JPH11203957A - Oxidic superconductive wire and its manufacture - Google Patents

Oxidic superconductive wire and its manufacture

Info

Publication number
JPH11203957A
JPH11203957A JP10008062A JP806298A JPH11203957A JP H11203957 A JPH11203957 A JP H11203957A JP 10008062 A JP10008062 A JP 10008062A JP 806298 A JP806298 A JP 806298A JP H11203957 A JPH11203957 A JP H11203957A
Authority
JP
Japan
Prior art keywords
superconducting
conductor
sheath
wire
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10008062A
Other languages
Japanese (ja)
Inventor
Naohiro Futaki
直洋 二木
Atsushi Kume
篤 久米
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP10008062A priority Critical patent/JPH11203957A/en
Publication of JPH11203957A publication Critical patent/JPH11203957A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a.c. loss in carrying alternating current by increasing the resistance of the surface of a superconductive conductor and retaining eddy current within the superconductive conductor in carrying alternating current. SOLUTION: This oxidic superconductive wire is composed of multiple superconductive conductors 13, each of which is formed by placing multiple superconductive cores 11 in a sheath 12, by placing around a pipe-like former; a superconductive layered product is formed by winding the superconductive conductors 13 around the former, and current-carrying among the superconductive conductors 13 is restrained in the superconductive layers product, so that an increased-resistance layer 14 is formed by an increased-resistance material having electric resistivity higher than that of a sheath material forming the sheath 12 on the surface of the superconductive conductor 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物超電導線材
およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting wire and a method for producing the same.

【0002】[0002]

【従来の技術】従来、酸化物超電導線材の一例として、
図5ないし図7に示すように、超電導導体3を銅などか
らなるパイプ状のフォーマ2の周囲に螺旋状に巻回して
なる酸化物超電導線材1が知られている。この超電導導
体3は、図6(a)に示すように、複数の超電導コア4
が銀などからなるシース5により覆われて形成され、該
超電導導体3をパイプ状のフォーマ2に対して複数層巻
回することにより超電導積層体8が形成されている。超
電導コア4に利用される酸化物超電導物質としては、B
2Sr2Ca1Cu2x(Bi系2212相),Bi2
2Ca2Cu3y(Bi系2223相),Bi1.6Pb
0.4Sr2Ca2Cu3x,Tl2Ba2Ca2Cu3y
等の組成を持つものが利用されている。そのうち、Bi
系、特に、Bi系2223相酸化物超電導物質が、高い
臨界温度を有し安定な物質として超電導コア4に適用さ
れている。
2. Description of the Related Art Conventionally, as an example of an oxide superconducting wire,
As shown in FIGS. 5 to 7, an oxide superconducting wire 1 in which a superconducting conductor 3 is spirally wound around a pipe-shaped former 2 made of copper or the like is known. As shown in FIG. 6A, the superconducting conductor 3 includes a plurality of superconducting cores 4.
Is covered with a sheath 5 made of silver or the like, and a superconducting laminate 8 is formed by winding the superconducting conductor 3 on the pipe-shaped former 2 in a plurality of layers. The oxide superconducting material used for the superconducting core 4 is B
i 2 Sr 2 Ca 1 Cu 2 O x (Bi-based 2212 phase), Bi 2 S
r 2 Ca 2 Cu 3 O y (Bi-based 2223 phase), Bi 1.6 Pb
0.4 Sr 2 Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O y ,
Those having such a composition are used. Among them, Bi
A system, in particular, a Bi-based 2223 phase oxide superconducting material is applied to the superconducting core 4 as a stable material having a high critical temperature.

【0003】以下、このような酸化物超電導線材の製造
方法を、図8に基づいて説明する。 〔原料粉末処理工程:S1〕Bi系の酸化物超電導物質
の原料粉末、例えばBi23などのBiの化合物粉末,
PbOなどのPbの化合物粉末,SrCO3などのSr
の化合物粉末,CaCO3などのCaの化合物粉末,C
uOなどのCuの化合物粉末からなるものを混合する。 〔充填工程:S2〕原料粉末処理工程S1において混合
した粉末を、Ag等のシース材のパイプ内部に充填し、
シース材複合体(Agシース複合体)を形成する。 〔単心線の伸線(引き抜き)加工工程:S3〕充填工程
S2において形成したAgシース複合体を、所定の線径
にまで伸線加工し、超電導単心素導体(単心線)を形成
する。 〔多心化工程:S4〕単心線の伸線加工S3において形
成した超電導単心素導体をAg等の被覆材のパイプの内
部に複数集合して挿入した後、伸線加工して超電導多心
素導体(多心線)を形成する。 〔圧延工程:S5〕上記多心線をロール圧延により、例
えばテープ状の超電導素導体(テープ素材)に成形す
る。 〔熱処理工程:S6〕テープ状の超電導素導体(テープ
素材)に対して熱処理を行う。その後、圧延工程S5の
圧延処理(またはプレス処理)と熱処理工程S6の熱処
理とを複数回繰り返して、図6(a)に示すような、所
定寸法の超電導導体3を形成する。 〔導体化工程:S7〕超電導導体3を、図5に示すよう
に、パイプ状のフォーマ2に対して巻回し、複数の積層
状態の超電導積層体8を形成することにより酸化物超電
導線材1を成形する。
Hereinafter, a method for manufacturing such an oxide superconducting wire will be described with reference to FIG. [Raw material processing step: S1] A raw material powder of a Bi-based oxide superconducting material, for example, a Bi compound powder such as Bi 2 O 3 ,
Pb compound powder such as PbO, Sr such as SrCO 3
Compound powder, Ca compound powder such as CaCO 3 , C
A mixture of a compound powder of Cu such as uO is mixed. [Filling step: S2] The powder mixed in the raw material powder processing step S1 is filled in a sheath material pipe such as Ag,
A sheath material composite (Ag sheath composite) is formed. [Single Wire Drawing (Drawing) Processing Step: S3] The Ag sheath composite formed in the filling step S2 is drawn to a predetermined wire diameter to form a superconducting single core elementary conductor (single core wire). I do. [Multi-core process: S4] A plurality of superconducting single-core elementary conductors formed in single wire drawing process S3 are assembled and inserted into a pipe made of a covering material such as Ag, and then drawn to form a superconducting multi-conductor. A core element conductor (multi-core wire) is formed. [Rolling Step: S5] The above multifilamentary wire is formed into, for example, a tape-shaped superconducting conductor (tape material) by roll rolling. [Heat treatment step: S6] Heat treatment is performed on the tape-shaped superconducting element conductor (tape material). Thereafter, the rolling (or pressing) in the rolling step S5 and the heat treatment in the heat treatment step S6 are repeated a plurality of times to form the superconducting conductor 3 having a predetermined size as shown in FIG. [Conducting Step: S7] As shown in FIG. 5, the superconducting conductor 3 is wound around a pipe-shaped former 2 to form a plurality of superconducting laminates 8 in a laminated state, thereby forming the oxide superconducting wire 1. Molding.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のような
酸化物超電導線材1において、酸化物超電導線材1に交
流電流を通電した場合には、図6(b)に示すように、
各々の超電導導体3において図6(b)における紙面に
垂直方向に流れる交流電流による自己磁場の影響によっ
て渦電流Fが発生する。このとき、シース5が電気抵抗
率の低いAg(Agでは20℃において1.63μΩc
m)等からなるために、図6(c)に示すように、渦電
流F1が隣接する超電導導体3のシース5に導通してし
まう。その結果、図7に示すように、超電導積層体8に
渦電流F2が横断して導通するために、酸化物超電導線
材1全体として渦電流F2が支配的となり、交流損失が
大きくなるという問題があった。
However, in the above-described oxide superconducting wire 1, when an alternating current is applied to the oxide superconducting wire 1, as shown in FIG.
In each superconducting conductor 3, an eddy current F is generated by the influence of a self-magnetic field due to an alternating current flowing in a direction perpendicular to the plane of FIG. 6B. At this time, the sheath 5 is made of Ag having a low electric resistivity (for Ag, 1.63 μΩc at 20 ° C.).
6C), the eddy current F1 is conducted to the sheath 5 of the adjacent superconducting conductor 3, as shown in FIG. 6C. As a result, as shown in FIG. 7, since the eddy current F2 is conducted across the superconducting laminate 8, the eddy current F2 becomes dominant throughout the oxide superconducting wire 1 and the AC loss increases. there were.

【0005】本発明は、上記の事情に鑑みてなされたも
ので、以下の目的を達成しようとするものである。 超電導導体表面の高抵抗化を図ること。 交流通電時における渦電流を超電導導体内に留め、超
電導積層体において超電導導体間を導通する渦電流の低
減を図ること。 交流通電時における交流損失の低減を図ること。
The present invention has been made in view of the above circumstances, and aims to achieve the following objects. To increase the resistance of the superconducting conductor surface. To reduce eddy currents flowing between superconducting conductors in a superconducting laminate by retaining eddy currents in the superconducting conductor at the time of alternating current. To reduce AC loss when AC is applied.

【0006】[0006]

【課題を解決するための手段】本発明に係る酸化物超電
導線材にあっては、パイプ状のフォーマの周囲に、超電
導コアをシースの内部に複数配して形成された超電導導
体が複数配されてなる酸化物超電導線材であって、前記
超電導導体をフォーマに巻回することにより超電導積層
体が形成され、該超電導導体の表面には、シースを形成
するシース材よりも電気抵抗率の高い高抵抗化材により
渦電流抑制用の高抵抗化層が形成される。超電導導体の
超電導コアが、Bi2Sr2Ca1Cu2x (Bi221
2相),Bi2Sr2Ca2Cu3y(Bi2223
相),Bi1.6Pb0.4Sr2Ca2Cu3x,Tl2Ba2
Ca2Cu3y,などで示される組成を持つものとさ
れ、特に、Bi系2223相またはBi系2212相の
Bi系酸化物超電導材料が選択されることが好ましい。
シースが、Ag,Pt,Au等の貴金属とされることが
好ましい。高抵抗化材の電気抵抗率が、シース材の電気
抵抗率の3倍以上のものとされることが好ましく、高抵
抗化材としては、亜鉛、チタンが選択されることが好ま
しい。フォーマが、ステンレス鋼製とされることが好ま
しい。前記酸化物超電導線材の製造方法にあっては、酸
化物超電導物質の原料粉末を混合する原料粉末処理工程
と、混合された原料粉末を、シース材のパイプの内部に
充填し、シース材複合体を形成する充填工程と、形成し
たシース材複合体を、所定の線径にまで伸線加工して超
電導単心素導体(単心線)を形成する単心線の伸線(引
き抜き)加工工程と、形成した超電導単心素導体を被覆
材のパイプの内部に複数集合させた後、所定の線径にま
で伸線加工して超電導多心素導体(多心線)を形成する
多心化工程と、前記超電導多心素導体を圧延加工により
テープ状の超電導素導体(テープ素材)に成形する圧延
工程、および、該超電導素導体に対して熱処理を行う熱
処理工程を複数回繰り返して所定寸法の超電導導体(テ
ープ材)を形成する圧延熱処理反復工程と、該超電導導
体の表面を覆って、シース材よりも電気抵抗率の大きな
高抵抗化材からなる高抵抗化層を形成する高抵抗化工程
と、形成された超電導導体を、フォーマの回りに巻回し
て超電導積層体を成形する導体化工程とを有する。高抵
抗化材として亜鉛が選択され、高抵抗化工程において亜
鉛メッキにより高抵抗化層の形成が行われる。高抵抗化
材としてチタンが選択され、高抵抗化工程においてRF
スパッタリング等の物理蒸着により高抵抗化層の形成が
行われる。
In an oxide superconducting wire according to the present invention, a plurality of superconducting conductors formed by arranging a plurality of superconducting cores inside a sheath are arranged around a pipe-shaped former. An oxide superconducting wire comprising: a superconducting laminate formed by winding the superconducting conductor around a former; and a surface of the superconducting conductor having a higher electrical resistivity than a sheath material forming a sheath. A high resistance layer for suppressing eddy current is formed by the resistance material. Superconducting core of the superconducting conductor, Bi 2 Sr 2 Ca 1 Cu 2 O x (Bi221
Bi-phase), Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi 2223)
Phase), Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O x , Tl 2 Ba 2
It has a composition represented by Ca 2 Cu 3 O y , etc., and it is particularly preferable to select a Bi-based superconducting material of Bi-based 2223 phase or Bi-based 2212 phase.
It is preferable that the sheath is made of a noble metal such as Ag, Pt, or Au. The electrical resistivity of the high-resistance material is preferably three times or more the electrical resistivity of the sheath material. As the high-resistance material, zinc or titanium is preferably selected. Preferably, the former is made of stainless steel. In the method for manufacturing an oxide superconducting wire, a raw material powder processing step of mixing the raw material powder of the oxide superconducting material, and filling the mixed raw material powder into a sheath material pipe, forming a sheath material composite And a step of drawing (drawing out) a single-core wire by drawing the formed sheath material composite to a predetermined wire diameter to form a superconducting single-core elementary conductor (single-core wire). And multi-core forming a superconducting multi-core element conductor (multi-core wire) by assembling a plurality of formed superconducting single-core element conductors inside a pipe made of a coating material and then drawing to a predetermined wire diameter A step of rolling the superconducting multi-conductor element into a tape-shaped superconducting element conductor (tape material) by rolling, and a heat treatment step of heat-treating the superconducting element conductor a plurality of times to obtain a predetermined size Rolling to Form Superconducting Conductor (Tape Material) A processing repetition step, a high-resistance step of forming a high-resistance layer made of a high-resistance material having a higher electrical resistivity than the sheath material over the surface of the superconducting conductor, And forming a superconducting laminate by winding around the conductor. Zinc is selected as the high resistance material, and a high resistance layer is formed by zinc plating in the high resistance step. Titanium was selected as the high resistance material, and RF was used in the high resistance process.
The formation of the high resistance layer is performed by physical vapor deposition such as sputtering.

【0007】[0007]

【発明の実施の形態】以下、本発明に係る酸化物超電導
線材およびその製造方法の一実施形態を、図面に基づい
て説明する。図1ないし図3において、符号10は酸化
物超電導線材、11は超電導コア、12はシース、13
は超電導導体、14は高抵抗化層、15はフォーマ、1
6は超電導積層体である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an oxide superconducting wire according to the present invention and a method for producing the same will be described below with reference to the drawings. 1 to 3, reference numeral 10 denotes an oxide superconducting wire, 11 denotes a superconducting core, 12 denotes a sheath, 13
Is a superconducting conductor, 14 is a high resistance layer, 15 is a former, 1
6 is a superconducting laminate.

【0008】酸化物超電導線材10にあっては、図2に
示すように、パイプ状のフォーマ15の周囲に超電導導
体13を複数層巻回することにより例えば円筒状の超電
導積層体16が形成されている。このような酸化物超電
導線材10にあっては、図2に示すように、例えば、パ
イプ状のフォーマ15の表面に巻回される超電導導体1
3の一層目16Aが、いわゆるSより(右より)の方向
に巻回され、かつ、該一層目16Aに巻回される超電導
導体13の二層目16Bが、いわゆるZより(左より)
の方向に巻回されるような、各層毎に逆方向に巻回する
S−Z方向のスパイラル巻きや、また、Sよりの方向に
重ねて巻回するようなS−S方向のスパイラル巻き等が
利用されて、複数の積層状態の超電導積層体16が形成
されている。フォーマ15が例えばステンレス鋼製とさ
れ、酸化物超電導線材10の外側には、図示しない半導
体層、絶縁層およびまたは密閉層が形成される。
In the oxide superconducting wire 10, as shown in FIG. 2, for example, a cylindrical superconducting laminate 16 is formed by winding a plurality of superconducting conductors 13 around a pipe-shaped former 15. ing. In such an oxide superconducting wire 10, as shown in FIG. 2, for example, the superconducting conductor 1 wound on the surface of a pipe-shaped former 15 is used.
The third layer 16A is wound in the direction of so-called S (from the right), and the second layer 16B of the superconducting conductor 13 wound around the first layer 16A is wound in the direction of the so-called Z (from the left).
Spiral winding in the SZ direction, which is wound in the opposite direction for each layer, such as winding in the direction of S, or spiral winding in the SS direction, which is wound in a direction overlapping S Is used to form a plurality of superconducting laminates 16 in a laminated state. The former 15 is made of, for example, stainless steel, and a semiconductor layer, an insulating layer, and / or a sealing layer (not shown) are formed outside the oxide superconducting wire 10.

【0009】超電導導体13は、幅0.5mm〜5mm
程度、厚さ0.05mm〜0.7mm程度の範囲のテー
プ状のものとされ、例えば、幅4.0mm、厚さ0.2
0mmとされる。超電導導体13は、図1ないし図2に
示すように、超電導コア11をシース12の内部に複数
配して形成され、かつ、前記超電導積層体16において
超電導導体13間の通電を抑制するため、該超電導導体
13の表面には、シース12を形成するシース材よりも
電気抵抗率の高い高抵抗化材により高抵抗化層14が形
成される。超電導導体13の超電導コア11が、Bi2
Sr2Ca1Cu2x (Bi2212相),Bi2Sr2
Ca2Cu3y(Bi2223相),Bi1.6Pb0.4
2Ca2Cu3x,Tl2Ba2Ca2Cu3y,などで
示される組成を持つものとされ、例えば、Bi系222
3相のBi系酸化物超電導材料が選択される。シース1
2は、Ag,Pt,Au等の貴金属あるいはそれらの合
金からなるシース材とされ、例えば、Agとされる。高
抵抗化層14が高抵抗化材から形成されて、その厚さが
5μm〜50μmの範囲とされ、該高抵抗化材の電気抵
抗率が、シース12におけるシース材の電気抵抗率の3
倍以上のものとされ、3倍〜30倍程度の範囲とされる
ことが好ましい。例えば、シース12がAg(20℃に
おいて電気抵抗率が1.63μΩcm)等からなる場合
には、高抵抗化材として、シース材(Ag)の3倍程度
の電気抵抗率を持つ亜鉛(20℃において電気抵抗率が
5.96μΩcm)、もしくは、シース材(Ag)の3
0倍程度の電気抵抗率を持つチタン(20℃において電
気抵抗率が55μΩcm)等が適応される。
The superconducting conductor 13 has a width of 0.5 mm to 5 mm.
And a thickness of about 0.05 mm to 0.7 mm in a tape shape, for example, a width of 4.0 mm and a thickness of 0.2.
0 mm. As shown in FIGS. 1 and 2, the superconducting conductor 13 is formed by arranging a plurality of superconducting cores 11 inside the sheath 12, and suppresses the conduction between the superconducting conductors 13 in the superconducting laminate 16. On the surface of the superconducting conductor 13, a high-resistance layer 14 is formed of a high-resistance material having a higher electrical resistivity than the sheath material forming the sheath 12. The superconducting core 11 of the superconducting conductor 13 is Bi 2
Sr 2 Ca 1 Cu 2 O x (Bi 2212 phase), Bi 2 Sr 2
Ca 2 Cu 3 O y (Bi 2223 phase), Bi 1.6 Pb 0.4 S
It has a composition represented by r 2 Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O y , and the like.
A three-phase Bi-based oxide superconducting material is selected. Sheath 1
Reference numeral 2 denotes a sheath material made of a precious metal such as Ag, Pt, or Au or an alloy thereof, and is, for example, Ag. The high-resistance layer 14 is formed of a high-resistance material and has a thickness in the range of 5 μm to 50 μm, and the electrical resistivity of the high-resistance material is 3% of the electrical resistivity of the sheath material in the sheath 12.
It is preferably at least three times, and preferably in the range of about three to thirty times. For example, when the sheath 12 is made of Ag (having an electrical resistivity of 1.63 μΩcm at 20 ° C.) or the like, zinc (20 ° C.) having about three times the electrical resistivity of the sheath material (Ag) is used as the high-resistance material. Has an electrical resistivity of 5.96 μΩcm) or a sheath material (Ag) of 3
Titanium having an electrical resistivity of about 0 (electrical resistivity is 55 μΩcm at 20 ° C.) or the like is applied.

【0010】以下、本発明の酸化物超電導線材の製造方
法について、図4に基づいて説明する。 〔原料粉末処理工程:S1〕酸化物超電導物質の原料粉
末、例えばBi23,PbO,SrCO3 ,CaC
3 ,CuO、からなるものを、Bi:Pb:Sr:C
a:Cuの混合比が1.8:0.4:2.2:3.0と
なるように混合し、780℃〜820℃の範囲の温度条
件においておこなう熱処理(仮焼き)と該仮焼きした後
における粉砕とを複数回繰り返す。ここで、混合する原
料粉末は、上記の他にBi,Pb,Sr,Ca,Cuの
各元素の酸化物、炭酸塩のいずれでもよい。 〔充填工程:S2〕原料粉末処理工程S1において粉砕
した粉末を、CIP(冷間静水圧プレス)成形等により
例えば円筒状とし、Ag等のシース材のパイプ内部に充
填して封入し、シース材複合体(Ag複合体)を形成す
る。 〔単心線の伸線(引き抜き)加工工程:S3〕充填工程
S2において形成したシース材複合体(Agシース複合
体)を、ダイス等によって所定の線径にまで伸線加工
し、超電導単心素導体(単心線)を形成する。 〔多心化工程:S4〕単心線の伸線加工S3において形
成した超電導単心素導体を所定数(例えば37本、55
本、または61本)Ag等の被覆材からなる被覆材パイ
プの内部に集合し、封入を行った後、ダイス等により所
定の線径にまで伸線加工して、超電導多心素導体(多心
線)を形成する。 〔圧延熱処理反復工程:S5,S6〕超電導多心素導体
を、ロール圧延等の圧延加工により、テープ状の超電導
素導体(テープ素材)に成形する。(圧延工程:S5)
該超電導素導体を、例えば熱処理ドラムに巻回状態とし
て電気炉等の内部に収容し、温度条件を、825℃〜8
40℃の範囲とし、処理時間を、10時間〜100時間
の範囲に設定して熱処理を行う。(熱処理工程:S6)
更に、この圧延工程S5の圧延処理(またはプレス処
理)および熱処理工程S6の熱処理を複数回繰り返し
て、所定寸法の超電導導体(テープ材)を形成する。 〔高抵抗化工程:SR〕図1(a)に示すように、超電
導導体(テープ材)の表面を覆って、シース材よりも電
気抵抗率の大きな高抵抗化材からなる高抵抗化層14を
形成する。ここで、高抵抗化材として例えば亜鉛が選択
され、高抵抗化工程において亜鉛メッキにより高抵抗化
層14の形成が行われる。 〔成形工程:S7〕形成された超電導導体13を、図2
に示すように、パイプ状のフォーマ15に対して巻回
し、複数の積層状態、例えば5層とされる超電導積層体
16を形成することにより酸化物超電導線材10を成形
する。
Hereinafter, a method for producing an oxide superconducting wire according to the present invention will be described with reference to FIG. [Raw material processing step: S1] Raw material powder of oxide superconducting material, for example, Bi 2 O 3 , PbO, SrCO 3 , CaC
O 3 and CuO are converted to Bi: Pb: Sr: C
a: Cu: mixing so that the mixing ratio becomes 1.8: 0.4: 2.2: 3.0, and heat treatment (calcination) performed under a temperature condition of 780 ° C. to 820 ° C. and the calcining Is repeated several times. Here, the raw material powder to be mixed may be any of oxides and carbonates of each element of Bi, Pb, Sr, Ca, and Cu in addition to the above. [Filling step: S2] The powder pulverized in the raw material powder processing step S1 is formed into, for example, a cylindrical shape by CIP (cold isostatic pressing) molding or the like, and filled and sealed inside a pipe of a sheath material such as Ag. A complex (Ag complex) is formed. [Single Wire Drawing (Drawing) Processing Step: S3] The sheath material composite (Ag sheath composite) formed in the filling step S2 is drawn to a predetermined wire diameter with a die or the like, and the superconducting single core is formed. An elementary conductor (single core wire) is formed. [Multi-core process: S4] A predetermined number of superconducting single-core element conductors formed in the single-core wire drawing process S3 (for example, 37, 55
, Or 61) are assembled inside a coating pipe made of a coating material such as Ag, sealed, and then drawn to a predetermined wire diameter with a die or the like to obtain a superconducting multicore element conductor (multiple). Core wire). [Rolling heat treatment repetition step: S5, S6] The superconducting multi-core element conductor is formed into a tape-shaped superconducting element conductor (tape material) by rolling such as roll rolling. (Rolling process: S5)
The superconducting element conductor is housed inside an electric furnace or the like in a state of being wound around a heat treatment drum, for example, at a temperature of 825 ° C to 8 ° C.
The heat treatment is performed at a temperature in the range of 40 ° C. and a treatment time in the range of 10 hours to 100 hours. (Heat treatment step: S6)
Further, the rolling (or pressing) in the rolling step S5 and the heat treatment in the heat treatment step S6 are repeated a plurality of times to form a superconducting conductor (tape material) having a predetermined size. [High Resistance Step: SR] As shown in FIG. 1A, the high resistance layer 14 made of a high resistance material having a higher electrical resistivity than the sheath material, covering the surface of the superconducting conductor (tape material). To form Here, for example, zinc is selected as the high resistance material, and the high resistance layer 14 is formed by zinc plating in the high resistance step. [Molding Step: S7] The formed superconducting conductor 13 is
As shown in (1), the oxide superconducting wire 10 is formed by being wound around a pipe-shaped former 15 to form a superconducting laminate 16 having a plurality of laminated states, for example, five layers.

【0011】上述のような製造方法によって製造された
酸化物超電導線材において、以下、交流電流を通電した
場合について説明する。
The case where an alternating current is applied to the oxide superconducting wire manufactured by the above manufacturing method will be described below.

【0012】酸化物超電導線材10に交流電流を通電し
た場合には、図1(b)に示すように、各々の超電導導
体13において図1(b)における紙面に垂直方向に流
れる交流電流による自己磁場の影響によって渦電流Fが
発生する。このとき、シース12が電気抵抗率の低いA
g(20℃において電気抵抗率が1.63μΩcm)等
からなるが、該シース12の周囲の高抵抗化層14が電
気抵抗率の高い亜鉛(20℃において電気抵抗率が5.
96μΩcm)からなるために、超電導導体13の表面
が高抵抗化して、図1(c)に示すように、渦電流F1
が隣接する超電導導体13のシース12に導通すること
がなく、各々の超電導導体13の内部に渦電流が留まる
ことになる。その結果、図3に示すように、超電導積層
体16においては、渦電流F3の通電が抑えられるため
に、酸化物超電導線材10全体としては渦電流が支配的
にならず、交流損失の低減が可能となる。
When an alternating current is applied to the oxide superconducting wire 10, as shown in FIG. 1 (b), each superconducting conductor 13 generates a self-current due to the alternating current flowing in a direction perpendicular to the plane of FIG. 1 (b). An eddy current F is generated by the influence of the magnetic field. At this time, the sheath 12 has a low electric resistivity A
g (having an electrical resistivity of 1.63 μΩcm at 20 ° C.), but the high-resistance layer 14 around the sheath 12 is made of zinc having a high electrical resistivity (at 20 ° C., the electrical resistivity is 5.63 μΩcm).
96 μΩcm), the surface of the superconducting conductor 13 has a high resistance, and as shown in FIG.
Does not conduct to the sheath 12 of the adjacent superconducting conductor 13, and the eddy current remains inside each superconducting conductor 13. As a result, as shown in FIG. 3, in the superconducting laminate 16, since the conduction of the eddy current F <b> 3 is suppressed, the eddy current does not become dominant as a whole of the oxide superconducting wire 10, and the AC loss is reduced. It becomes possible.

【0013】なお、本発明における他の実施形態とし
て、高抵抗化材として例えばチタンが選択される。この
際、上述の製造方法における高抵抗化工程SRにおいて
は、RFスパッタリング等の物理蒸着により高抵抗化層
14の形成が行われる。また、Tiにより高抵抗化層1
4を形成した場合には、チタンの電気抵抗率が、20℃
において55μΩcmと亜鉛よりも更に高いために、超
電導導体13の表面が更に高抵抗化して、図1(c)に
示すように、渦電流F1が隣接する超電導導体13のシ
ース12に導通することがより抑えられ、各々の超電導
導体13の内部に渦電流が留まることになる。その結
果、図3に示すように、超電導積層体16においては、
渦電流F3の通電が抑えられるために、酸化物超電導線
材10全体としては渦電流が支配的にならず、交流損失
の一層の低減が可能となる。
In another embodiment of the present invention, for example, titanium is selected as the high-resistance material. At this time, in the resistance increasing step SR in the above-described manufacturing method, the resistance increasing layer 14 is formed by physical vapor deposition such as RF sputtering. Further, the high resistance layer 1 is made of Ti.
4, when the electrical resistivity of titanium is 20 ° C.
In this case, the surface of the superconducting conductor 13 is further increased in resistance because it is 55 μΩcm, which is higher than that of zinc, and the eddy current F1 can be conducted to the sheath 12 of the adjacent superconducting conductor 13 as shown in FIG. As a result, the eddy current stays inside each superconducting conductor 13. As a result, as shown in FIG. 3, in the superconducting laminate 16,
Since the conduction of the eddy current F3 is suppressed, the eddy current does not become dominant in the entire oxide superconducting wire 10, and the AC loss can be further reduced.

【0014】[0014]

【実施例】以下、本発明を、実施例および比較例によ
り、具体的に説明するが、本発明はこれらの実施例のみ
に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples.

【0015】(実施例1)Bi23,PbO,SrCO
3,CaCO3,CuO、を、Bi:Pb:Sr:Ca:
Cuの混合比が1.8:0.4:2.2:3.0となる
ように混合し、800℃の温度条件においておこなう熱
処理(仮焼き)と該仮焼きした後における粉砕とを複数
回繰り返して、原料粉末を得た。この原料粉末をCIP
(冷間静水圧プレス)成形により円筒状として、外径1
3mm、内径8mmのAgパイプ内部に充填して封入
し、Agシース複合体を得た。このAgシース複合体を
ダイス等によって線径2.0mmにまで伸線加工して単
心線を形成し、この単心線を、外径21mm、内径1
8.5mmのAgパイプの内部に55本集合して、充
填、封入を行った後、ダイス等により線径2.0mmに
まで伸線加工して、多心線を得た。該多心線を、ロール
圧延により圧延加工して得られたテープ材に、温度条件
が840℃、処理時間が45時間として熱処理を行う。
更に、この圧延処理(またはプレス処理)および熱処理
を複数回繰り返して、幅4.0mm、厚さ0.2mmの
テープ材を得た。
(Example 1) Bi 2 O 3 , PbO, SrCO
3 , CaCO 3 , CuO, Bi: Pb: Sr: Ca:
A plurality of heat treatments (calcination) performed at a temperature of 800 ° C. and pulverization after the calcination are performed by mixing the Cu so that the mixing ratio of Cu becomes 1.8: 0.4: 2.2: 3.0. This was repeated twice to obtain a raw material powder. This raw material powder is CIP
(Cold isostatic press) Formed into a cylindrical shape with an outer diameter of 1
An Ag pipe having a diameter of 3 mm and an inner diameter of 8 mm was filled and sealed to obtain an Ag sheath composite. The Ag sheath composite is drawn to a wire diameter of 2.0 mm with a die or the like to form a single core wire, and the single core wire is formed into an outer diameter of 21 mm and an inner diameter of 1 mm.
55 pieces were assembled in an 8.5 mm Ag pipe, filled and sealed, and then drawn to a wire diameter of 2.0 mm with a die or the like to obtain a multi-core wire. The tape material obtained by rolling the multi-core wire by roll rolling is subjected to a heat treatment at a temperature of 840 ° C. and a processing time of 45 hours.
This rolling (or pressing) and heat treatment were repeated a plurality of times to obtain a tape material having a width of 4.0 mm and a thickness of 0.2 mm.

【0016】次に、このテープ材に,Zn3(PO42
・4H2O(第3リン酸亜鉛)水溶液を用いた電気亜鉛
メッキによりZnメッキを施し、テープ材表面に膜厚5
μm〜50μmの高抵抗化層を形成し超電導導体を得
た。
Next, Zn 3 (PO 4 ) 2 was added to this tape material.
・ Zinc plating is performed by electro-zinc plating using a 4H 2 O (tertiary zinc phosphate) aqueous solution, and the film thickness is 5
A superconducting conductor was obtained by forming a high-resistance layer of μm to 50 μm.

【0017】該超電導導体を、表面にカプトンテープを
貼ることにより絶縁を施した外径30mm,長さ10m
のステンレス鋼製のコルゲート管からなるパイプ状のフ
ォーマに、50cmのピッチで25本巻回し5層構造と
して超電導積層体を形成し、酸化物超電導線材を得た。
The superconducting conductor is insulated by attaching a Kapton tape to the surface, and has an outer diameter of 30 mm and a length of 10 m.
Was wound around a pipe-shaped former made of a stainless steel corrugated tube at a pitch of 50 cm to form a superconducting laminate having a five-layer structure to obtain an oxide superconducting wire.

【0018】(実施例2)上記実施例1と同様にして、
テープ材を作製した。次いで、作製したテープ材に、温
度条件が250℃,RFパワーが300W,処理時間が
2時間のRFスパッタリングにより99.0Tiを蒸着
し、テープ材表面に膜厚5μm〜50μmの高抵抗化層
を形成し超電導導体を得た。
(Example 2) In the same manner as in Example 1,
A tape material was produced. Next, 99.0 Ti is vapor-deposited on the produced tape material by RF sputtering at a temperature condition of 250 ° C., an RF power of 300 W and a processing time of 2 hours, and a high-resistance layer having a thickness of 5 μm to 50 μm is formed on the tape material surface. Thus, a superconducting conductor was obtained.

【0019】該超電導導体を、表面にカプトンテープを
貼ることにより絶縁を施した外径30mm,長さ10m
のステンレス鋼製のコルゲート管からなるパイプ状のフ
ォーマに、50cmのピッチで25本巻回し5層構造と
して超電導積層体を形成し、酸化物超電導線材を得た。
The superconducting conductor is insulated by attaching a Kapton tape to the surface, and has an outer diameter of 30 mm and a length of 10 m.
Was wound around a pipe-shaped former made of a stainless steel corrugated tube at a pitch of 50 cm to form a superconducting laminate having a five-layer structure to obtain an oxide superconducting wire.

【0020】(比較例) 上記実施例と同様にして、テープ材を作製した。次い
で、作製したテープ材を、表面にカプトンテープを貼る
ことにより絶縁を施した外径30mm,長さ10mのス
テンレス鋼製のコルゲート管からなるパイプ状のフォー
マに、50cmのピッチで25本巻回し5層構造として
超電導積層体を形成し、酸化物超電導線材を得た。
Comparative Example A tape material was produced in the same manner as in the above example. Next, 25 pieces of the produced tape material are wound at a pitch of 50 cm around a pipe-shaped former made of a stainless steel corrugated pipe having an outer diameter of 30 mm and a length of 10 m, which is insulated by attaching a Kapton tape to the surface. A superconducting laminate was formed as a five-layer structure to obtain an oxide superconducting wire.

【0021】上記実施例1および実施例2で得られた酸
化物超電導線材と、比較例で得られた酸化物超電導線材
において、以下の条件で測定実験を行った。 外部磁場:0T 温度:77K 交流周期:30Hz 交流電流値:10A 実施例1における酸化物超電導線材の交流損失:Lz 実施例2における酸化物超電導線材の交流損失:Lt 比較例における酸化物超電導線材の交流損失:Ln Lt/Ln=0.7 Lz/Ln=0.8 この結果、高抵抗化層を形成した場合には、高抵抗化層
を形成しない場合に比べて、酸化物超電導線材の交流損
失が15%〜30%低減されることが測定された。
Measurement experiments were performed on the oxide superconducting wires obtained in Examples 1 and 2 and the oxide superconducting wires obtained in Comparative Examples under the following conditions. External magnetic field: 0 T Temperature: 77 K AC cycle: 30 Hz AC current value: 10 A AC loss of the oxide superconducting wire in Example 1: Lz AC loss of the oxide superconducting wire in Example 2: Lt AC loss of the oxide superconducting wire in Comparative Example AC loss: Ln Lt / Ln = 0.7 Lz / Ln = 0.8 As a result, when the high resistance layer is formed, the AC of the oxide superconducting wire is higher than when the high resistance layer is not formed. It was measured that the loss was reduced by 15% to 30%.

【0022】[0022]

【発明の効果】本発明の酸化物超電導線材およびその製
造方法によれば、以下の効果を奏する。 (1)本発明に係る酸化物超電導線材にあっては、超電
導コアをシースの内部に複数配した超電導導体を高抵抗
化層で覆ったものを複数フォーマに巻回したので、超電
導積層体において超電導導体間に生じようとする渦電流
を超電導導体の表面の高抵抗化層により抑制できるの
で、交流通電時の交流損失を少なくすることができる。 (2)超電導導体表面に、亜鉛,またはチタン等により
高抵抗化層を形成したので、交流通電時における渦電流
を超電導導体内に確実に留め、超電導積層体内における
超電導導体間を導通する渦電流の低減を図ることで、交
流通電時における交流損失の低減を図ることができる。 (3)本発明に係る製造方法を実施することにより、超
電導積層体内における超電導導体間を導通する渦電流が
低減され、かつ、交流通電時における交流損失が低減さ
れる酸化物超電導線材を得ることができる。
According to the oxide superconducting wire of the present invention and the method for producing the same, the following effects can be obtained. (1) In the oxide superconducting wire according to the present invention, a superconducting conductor in which a plurality of superconducting cores are arranged inside a sheath and covered with a high-resistance layer is wound around a plurality of formers. An eddy current that is to be generated between the superconducting conductors can be suppressed by the high-resistance layer on the surface of the superconducting conductor, so that an AC loss during AC conduction can be reduced. (2) Since a high-resistance layer is formed on the surface of the superconducting conductor using zinc, titanium, or the like, the eddy current during alternating-current conduction is reliably retained in the superconducting conductor, and the eddy current flowing between the superconducting conductors in the superconducting laminate. , It is possible to reduce the AC loss at the time of AC energization. (3) Obtaining an oxide superconducting wire rod in which the eddy current flowing between the superconducting conductors in the superconducting laminate is reduced and the AC loss during AC conduction is reduced by implementing the manufacturing method according to the present invention. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る酸化物超電導線材およびその製
造方法の一実施形態における超電導導体の交流通電時等
の状態を示す模式断面図である。
FIG. 1 is a schematic cross-sectional view showing a state when an AC current is applied to a superconducting conductor in an embodiment of an oxide superconducting wire and a method for manufacturing the same according to the present invention.

【図2】 本発明に係る酸化物超電導線材およびその製
造方法の一実施形態における酸化物超電導線材を示す斜
視図である。
FIG. 2 is a perspective view showing an oxide superconducting wire according to an embodiment of the present invention and a method for manufacturing the same.

【図3】 本発明に係る酸化物超電導線材およびその製
造方法の一実施形態における超電導積層体を示す断面図
である。
FIG. 3 is a cross-sectional view showing a superconducting laminate according to one embodiment of the oxide superconducting wire and the method for producing the same according to the present invention.

【図4】 本発明に係る酸化物超電導線材の製造方法の
一実施形態を示すフローチャートである。
FIG. 4 is a flowchart showing one embodiment of a method for manufacturing an oxide superconducting wire according to the present invention.

【図5】 従来の酸化物超電導線材を示す斜視図であ
る。
FIG. 5 is a perspective view showing a conventional oxide superconducting wire.

【図6】 従来の超電導導体の交流通電時等の状態を示
す模式断面図である。
FIG. 6 is a schematic cross-sectional view showing a state of a conventional superconducting conductor when an alternating current is applied.

【図7】 従来の超電導積層体を示す断面図である。FIG. 7 is a sectional view showing a conventional superconducting laminate.

【図8】 従来の酸化物超電導線材の製造方法を示すフ
ローチャートである。
FIG. 8 is a flowchart showing a conventional method for manufacturing an oxide superconducting wire.

【符号の説明】[Explanation of symbols]

10…酸化物超電導線材,11…超電導コア,12…シ
ース,13…超電導導体,14…高抵抗化層,15…フ
ォーマ,16…超電導積層体,16A…一層目,16B
…2層目,F…渦電流,F3…渦電流
DESCRIPTION OF SYMBOLS 10 ... oxide superconducting wire, 11 ... superconducting core, 12 ... sheath, 13 ... superconducting conductor, 14 ... high resistance layer, 15 ... former, 16 ... superconducting laminated body, 16A ... first layer, 16B
… Second layer, F… eddy current, F3… eddy current

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 隆 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takashi Saito 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 パイプ状のフォーマの周囲に、超電導コ
アをシースの内部に複数配して形成された超電導導体が
複数配されてなる酸化物超電導線材であって、前記超電
導導体をフォーマに巻回することにより超電導積層体が
形成され、該超電導導体の表面には、シースを形成する
シース材よりも電気抵抗率の高い高抵抗化材により渦電
流抑制用の高抵抗化層が形成されることを特徴とする酸
化物超電導線材。
1. An oxide superconducting wire comprising a plurality of superconducting conductors formed by arranging a plurality of superconducting cores inside a sheath around a pipe-shaped former, wherein the superconducting conductor is wound around the former. By turning, a superconducting laminate is formed, and on the surface of the superconducting conductor, a high-resistance layer for suppressing eddy current is formed by a high-resistance material having a higher electrical resistivity than the sheath material forming the sheath. An oxide superconducting wire, characterized in that:
【請求項2】 高抵抗化材の電気抵抗率が、シース材の
電気抵抗率の3倍以上のものとされたことを特徴とする
請求項1記載の酸化物超電導線材。
2. The oxide superconducting wire according to claim 1, wherein the electrical resistivity of the high-resistance material is at least three times the electrical resistivity of the sheath material.
【請求項3】 高抵抗化材として、亜鉛、またはチタン
が選択されたことを特徴とする請求項1または2記載の
酸化物超電導線材。
3. The oxide superconducting wire according to claim 1, wherein zinc or titanium is selected as the high-resistance material.
【請求項4】 パイプ状のフォーマの周囲に、超電導コ
アをシースの内部に複数配して形成された超電導導体が
複数配されてなる酸化物超電導線材の製造方法であっ
て、酸化物超電導物質の原料粉末を混合する原料粉末処
理工程と、混合された原料粉末を、シース材のパイプの
内部に充填し、シース材複合体を形成する充填工程と、
形成したシース材複合体を、所定の線径にまで伸線加工
して超電導単心素導体を形成する単心線の伸線加工工程
と、形成した超電導単心素導体を被覆材のパイプの内部
に複数集合させた後、所定の線径にまで伸線加工して超
電導多心素導体を形成する多心化工程と、前記超電導多
心素導体を圧延加工によりテープ状の超電導素導体に成
形し、該超電導素導体に対して熱処理を行い、この圧延
加工および熱処理を複数回繰り返して所定寸法の超電導
導体を形成する圧延熱処理反復工程と、該超電導導体の
表面を覆って、シース材よりも電気抵抗率の大きな高抵
抗化材からなる高抵抗化層を形成する高抵抗化工程と、
形成された超電導導体を、フォーマの回りに巻回して超
電導積層体を成形する導体化工程とを有することを特徴
とする酸化物超電導線材の製造方法。
4. A method for producing an oxide superconducting wire comprising a plurality of superconducting conductors formed by arranging a plurality of superconducting cores inside a sheath around a pipe-shaped former, the method comprising: A raw material powder processing step of mixing the raw material powders, and a filling step of filling the mixed raw material powder into a sheath material pipe to form a sheath material composite,
The formed sheath material composite is drawn to a predetermined wire diameter to form a superconducting single-core elementary conductor, and the formed superconducting single-core elementary conductor is coated with a pipe of a covering material. After a plurality of pieces are assembled inside, a multi-core forming step of forming a superconducting multi-core element by drawing to a predetermined wire diameter, and rolling the super-conducting multi-element element into a tape-shaped superconducting element conductor by rolling. Forming, performing a heat treatment on the superconducting element conductor, a rolling heat treatment repeating step of forming a superconducting conductor of a predetermined size by repeating this rolling and heat treatment a plurality of times, and covering the surface of the superconducting conductor, from a sheath material. A high-resistance step of forming a high-resistance layer made of a high-resistance material having a large electric resistivity,
A step of winding the formed superconducting conductor around a former to form a superconducting laminate, and forming a superconducting laminate.
JP10008062A 1998-01-19 1998-01-19 Oxidic superconductive wire and its manufacture Withdrawn JPH11203957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10008062A JPH11203957A (en) 1998-01-19 1998-01-19 Oxidic superconductive wire and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10008062A JPH11203957A (en) 1998-01-19 1998-01-19 Oxidic superconductive wire and its manufacture

Publications (1)

Publication Number Publication Date
JPH11203957A true JPH11203957A (en) 1999-07-30

Family

ID=11682869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10008062A Withdrawn JPH11203957A (en) 1998-01-19 1998-01-19 Oxidic superconductive wire and its manufacture

Country Status (1)

Country Link
JP (1) JPH11203957A (en)

Similar Documents

Publication Publication Date Title
JP3474602B2 (en) Superconducting conductor
US6038462A (en) Structure and method of manufacture for minimizing filament coupling losses in superconducting oxide composite articles
JPH07169343A (en) Superconducting cable conductor
JPH08335414A (en) Oxide superconducting wire and manufacture thereof
JP2992501B2 (en) Powder-in-tube type manufacturing method of HTc superconducting multi-wire strand having silver-based matrix
JP3369225B2 (en) Method for producing oxide high-temperature superconducting wire
JPH11203957A (en) Oxidic superconductive wire and its manufacture
JP4423708B2 (en) Oxide superconducting wire and method for producing oxide superconducting multicore wire
JP3568767B2 (en) Superconducting cable and manufacturing method thereof
JP2637427B2 (en) Superconducting wire manufacturing method
JPH0773757A (en) Manufacture of oxide superconductor
JP3585719B2 (en) Oxide superconducting cable unit and oxide superconducting cable including the same
JP3568766B2 (en) Superconducting cable and method for manufacturing the same
JPH05266726A (en) Oxide superconducting wire
JP2008282566A (en) Bismuth oxide superconducting element wire, bismuth oxide superconductor, superconducting coil, and manufacturing method of them
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JPH08298208A (en) High temperature superconductor winding
JPH1139963A (en) Oxide superconductive wire material, stranded wire, method for producing material and stranded wire thereof, and oxide superconductor
JP2000149676A (en) Oxide superconductor stranded wire and cable conductor using the same
JPH0644834A (en) Ceramics superconductive conductor
JPH11273469A (en) Superconductive precursor composite wire and manufacture of superconductive composite wire
JP3042558B2 (en) Ceramic superconducting conductor
JP3088833B2 (en) Oxide superconductor for current leads
JPH11203960A (en) Oxide superconductive cable

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405