属をめっきするようにしてもよい。
If necessary, a terminal fitting made of copper, aluminum, or the like may be attached to the terminal by a soldering method, a crimping method, a cold fitting method, or the like. Further, when used as a detachable power lead, the terminal may be plated with a low melting point soft metal such as indium, if necessary.

(作用) 本発明の超電導パワーリードの製造方法では、パワー
リード本体として酸化物超電導体を用いるため、通電に
伴うジュール熱の発生は両電極においてのみであり、ジ
ュール熱の発生量を低減させることができる。また、端
子には低抵抗金属を用いているため、接続部での接触抵
抗による発熱も小さい。
(Operation) In the method for manufacturing a superconducting power lead of the present invention, since an oxide superconductor is used as the power lead body, Joule heat is generated only when both electrodes are energized, and the amount of Joule heat generated is reduced. You can Further, since the terminal is made of a low resistance metal, heat generation due to the contact resistance at the connecting portion is small.

さらには、酸化物超電導体の熱伝導率は、組成および
密度にもよるが、Y-Ba-Cu-O系で7〜10Wm-1K-1(90K)
であり、銅の熱電導率483Wm-1K-1(100K)に比べて小さ
く、特にこれを粉末にして円筒状管内に充填したもので
はさらに熱伝導率が小さくなるため、パワーリードを通
じてのジュール熱や外部からの熱侵入を低減させること
ができる。
Furthermore, the thermal conductivity of oxide superconductors depends on the composition and density, but it is 7-10 Wm -1 K -1 (90 K) in the Y-Ba-Cu-O system.
It is smaller than the thermal conductivity of copper 483 Wm -1 K -1 (100 K), and especially when the powder is filled into a cylindrical tube, the thermal conductivity becomes even smaller. It is possible to reduce heat and heat from the outside.

(実施例) 以下、本発明の実施例について図面を用いて説明す
る。
(Example) Hereinafter, the Example of this invention is described using drawing.

実施例 酸化物超電導体の原料として、BaCO3粉末2mol%、Y2O
3粉末0.5mol%、CuO粉末3mol%を用い、これらを充分混
合して大気中900℃で8時間焼成した後ボールミルを用
いて粉砕して、酸化物超電導体粉末を得、第1図に示す
ように、この酸化物超電導体粉末1を、外径80mm、内径
70mm、長さ200mmの一端を銀材2により封止した銀管3
に充填した後銀材4により栓をした。次いで、第2図に
示すように、ダイス5を用いて外径が8mmになるまで減
面加工を施し、950℃で5時間熱処理した後長さ100mmに
切断し、端面をスパッタリング法により銀で被覆した
後、第3図に示すように、両端から20mmの銀層を端子6
として残して、他の銀層をバイト7を用いて除去して棒
状体8を得た。この棒状体8を酸素含有雰囲気中で950
℃で10時間熱処理した後、600℃以下を1℃/分で徐冷
して酸化物超電導体の結晶構造中の酸素空席に酸素を導
入し、超電導特性を向上させた。しかる後、第4図に示
すように、銀層の除去部分をエポキシ樹脂で被覆して絶
縁物層9を設け、超電導パワーリード10を得た。
Example As a raw material for an oxide superconductor, BaCO 3 powder 2 mol%, Y 2 O
Using 3 mol% of 3 powder and 3 mol% of CuO powder, thoroughly mixing them, baking them at 900 ° C. in the air for 8 hours, and then pulverizing them with a ball mill to obtain oxide superconductor powder, which is shown in FIG. So that the oxide superconductor powder 1 has an outer diameter of 80 mm and an inner diameter of
Silver tube 3 with one end of 70 mm and length of 200 mm sealed with silver material 2
After filling in, the material was capped with silver material 4. Then, as shown in Fig. 2, a die 5 is used to reduce the surface until the outer diameter becomes 8 mm, which is heat-treated at 950 ° C for 5 hours and then cut to a length of 100 mm. After coating, as shown in FIG.
Then, the other silver layer was removed using a cutting tool 7 to obtain a rod-shaped body 8. 950 the rod-shaped body 8 in an oxygen-containing atmosphere.
After heat treatment at 10 ° C. for 10 hours, 600 ° C. or lower was gradually cooled at 1 ° C./min to introduce oxygen into oxygen vacancies in the crystal structure of the oxide superconductor to improve superconducting properties. Thereafter, as shown in FIG. 4, the removed portion of the silver layer was covered with an epoxy resin to form an insulating layer 9, and a superconducting power lead 10 was obtained.

この超電導パワーリードの90Kにおける臨界電流密度
は260A/cm2、熱電導率は11Wm-1K-1、50Aの通電時におけ
る総発熱量は0.3mWであった。
This superconducting power lead had a critical current density at 90 K of 260 A / cm 2 , a thermoconductivity of 11 Wm -1 K -1 , and a total heat generation amount of 0.3 mW when energized at 50 A.

なお、この実施例の超電導パワーリードに、第5図に
示すように、端子6に銅、アルミニウムなどからなる端
子金具11を半田付け法、圧着法、冷しばめ法等により取
付けたり、端子の外側にインジウム等の低融点の軟金属
層を設けた場合にもほぼ同様の特性が得られた。
As shown in FIG. 5, a terminal metal fitting 11 made of copper, aluminum or the like is attached to the superconducting power lead of this embodiment by a soldering method, a crimping method, a cold fitting method, or the like. When a soft metal layer having a low melting point, such as indium, is provided on the outer side of, the substantially same characteristics were obtained.

第1図ないし第5図において、共通する部材について
は、同一の符号を付してある。
1 to 5, common members are designated by the same reference numerals.

[発明の効果] 以上説明したように、本発明による得られる超電導パ
ワーリードは、通電に伴うジュール熱の発生量が少な
い。また、熱電導率も小さいため、液体ヘリウム等の冷
媒を用いて使用する超電導線材と外部機器との接続に用
いた場合でも、外部からの熱侵入を低減させることがで
きる。
[Effects of the Invention] As described above, the superconducting power lead obtained according to the present invention has a small amount of Joule heat generated by energization. In addition, since the thermal conductivity is also small, it is possible to reduce heat invasion from the outside even when it is used to connect a superconducting wire used with a refrigerant such as liquid helium to an external device.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第4図は本発明による超電導パワーリード
の製造手順を示す断面図、第5図は本発明により得た超
電導パワーリードの端子に端子金具を設けた状態を示す
断面図である。 1……酸化物超電導体 2……銀管 6……端子 8……棒状体 9……絶縁物層 10……超電導パワーリード
1 to 4 are sectional views showing a procedure for manufacturing a superconducting power lead according to the present invention, and FIG. 5 is a sectional view showing a state in which a terminal fitting is provided on a terminal of the superconducting power lead obtained according to the present invention. 1 ... Oxide superconductor 2 ... Silver tube 6 ... Terminal 8 ... Rod 9 ... Insulator layer 10 ... Superconducting power lead

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】低抵抗金属管内に酸化物超電導体粉末また
はその出発原料粉末を高密度に充填し熱処理する工程
と、前記低抵抗金属管の一部または全部を除去して得ら
れた棒状体を酸素含有雰囲気中で熱処理する工程と、前
記熱処理の前または後に前記棒状体の両端に低抵抗金属
により端子を形成する工程と、前記熱処理の施された棒
状体の外周に前記端子間に跨って高抵抗物質または絶縁
物質の被覆を形成する工程とを有することを特徴とする
超電導パワーリードの製造方法。
1. A rod-shaped body obtained by filling a low-resistance metal tube with oxide superconductor powder or its starting material powder at a high density and heat-treating, and removing a part or all of the low-resistance metal tube. Heat treatment in an oxygen-containing atmosphere, forming terminals with low resistance metal on both ends of the rod-shaped body before or after the heat treatment, and straddling the terminals on the outer periphery of the heat-treated rod-shaped body. Forming a coating of a high resistance material or an insulating material.
【請求項2】低抵抗金属は、銀または金であることを特
徴とする特許請求の範囲第1項記載の超電導パワーリー
ドの製造方法。
2. The method for producing a superconducting power lead according to claim 1, wherein the low resistance metal is silver or gold.
【請求項3】酸化物超電導体は、希土類元素を含有する
ペロブスカイト型の酸化物超電導体であることを特徴と
する特許請求の範囲第1項または第2項記載の超電導パ
ワーリードの製造方法。
3. The method for manufacturing a superconducting power lead according to claim 1, wherein the oxide superconductor is a perovskite type oxide superconductor containing a rare earth element.
【請求項4】酸化物超電導体は、Ln元素(Lnは、希土類
元素から選ばれた少なくとも1種の元素)、BaおよびCu
を原子比で実質的に1:2:3の割合で含有することを特徴
とする特許請求の範囲第1項ないし第3項のいずれか1
項記載の超電導パワーリードの製造方法。
4. An oxide superconductor comprising Ln element (Ln is at least one element selected from rare earth elements), Ba and Cu
Is substantially contained in an atomic ratio of 1: 2: 3.
A method for manufacturing a superconducting power lead according to the item.
【請求項5】酸化物超電導体は、LnBa2 Cu3 O
7−δ(δは酸素欠陥を表わす)で表わされる酸素欠陥
型ペロブスカイト構造を有することを特徴とする特許請
求の範囲第1項ないし第4項のいずれか1項記載の超電
導パワーリードの製造方法。
5. The oxide superconductor is LnBa 2 Cu 3 O.
7. The method for producing a superconducting power lead according to claim 1, which has an oxygen-defective perovskite structure represented by 7-δ (where δ represents an oxygen defect). .
JP62281630A 1987-11-06 1987-11-06 Superconducting power lead manufacturing method Expired - Fee Related JP2509642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281630A JP2509642B2 (en) 1987-11-06 1987-11-06 Superconducting power lead manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281630A JP2509642B2 (en) 1987-11-06 1987-11-06 Superconducting power lead manufacturing method

Publications (2)

Publication Number Publication Date
JPH01123405A JPH01123405A (en) 1989-05-16
JP2509642B2 true JP2509642B2 (en) 1996-06-26

Family

ID=17641790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281630A Expired - Fee Related JP2509642B2 (en) 1987-11-06 1987-11-06 Superconducting power lead manufacturing method

Country Status (1)

Country Link
JP (1) JP2509642B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2779210B2 (en) * 1989-06-14 1998-07-23 古河電気工業株式会社 Conductor for current lead
JPH0319206A (en) * 1989-06-15 1991-01-28 Furukawa Electric Co Ltd:The Conductor for current lead

Also Published As

Publication number Publication date
JPH01123405A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
JP2754564B2 (en) Method for producing superconducting composite
US4906609A (en) Fabrication of superconducting oxide wires by powder-in-tube method
JP2914331B2 (en) Method for producing composite oxide ceramic superconducting wire
US6074991A (en) Process for producing an elongated superconductor with a bismuth phase having a high transition temperature and a superconductor produced according to this process
JP2509642B2 (en) Superconducting power lead manufacturing method
JP2563391B2 (en) Superconducting power lead
EP0409150B1 (en) Superconducting wire
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
EP0286372A2 (en) Oxide superconductor and manufacturing method thereof
JP2644245B2 (en) Oxide superconducting wire
JP2554659B2 (en) Composite oxide superconductor wire connection
JPS63291311A (en) Superconducting wire
JPS63299012A (en) Superconductive fiber and its manufacture
JPH01119002A (en) Superconductor coil and manufacture thereof
US5583094A (en) "Method for preparing hollow oxide superconductors"
JP2590157B2 (en) Manufacturing method of superconductor wire
JPH01162310A (en) Manufacture of oxide superconducting power lead wire
JP2637427B2 (en) Superconducting wire manufacturing method
Tenbrink et al. Manufacture and properties of Bi-2212-based Ag-sheathed wires
JPH01151169A (en) Oxide superconducting member
JPH05319824A (en) Production of oxide superconductor laminated body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees