JP2637427B2 - Superconducting wire manufacturing method - Google Patents

Superconducting wire manufacturing method

Info

Publication number
JP2637427B2
JP2637427B2 JP62124552A JP12455287A JP2637427B2 JP 2637427 B2 JP2637427 B2 JP 2637427B2 JP 62124552 A JP62124552 A JP 62124552A JP 12455287 A JP12455287 A JP 12455287A JP 2637427 B2 JP2637427 B2 JP 2637427B2
Authority
JP
Japan
Prior art keywords
superconducting
wire
oxide
metal
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62124552A
Other languages
Japanese (ja)
Other versions
JPS63289723A (en
Inventor
宰 河野
義光 池野
伸行 定方
優 杉本
三紀夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62124552A priority Critical patent/JP2637427B2/en
Publication of JPS63289723A publication Critical patent/JPS63289723A/en
Application granted granted Critical
Publication of JP2637427B2 publication Critical patent/JP2637427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、酸化物系超電導導体を金属の安定化層で被
覆してなり超電導マグネットなどの超電導機器に利用さ
れる超電導線の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a superconducting wire formed by coating an oxide-based superconducting conductor with a metal stabilizing layer and used for a superconducting device such as a superconducting magnet. .

「従来の技術」 近年、常電導状態から超電導状態へ遷移する臨界温度
(Tc)が液体窒素温度以上の高い値を示す酸化物系の超
電導材料が種々発見されつつある。そして、従来、この
種の超電導材料からなる超電導体の中でもY−Ba−Cu−
O系、La−Sr−Cu−O系等のいわゆるA−B−Cu−O系
(ただし、AはLa,Y,Yb,Sc等の周期律表III a族金属元
素を示、BはSr,Ba等のアルカリ土類金属元素を示す)
の超電導材料を製造するには、上記III a族金属元素の
化合物粉末と上記アルカリ土類金属元素の化合物粉末と
酸化銅粉末を混合して得た混合粉末を、所定形状に成形
し、更に熱処理して超電導材料を得るようにしている。
[Prior Art] In recent years, various oxide-based superconducting materials having a critical temperature (Tc) at which a transition from a normal conducting state to a superconducting state shows a high value equal to or higher than the temperature of liquid nitrogen are being discovered. Conventionally, among superconductors made of this type of superconducting material, Y-Ba-Cu-
A so-called AB-Cu-O system such as an O-system and a La-Sr-Cu-O system (where A represents a Group IIIa metal element of the periodic table III such as La, Y, Yb, Sc, etc., and B represents Sr Indicates alkaline earth metal elements such as Ba and Ba)
In order to produce a superconducting material, a mixed powder obtained by mixing the compound powder of the above-mentioned Group IIIa metal element, the compound powder of the above alkaline earth metal element and the copper oxide powder is molded into a predetermined shape, and further heat-treated. To obtain a superconducting material.

また、上記A−B−Cu−O系の超電導体などの酸化物
系超電導体を超電導マグネットなどの超電導機器に適用
させるために、酸化物系超電導材料を線材化する試みも
なされている。
In addition, in order to apply the oxide-based superconductor such as the AB-Cu-O-based superconductor to a superconducting device such as a superconducting magnet, an attempt has been made to convert the oxide-based superconducting material into a wire.

「発明が解決しようとする問題点」 このような酸化物系超電導材料を用いた超電導線の製
造方法としては、例えば、銅などの金属シース内に酸化
物系超電導体の原料粉末を充填し、この後伸線加工を施
し、更に熱処理を施して原料粉末の各成分元素間に反応
を起こさせて、超電導性を有する超電導導体を生成する
方法が試みられている。
`` Problems to be solved by the invention''As a method of manufacturing a superconducting wire using such an oxide-based superconducting material, for example, a raw material powder of an oxide-based superconductor is filled in a metal sheath such as copper, Thereafter, a method has been attempted in which wire drawing is performed, and further heat treatment is performed to cause a reaction between the respective component elements of the raw material powder to produce a superconducting conductor having superconductivity.

ところで、酸化物系超電導体においては、熱処理時に
原料粉末と酸素との反応がその超電導特性に重要な影響
を与え、熱処理時に酸素が不足した状態で生成された超
電導体は、その超電導特性が劣化する傾向にある。一
方、超電導線の安定化層に使用される金属材料、例えば
銅や銅合金(銅−ニッケル合金、銅−スズ合金など)や
ステンレス鋼やNb,Mo,Taなどの高融点金属などの材料
は、酸化性を有しており、特に高温状態では酸化性が強
くなる。よって、前述の超電導線を製造する際の熱処理
時には、これらの金属材料からなる安定化層が酸化物系
超電導材料の原料粉末から酸素を奪い、熱処理によって
生成される超電導導体に酸素不足を生じ、超電導線の臨
界温度や臨界電流などの超電導特性が悪化する問題があ
った。
By the way, in oxide-based superconductors, the reaction between the raw material powder and oxygen has a significant effect on the superconducting properties during heat treatment, and the superconductivity generated in a state where oxygen is insufficient during heat treatment deteriorates the superconducting properties. Tend to. On the other hand, metal materials used for the stabilizing layer of the superconducting wire, such as copper and copper alloys (copper-nickel alloy, copper-tin alloy, etc.), stainless steel, and high melting point metals such as Nb, Mo, Ta, etc. , Which have an oxidizing property, particularly in a high temperature state. Therefore, at the time of heat treatment when manufacturing the above-described superconducting wire, the stabilizing layer made of these metal materials deprives the raw material powder of the oxide-based superconducting material of oxygen, resulting in oxygen deficiency in the superconducting conductor generated by the heat treatment, There is a problem that superconducting characteristics such as a critical temperature and a critical current of the superconducting wire are deteriorated.

また、この不良部分は、超電導導体の外周面すなわち
安定化層との接触部分に特に生じ易いために超電導導体
と安定化層の電気的な接続ができなくなる問題があっ
た。
Further, this defective portion is particularly likely to occur on the outer peripheral surface of the superconducting conductor, that is, on the contact portion with the stabilizing layer, so that there has been a problem that electrical connection between the superconducting conductor and the stabilizing layer cannot be made.

本発明は、前記問題に鑑みてなされたもので、超電導
特性の優れた超電導線の製造方法の提供を目的としてい
る。
The present invention has been made in view of the above problems, and has as its object to provide a method for manufacturing a superconducting wire having excellent superconducting characteristics.

「問題点を解決するための手段」 この発明は、酸化物系超電導導体を金属の安定化層で
被覆してなる超電導線の製造方法であって、酸化物系超
電導材料の原料粉末を圧粉成形して得られた成形体の表
面に貴金属からなる非酸化層を形成し、これを安定化層
となる金属シースに充填した後、これに伸線加工を施し
て線材とし、次いでこの線材に熱処理を施すことを問題
解決の手段とした。
"Means for Solving the Problems" The present invention relates to a method for producing a superconducting wire in which an oxide-based superconducting conductor is covered with a metal stabilizing layer, and the raw material powder of the oxide-based superconducting material is compacted. After forming a non-oxidized layer made of a noble metal on the surface of the molded body obtained by molding, filling this into a metal sheath serving as a stabilizing layer, it is subjected to wire drawing to form a wire, and then to this wire Heat treatment was used as a means for solving the problem.

「作用」 安定化層となる金属シースに、貴金属からなる非酸化
層を形成した成形体を充填し、これを伸線加工した後に
熱処理を施すので、線材の熱処理時に、安定化層の酸化
によって起こる酸化物系超電導材料の酸素不足を防止で
きる。
"Action" The metal sheath that serves as the stabilizing layer is filled with a molded body that has a non-oxidized layer made of a noble metal, and the wire is subjected to heat treatment after wire drawing. Oxygen deficiency of the oxide-based superconducting material that occurs can be prevented.

以下、図面を参照して本発明方法を詳細に説明する。 Hereinafter, the method of the present invention will be described in detail with reference to the drawings.

本発明方法において使用される酸化物系の超電導材料
としては、Y−Ba−Cu−O系などのA−B−Cu−O系
(ただし、AはLa,Y,Yb,Sc等のIII a族金属元素を示
し、BはSr,Ba,Ca等のアルカリ土類金属元素を示す)な
どの酸化物系超電導材料が使用される。上記A−B−Cu
−O系超電導材料の代表的なものを例示すれば、 YBa2Cu3O9-x (x=0〜7) (La1-x Sr x)2CuO4 (x=0.025〜0.5) などである。また、本発明方法において使用される安定
化層材料としては、銅,Nb,Mo,Taなどの単体金属や、銅
合金(銅−ニッケル合金、銅−スズ合金など)、ステン
レス鋼(JIS規格記号SUS304、SUS316)などの合金や、
銅−ステンレスクラッドなどの複合材料などの金属材料
が使用されるが、銅、銅合金、ステンレス鋼、銅−ステ
ンレスクラッドが特に好適に使用される。また、本発明
方法において使用される貴金属としては、Ag、Au、Pt、
Ir、Os、Pd、Rh、Ruなどの単体金属や、銀合金、金合金
などの合金などである。
Examples of the oxide-based superconducting material used in the method of the present invention include AB-Cu-O-based materials such as Y-Ba-Cu-O-based materials (where A is IIIa such as La, Y, Yb, Sc, etc.). (B represents an alkaline earth metal element such as Sr, Ba, Ca, etc.). AB-Cu
By way of example the typical ones -O-based superconducting material, YBa 2 Cu 3 O 9- x (x = 0~7) (La 1- x Sr x) 2 CuO 4 (x = 0.025~0.5) , etc. is there. Examples of the stabilizing layer material used in the method of the present invention include simple metals such as copper, Nb, Mo, and Ta; copper alloys (such as copper-nickel alloys and copper-tin alloys); and stainless steels (JIS standard symbols). Alloys such as SUS304 and SUS316),
Although a metal material such as a composite material such as copper-stainless clad is used, copper, a copper alloy, stainless steel, and a copper-stainless clad are particularly preferably used. Further, as the noble metal used in the method of the present invention, Ag, Au, Pt,
Simple metals such as Ir, Os, Pd, Rh, and Ru, and alloys such as a silver alloy and a gold alloy.

第1図は本発明方法の一例を示す図である。 FIG. 1 shows an example of the method of the present invention.

この例の製造方法では、まず、酸化物系超電導材料の
原料となる粉末を各成分元素が所定の配合比率となるよ
うに混合した後、この粉末に仮焼成を施して仮焼した原
料粉末とする。酸化物系超電導材料の原料となる粉末
は、例えば、Y−Ba−Cu−O系の超電導材料を作成する
場合、Y2O3,BaCO3,CuOなど各元素の酸化物や炭酸化物が
好適に使用される。仮焼成の条件は使用する超電導材料
の種類によって適宜設定されるが、例えばY−Ba−Cu−
O系超電導材料を使用する場合、700℃程度の温度で3
〜10時間程度加熱し、更に850〜950℃程度の温度で24〜
100時間程度加熱するのが好ましい。この仮焼成は、酸
素気流中など雰囲気ガス中に酸素を含む条件で行なうこ
とが望ましい。なお、酸化物系超電導材料の原料粉末と
して各成分元素の酸化物のみを用い、仮焼成時に脱炭酸
化等の原料粉末の組成を変化させる必要がない場合に
は、仮焼成、特に一回目の加熱操作を省いても良い。
In the manufacturing method of this example, first, a powder to be a raw material of an oxide-based superconducting material is mixed so that each component element has a predetermined mixing ratio, and then the powder is calcined and calcined. I do. Powder as a raw material for oxide superconductor material, for example, Y-Ba-CuO system in the case of creating a superconducting material, Y 2 O 3, BaCO 3 , CuO , etc. suitable oxide or carbonate of the elements Used for The conditions of the pre-baking are appropriately set depending on the type of the superconducting material to be used. For example, Y-Ba-Cu-
When using an O-based superconducting material, a temperature of about 700 ° C
Heat for about 10 hours, then at a temperature of about 850-950 ° C for 24-
It is preferable to heat for about 100 hours. This calcination is desirably performed under conditions including oxygen in the atmosphere gas, such as in an oxygen stream. In addition, when only the oxide of each component element is used as the raw material powder of the oxide-based superconducting material and it is not necessary to change the composition of the raw material powder such as decarboxylation during the preliminary firing, the preliminary firing is performed, particularly in the first firing. The heating operation may be omitted.

次に、この仮焼した原料粉末を所定形状(第1図にお
いて円柱状)に圧粉成形して成形体1とする。この圧粉
成形には、ラバープレスなどの圧縮手段が好適に使用さ
れる。次に、この成形体1表面に、銀などの貴金属から
なる貴金属テープを隙間なく巻回し、成形体1表面に非
酸化層2を形成する。この非酸化層2の厚さは、成形体
1と金属シース3との接触が完全に絶たれる程度あれば
良い。
Next, the calcined raw material powder is compacted into a predetermined shape (a cylindrical shape in FIG. 1) to obtain a compact 1. For this compacting, a compression means such as a rubber press is suitably used. Next, a noble metal tape made of a noble metal such as silver is wound around the surface of the molded body 1 without gaps, and a non-oxidized layer 2 is formed on the surface of the molded body 1. The thickness of the non-oxidized layer 2 may be such that the contact between the molded body 1 and the metal sheath 3 is completely cut off.

次に、この成形体1を安定化層となる銅などの金属で
作られた金属シース3内に挿入する。(第1図) 次に、金属シース3内に成形体1を挿入した状態のも
のに伸線加工を施し、所定の径の線材とする。次に、こ
の線材に熱処理を施して、成形体の各原料元素間に反応
を起こさせて、超電導性を有する超電導導体を生成す
る。この熱処理は使用する酸化物系超電導材料の種類に
よって適宜設定されるが、例えばY−Ba−Cu−O系超電
導材料を使用する場合には800〜1300℃、1〜30時間程
度が好適である。以上の操作によって、第2図に示すよ
うに、酸化物系超電導材料からなる超電導導体4とこれ
を被覆する安定化層5との間に、貴金属からなる非酸化
層2が介在されて構成された超電導線6が作成される。
Next, the molded body 1 is inserted into a metal sheath 3 which is made of a metal such as copper to be a stabilizing layer. (FIG. 1) Next, a wire in a state where the molded body 1 is inserted into the metal sheath 3 is subjected to wire drawing to obtain a wire having a predetermined diameter. Next, the wire is subjected to a heat treatment to cause a reaction between the raw material elements of the molded body, thereby producing a superconducting conductor having superconductivity. This heat treatment is appropriately set depending on the type of the oxide-based superconducting material to be used. For example, when a Y-Ba-Cu-O-based superconducting material is used, 800 to 1300 ° C. and about 1 to 30 hours are preferable. . By the above operation, as shown in FIG. 2, the non-oxidized layer 2 made of a noble metal is interposed between the superconducting conductor 4 made of an oxide-based superconducting material and the stabilizing layer 5 covering the superconducting conductor 4. The superconducting wire 6 is created.

この超電導線6は、超電導導体4を構成する酸化物系
超電導材料の臨界温度以下に冷却することによって、超
電導導体4に損失なく電流を流すことができる。また、
超電導導体4を被覆する安定化層5および非酸化層2
は、超電導線6の安定化材として作用する。
By cooling the superconducting wire 6 below the critical temperature of the oxide-based superconducting material constituting the superconducting conductor 4, a current can flow through the superconducting conductor 4 without loss. Also,
Stabilizing layer 5 and non-oxidized layer 2 covering superconducting conductor 4
Acts as a stabilizer for the superconducting wire 6.

この例の製造方法では、成形体1の表面に貴金属テー
プを巻回して非酸化層を形成した後に熱処理を施すの
で、線材の熱処理時に、成形体1から酸素が奪取される
のを防止することができる。したがって生成される超電
導導体4に、酸素不足のために超電導特性の劣化した不
良部分を生じることがなく、均一かつ高品質の超電導線
6を得ることができる。
In the manufacturing method of this example, the heat treatment is performed after a noble metal tape is wound around the surface of the molded body 1 to form a non-oxidized layer. Therefore, it is necessary to prevent oxygen from being removed from the molded body 1 during the heat treatment of the wire. Can be. Therefore, a uniform and high-quality superconducting wire 6 can be obtained without generating a defective portion in which superconducting characteristics are deteriorated due to lack of oxygen in the generated superconducting conductor 4.

なお、この例では成形体1表面に貴金属テープを巻回
して非酸化層2を形成したが、成形体1表面に非酸化層
2を形成する手段はこれに限定されることなく、例えば
蒸着法、スパッタ法、CVD法などの薄膜形成法によって
非酸化層2を形成しても良い。
In this example, the non-oxidized layer 2 was formed by winding a noble metal tape around the surface of the molded body 1. However, the means for forming the non-oxidized layer 2 on the surface of the molded body 1 is not limited to this. The non-oxidized layer 2 may be formed by a thin film forming method such as a sputtering method and a CVD method.

なお、この例によって得られた超電導素線を多数本束
ねて、マルチ線とすることも当然可能である。
In addition, it is naturally possible to form a multi-wire by bundling a number of superconducting wires obtained in this example.

「実施例」 本発明方法によりY−Ba−Cu−O系超電導材料を用い
た超電導線を作成した。まず、超電導材料の原料となる
Y2O3,BaCO3,CuOの各原料粉末を、YBa2Cu3O7の組成とな
るように混合した。次にこの混合粉末を700℃で3時間
加熱し、更に900℃で12時間の加熱を行なって仮焼粉末
とした。次に、この仮焼粉末を粉砕し均一化した後、ラ
バープレスにより圧粉成形を施して、直径10mmの円柱状
の成形体とした。次に、この成形体を900℃で12時間、
酸素気流中で加熱した後、蒸着源にAgを用いて3時間連
続蒸着を行ない、成形体表面に2μmのAg薄膜を生成さ
せた。次に、これを外径12mm、肉厚0.75mmのステンレス
管(JIS規格記号SUS304製)に挿入し、更にその外側に
外径20mm、肉厚3.5mmの銅管を配し、全体に伸線加工を
施して、最終外径2mmの線材とした。次に、この線材を9
00℃で3時間熱処理して超電導線とした。
"Example" A superconducting wire using a Y-Ba-Cu-O-based superconducting material was produced by the method of the present invention. First, it becomes a raw material for superconducting materials
Each raw material powder of Y 2 O 3 , BaCO 3 , and CuO was mixed so as to have a composition of YBa 2 Cu 3 O 7 . Next, this mixed powder was heated at 700 ° C. for 3 hours, and further heated at 900 ° C. for 12 hours to obtain a calcined powder. Next, the calcined powder was pulverized and homogenized, and then subjected to compacting by a rubber press to obtain a cylindrical compact having a diameter of 10 mm. Next, the molded body was heated at 900 ° C. for 12 hours.
After heating in an oxygen stream, continuous vapor deposition was performed for 3 hours using Ag as the vapor deposition source to form a 2 μm Ag thin film on the surface of the molded body. Next, insert this into a stainless steel tube (made of JIS standard code SUS304) with an outer diameter of 12 mm and a wall thickness of 0.75 mm, and further arrange a copper tube with an outer diameter of 20 mm and a wall thickness of 3.5 mm on the outside, and wire drawing the whole Processing was performed to obtain a wire having a final outer diameter of 2 mm. Next, apply this wire to 9
Heat treatment was performed at 00 ° C. for 3 hours to obtain a superconducting wire.

以上の操作によって得られた超電導線の臨界温度およ
び臨界電流を測定した結果、臨界温度は、零抵抗で91K
を示した。また臨界電流(Jc)は、4端子法で測定した
ところ液体窒素温度でJc=500A/cm2を示した。
As a result of measuring the critical temperature and critical current of the superconducting wire obtained by the above operation, the critical temperature was 91 K at zero resistance.
showed that. The critical current (Jc) measured by the four-terminal method showed Jc = 500 A / cm 2 at the temperature of liquid nitrogen.

なお、この実施例と同じ組成のY−Ba−Cu−O系超電
導材料を用い、成形体表面にAgの薄膜を形成せずに超電
導線を作成し、この超電導線の臨界温度および臨界電流
を測定した結果、臨界温度は89kであり、また臨界電流
は60A/cm2であった。
In addition, using a Y-Ba-Cu-O-based superconducting material having the same composition as in this example, a superconducting wire was formed without forming an Ag thin film on the surface of the molded body, and the critical temperature and critical current of the superconducting wire were determined. As a result of the measurement, the critical temperature was 89 k, and the critical current was 60 A / cm 2 .

「発明の効果」 以上説明したように、この発明による超電導線の製造
方法では、酸化物系超電導材料の原料粉末を圧粉成形し
て得られた成形体の表面に貴金属からなる非酸化層を形
成し、これを安定化層となる金属シースに充填した後、
これに伸線加工を施して線材とし、次いでこの線材に熱
処理を施すので、熱処理時に、金属シース内の成形体か
ら酸素が奪取されるのを防止できる。したがって、生成
される超電導体に、酸素不足によって超電導特性の劣化
した不良部分を生じることがなく、均一かつ高品質の超
電導線を得ることができる。
[Effects of the Invention] As described above, in the method for manufacturing a superconducting wire according to the present invention, a non-oxidized layer made of a noble metal is formed on the surface of a compact obtained by compacting a raw material powder of an oxide-based superconducting material. After forming and filling this into the metal sheath that will be the stabilizing layer,
This is subjected to wire drawing to form a wire, and then heat treatment is performed on the wire, so that it is possible to prevent oxygen from being removed from the molded body in the metal sheath during the heat treatment. Accordingly, a uniform and high-quality superconducting wire can be obtained without generating a defective portion in which superconductivity is deteriorated due to lack of oxygen in the generated superconductor.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明による超電導線の製造方法の一例を説
明する図であって、金属シース内に成形体を挿入すると
きの状態を示す斜視図、第2図は第1図に示す製造方法
の一例により製造される超電導線の例を示す図であっ
て、超電導線の横断面図である。 1……成形体、2……非酸化層、3……金属シース、4
……超電導導体、5……安定化層、6……超電導線。
FIG. 1 is a view for explaining an example of a method for manufacturing a superconducting wire according to the present invention, and is a perspective view showing a state when a molded body is inserted into a metal sheath, and FIG. 2 is a manufacturing method shown in FIG. It is a figure which shows the example of the superconducting wire manufactured by one example, Comprising: It is a cross-sectional view of a superconducting wire. 1 ... molded body, 2 ... non-oxidized layer, 3 ... metal sheath, 4
... superconducting conductor, 5 ... stabilizing layer, 6 ... superconducting wire.

フロントページの続き (72)発明者 杉本 優 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 中川 三紀夫 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 特開 平1−163910(JP,A) 特開 昭63−225409(JP,A) 特開 昭63−274023(JP,A) 特開 昭63−279523(JP,A)Continued on the front page (72) Inventor: Yu Sugimoto, 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd. (72) Inventor Mikio Nakagawa 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd. (56) References JP-A-1-163910 (JP, A) JP-A-63-225409 (JP, A) JP-A-63-274023 (JP, A) JP-A-63-279523 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物系超電導導体を金属の安定化層で被
覆してなる超電導線の製造方法であって、 酸化物系超電導材料の原料粉末を圧粉成形して得られた
成形体の表面に貴金属からなる非酸化層を形成し、これ
を安定化層となる金属シースに充填した後、これに伸線
加工を施して線材とし、次いでこの線材に熱処理を施す
ことを特徴とする超電導線の製造方法。
1. A method for producing a superconducting wire, comprising coating an oxide-based superconducting conductor with a metal stabilizing layer, comprising: forming a compact obtained by compacting raw material powder of an oxide-based superconducting material; Superconducting characterized by forming a non-oxidized layer made of a noble metal on the surface, filling this into a metal sheath to be a stabilizing layer, drawing it into a wire, and then subjecting this wire to heat treatment. Wire manufacturing method.
【請求項2】上記金属シースの内面に貴金属からなる非
酸化層を設けたことを特徴とする特許請求の範囲第1項
記載の超電導線の製造方法。
2. A method for manufacturing a superconducting wire according to claim 1, wherein a non-oxidized layer made of a noble metal is provided on an inner surface of said metal sheath.
【請求項3】上記成形体の表面に貴金属製のテープを巻
回して非酸化層を形成することを特徴とする特許請求の
範囲第1項記載の超電導線の製造方法。
3. The method for manufacturing a superconducting wire according to claim 1, wherein a non-oxidized layer is formed by winding a noble metal tape around the surface of the molded body.
【請求項4】上記金属シースの内面に貴金属のメッキを
設けて非酸化層を形成することを特徴とする特許請求の
範囲第2項記載の超電導線の製造方法。
4. A method for manufacturing a superconducting wire according to claim 2, wherein a non-oxidized layer is formed by plating a noble metal on the inner surface of said metal sheath.
JP62124552A 1987-05-21 1987-05-21 Superconducting wire manufacturing method Expired - Fee Related JP2637427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124552A JP2637427B2 (en) 1987-05-21 1987-05-21 Superconducting wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124552A JP2637427B2 (en) 1987-05-21 1987-05-21 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JPS63289723A JPS63289723A (en) 1988-11-28
JP2637427B2 true JP2637427B2 (en) 1997-08-06

Family

ID=14888303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124552A Expired - Fee Related JP2637427B2 (en) 1987-05-21 1987-05-21 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JP2637427B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419611A (en) * 1987-07-15 1989-01-23 Hitachi Ltd Superconductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685751B2 (en) * 1987-03-13 1997-12-03 株式会社東芝 Compound superconducting wire and method for producing compound superconducting wire
EP0290331B1 (en) * 1987-05-01 1997-03-05 Sumitomo Electric Industries Limited Superconducting composite

Also Published As

Publication number Publication date
JPS63289723A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
EP0412527A2 (en) Ceramic superconductor wire and method of manufacturing the same
JP2685751B2 (en) Compound superconducting wire and method for producing compound superconducting wire
US7162287B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JP2637427B2 (en) Superconducting wire manufacturing method
JP3540331B2 (en) Oxide ceramic superconducting composite and manufacturing method thereof
EP0964458B1 (en) Method of manufacturing a high temperature oxide superconducting wire
JP3369225B2 (en) Method for producing oxide high-temperature superconducting wire
JP2571574B2 (en) Oxide superconductor and method of manufacturing the same
JPH05211013A (en) Oxide superconductor and manufacture thereof
JP3078765B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JP2735534B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JPH08171822A (en) Oxide superconductor wire and manufacture thereof
JP2509642B2 (en) Superconducting power lead manufacturing method
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP2517597B2 (en) Manufacturing method of oxide superconducting wire
JPH05211012A (en) Oxide superconductor and manufacture thereof
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JPS63291311A (en) Superconducting wire
JPH06251929A (en) Manufacture of oxide superconducting coil
JPH1139963A (en) Oxide superconductive wire material, stranded wire, method for producing material and stranded wire thereof, and oxide superconductor
JP2573506B2 (en) Manufacturing method of ceramic superconducting wire
JPH11203957A (en) Oxidic superconductive wire and its manufacture
JPH0653037A (en) Oxide superconductor current lead

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees