JPH05266726A - Oxide superconducting wire - Google Patents

Oxide superconducting wire

Info

Publication number
JPH05266726A
JPH05266726A JP4093467A JP9346792A JPH05266726A JP H05266726 A JPH05266726 A JP H05266726A JP 4093467 A JP4093467 A JP 4093467A JP 9346792 A JP9346792 A JP 9346792A JP H05266726 A JPH05266726 A JP H05266726A
Authority
JP
Japan
Prior art keywords
superconducting wire
oxide
oxide superconducting
silver
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4093467A
Other languages
Japanese (ja)
Inventor
Keisuke Yamamoto
啓介 山本
Makoto Hiraoka
誠 平岡
Yoshinori Takada
善典 高田
Junichi Kai
純一 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP4093467A priority Critical patent/JPH05266726A/en
Publication of JPH05266726A publication Critical patent/JPH05266726A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide an oxide superconducting wire whose dependency on a magnetic field is weak with high critical current density. CONSTITUTION:Being made up of a metal tube 1 and a metal core 2 inserted therein, a cylindrical superconductive layer 3 is formed by filling a gap part K formed all along the periphery of the metal core 2 with an oxide superconducting body in such a manner that it is oriented in the radial direction like mica and is oriented in its longitudinal direction. Accordingly, a superconducting wire, which is hardly dependent on the direction of a magnetic field and is capable of providing uniform and high critical current density, can be provided. Since a superconducting wire having a round shape or a polygonal shape can also be formed, it can be wound into a coil thereby resulting in a magnet coil of high performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導線に関
し、詳しくは磁場方向に依存することが少なく、均一か
つ高い臨界電流密度がえられる酸化物超電導線に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting wire, and more particularly to an oxide superconducting wire which is less dependent on the direction of a magnetic field and which has a uniform and high critical current density.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】現在、各
種の酸化物系超電導物質が知られており、その実用化の
ために線材やテープなどの長尺体に加工する技術の研究
が行われている。一般に、酸化物系超電導体粉末を銀管
に充填し、伸線、圧延等の加工により丸形、多角形、偏
平テープ形状の線材とした後、熱処理を施して超電導線
材とする、所謂銀シース法が知られている。このうち結
晶粒子が偏平状の酸化物超電導体を用いて、例えばテー
プ形長尺体に成形し、これをプレス等の加工および熱処
理を行うかもしくは特定の熱処理を行うと、図4で示す
ように、テープ状銀層1の平面1aに対して垂直方向へ
雲母状に、かつ、長手方向へ配向した構造の超電導層3
が形成されて、高い臨界電流密度がえられる酸化物超電
導線Dとなることが知られている。ところが、丸形や多
角形の超電導線では、銀層に接していない中心部では無
配向となり、上記テープ形超電導線のように超電導層全
体に雲母状に配向した構造が形成できず、高い臨界電流
密度がえられない。
BACKGROUND OF THE INVENTION Various oxide-based superconducting materials are currently known, and research is being conducted into technology for processing long materials such as wire rods and tapes for their practical use. It is being appreciated. Generally, a so-called silver sheath is used in which a silver tube is filled with an oxide-based superconducting powder and processed into a round, polygonal, or flat tape-shaped wire by processing such as wire drawing or rolling, and then heat-treated to form a superconducting wire. The law is known. Of these, an oxide superconductor whose crystal grains are flat is used to form, for example, a tape-shaped elongated body, which is subjected to processing such as pressing and heat treatment, or to a specific heat treatment, as shown in FIG. In addition, the superconducting layer 3 having a structure in which the tape-shaped silver layer 1 is oriented in a mica shape in a direction perpendicular to the plane 1a and in a longitudinal direction.
It is known that the oxide superconducting wire D is formed to obtain a high critical current density. However, in the case of a round or polygonal superconducting wire, the central part that is not in contact with the silver layer is non-oriented, and unlike the above-mentioned tape-shaped superconducting wire, a structure with a mica-like orientation cannot be formed over the entire superconducting layer, resulting in high criticality. Current density cannot be obtained.

【0003】一方、超電導線材をマグネットコイルに応
用することが広く実施されている。この場合、図5で示
すように、コイル10には矢印で示す磁界分布が生じ、
これによりコイル10に巻付ける線材自身に様々な方向
から磁場がかかる。したがって、マグネットコイルの性
能は、用いる超電導線材の臨界電流密度の磁場印加方向
に対する依存性に左右される。
On the other hand, it has been widely practiced to apply a superconducting wire to a magnet coil. In this case, as shown in FIG. 5, the coil 10 has a magnetic field distribution indicated by an arrow,
As a result, magnetic fields are applied to the wire wound around the coil 10 from various directions. Therefore, the performance of the magnet coil depends on the dependence of the critical current density of the superconducting wire used on the magnetic field application direction.

【0004】図6は、上記テープ形超電導線材の試験片
に、テープ面に対して垂直方向(記号△,▲)および平
行方向(記号○,●)の2方向から磁場Bを印加したと
きの臨界電流密度Jcの変化を測定し、横軸には磁場強
度を、縦軸には印加磁場0時の臨界電流密度Jc0 に対
する各磁場強度における臨界電流密度Jcの比をプロッ
トしたものである。ただし、記号△,○は、磁場強度を
昇磁した場合を、記号▲,●は、磁場強度を降磁した場
合をそれぞれ表す。同図から明らかなように、磁場Bを
テープ面の垂直方向にかけたときは、平行にかけたとき
に比べて、磁場Bが大きくなるにつれて臨界電流密度J
cが低下する傾向を示し、テープ形超電導線材の臨界電
流密度は磁場印加方向に対する依存性が強い。したがっ
て、上記テープ形超電導線材を用いてマグネットコイル
を作製しても、磁場依存性が強く超電導線材の臨界電流
密度が低下するので、マグネットコイルは所期の性能を
発揮しない。
FIG. 6 shows a case where a magnetic field B is applied to a test piece of the above-mentioned tape-shaped superconducting wire in two directions perpendicular to the tape surface (symbols Δ, ▲) and parallel (symbols ○, ●). measuring the change in the critical current density Jc, the horizontal axis is intended magnetic field intensity, the vertical axis plotting the ratio of the critical current density Jc of each magnetic field strength with respect to the critical current density Jc 0 o'clock applied magnetic field zero. However, the symbols Δ and ○ represent the cases where the magnetic field strength was increased, and the symbols ▲ and ● represent the cases where the magnetic field strength was demagnetized. As is clear from the figure, when the magnetic field B is applied in the direction perpendicular to the tape surface, the critical current density J increases as the magnetic field B becomes larger than when applied in parallel.
c tends to decrease, and the critical current density of the tape-shaped superconducting wire has a strong dependence on the magnetic field application direction. Therefore, even if a magnet coil is produced using the tape-shaped superconducting wire, the magnetic coil has a strong magnetic field dependency and the critical current density of the superconducting wire decreases, so that the magnet coil does not exhibit the desired performance.

【0005】本発明は上記課題を解消し、磁場の印加方
向に対する依存性が弱くマグネットコイル用として有用
な高い臨界電流密度を有する酸化物超電導線を提供する
ことを目的とする。
An object of the present invention is to solve the above problems and to provide an oxide superconducting wire having a high critical current density, which has a weak dependence on the direction of application of a magnetic field and is useful for a magnet coil.

【0006】[0006]

【課題を解決するための手段】本発明者らは種々検討を
重ねた結果、酸化物超電導線における超電導層の構造に
着目し、酸化物超電導体で特定の構造を有する超電導層
を形成することにより、上記目的が達成できることを見
出し本発明を完成した。
As a result of various investigations, the present inventors have focused on the structure of a superconducting layer in an oxide superconducting wire and formed an oxide superconductor to form a superconducting layer having a specific structure. As a result, they have found that the above object can be achieved and completed the present invention.

【0007】すなわち、本発明の酸化物超電導線は、金
属管とその内部に挿通された金属コアとによって形成さ
れ、かつ、上記金属コアの全周にわたり形成される空隙
部が酸化物超電導体で充填され、当該酸化物超電導体で
周方向へ雲母状に、かつ、長手方向へ配向された筒状構
造の超電導層を形成することを特徴とする。
That is, the oxide superconducting wire of the present invention is formed by a metal tube and a metal core inserted therein, and the void portion formed over the entire circumference of the metal core is an oxide superconductor. It is characterized in that a superconducting layer having a tubular structure filled with the oxide superconductor and oriented in the circumferential direction in the shape of mica and in the longitudinal direction is formed.

【0008】上記構成とすることにより、前記テープ形
酸化物超電導線と同等の高臨界電流密度がえられる超電
導線となる。また、様々な方向から超電導線材に磁場が
かかっても、磁場依存性が平均化され臨界電流密度の低
下が緩和される。
With the above structure, a superconducting wire can be obtained which has a high critical current density equivalent to that of the tape-shaped oxide superconducting wire. Further, even when a magnetic field is applied to the superconducting wire from various directions, the magnetic field dependence is averaged and the decrease in the critical current density is alleviated.

【0009】以下、本発明を図面に基づきより詳細に説
明する。図1に示すように、本発明の超電導線Dは、断
面が円形1(a)または多角形1(b)の金属管1と、
その内部に挿通された金属コア2とによって形成される
空隙部Kに、酸化物超電導材料で雲母状構造の超電導層
3を形成してなるものである。
The present invention will be described in more detail below with reference to the drawings. As shown in FIG. 1, a superconducting wire D of the present invention includes a metal tube 1 having a circular section 1 (a) or a polygonal section 1 (b),
A superconducting layer 3 having a mica-like structure is formed of an oxide superconducting material in a void portion K formed by the metal core 2 inserted therein.

【0010】本発明では、上記金属管1として、断面が
円または三角以上の多角形の形状を有する少なくとも内
周面に銀層を形成した金属管を使用する。具体的には、
銀管あるいは内側から順に銀、金属層、導電性金属から
なる多層金属管等が挙げられる。上記多層金属管の外周
面を形成する導電性金属には、特に限定はなく銅、鉄、
ニッケルあるいはこれらの合金等が例示されるが、中間
の金属層との反応性、加工性、導電性などの点から銅の
使用が好ましい。この導電性金属は、内周面の銀よりも
相当肉厚であり、管の大部分を占め、酸化物超電導体の
安定化を担うものである。
In the present invention, as the metal pipe 1, a metal pipe having a silver layer formed on at least the inner peripheral surface having a polygonal shape whose cross section is circular or triangular is used. In particular,
Examples thereof include a silver tube or a multilayer metal tube made of silver, a metal layer, and a conductive metal in order from the inside. The conductive metal forming the outer peripheral surface of the multilayer metal tube is not particularly limited, copper, iron,
Examples of the material include nickel and alloys thereof, but it is preferable to use copper in terms of reactivity with an intermediate metal layer, workability, and conductivity. This conductive metal is considerably thicker than the silver on the inner peripheral surface, occupies most of the tube, and serves to stabilize the oxide superconductor.

【0011】管内周面の銀は、雲母状結晶構造を有する
酸化物超電導材料を焼結する時の高温下でも容易に酸化
反応が進行せず、酸化物超電導体の製造プロセスである
雰囲気制御を可能にする。
The silver on the inner peripheral surface of the tube does not easily undergo an oxidation reaction even at high temperature when sintering an oxide superconducting material having a mica-like crystal structure, so that the atmosphere control, which is a manufacturing process of the oxide superconductor, can be controlled. to enable.

【0012】また、管内周面の銀と外周面の導電性金属
との間には、酸化物超電導材料の焼結時の高温下で銀と
導電性金属とが反応するのを防止する役割を果たすと同
時に、銀および導電性金属とそれぞれ化学反応しない金
属層を介在させる。この金属層としては、上記作用を奏
する限り特定されず、タンタル、モリブデン、タングス
テン、レニウム、オスミウムなどが例示され、加工性な
どからタンタル、モリブデンであることが好ましい。
Further, between the silver on the inner peripheral surface of the tube and the conductive metal on the outer peripheral surface, a role of preventing the reaction between silver and the conductive metal at a high temperature during sintering of the oxide superconducting material is fulfilled. At the same time, the intervening metal layers do not chemically react with silver and the conductive metal, respectively. The metal layer is not specified as long as the above-mentioned action is exhibited, and tantalum, molybdenum, tungsten, rhenium, osmium, etc. are exemplified, and tantalum and molybdenum are preferable from the viewpoint of workability.

【0013】上記金属管の製造にも特別な限定はなく、
例えばスエージング、電鋳物などにより作製することが
できる。この多層の金属管を使用すると、高価な銀の使
用が少量となりコスト低減が図れるので好ましい。
There is no particular limitation on the production of the above metal tube,
For example, it can be manufactured by swaging, electroforming, or the like. The use of this multi-layer metal tube is preferable because the amount of expensive silver used is small and the cost can be reduced.

【0014】一方、前記銀管あるいは多層の金属管の内
部に挿通する金属コア2としては、パイプ状またはロッ
ド状の少なくとも外周面に銀層を形成したものを使用す
る。具体的には銀パイプ、銀ロッドあるいは外周面に銀
層を形成した銅、鉄、ニッケルあるいはこれらの合金等
のパイプまたはロッド等が挙げられる。また、本発明で
は、上記金属コアとして、前記パイプ状物の内部に超電
導体の原料粉末を充填したものあるいは本発明の超電導
層構造を形成した線材を使用することができる。さら
に、上記のもの複数本を使用して、金属管に収納、加工
して多芯構造の超電導線材とすることも可能である。本
発明では、加工性、強度、コスト等によりその形態、材
質を選択使用すればよい。
On the other hand, as the metal core 2 to be inserted into the silver pipe or the multi-layer metal pipe, a pipe-shaped or rod-shaped metal core having a silver layer formed on at least the outer peripheral surface thereof is used. Specific examples thereof include silver pipes, silver rods, and pipes or rods of copper, iron, nickel, or alloys thereof having a silver layer formed on the outer peripheral surface thereof. Further, in the present invention, as the metal core, it is possible to use a material in which the raw material powder of the superconductor is filled inside the pipe-shaped material or a wire having the superconducting layer structure of the present invention. Further, it is also possible to use a plurality of the above-mentioned materials and store them in a metal tube and process them to obtain a superconducting wire having a multi-core structure. In the present invention, the form and material may be selected and used depending on workability, strength, cost and the like.

【0015】本発明の超電導層3を形成する酸化物超電
導材料としては、雲母状構造を形成する公知の酸化物超
電導体、たとえばBi系、Y系、Tl系、Pb系、Ba
系、Nd系等が使用でき、特にBi系のBi2Sr2Ca2Cu3O
x またはBi2Sr2CaCu2Oy (ただし、xは9.80〜1
0.25、yは8.00〜8.35の正の数である。)
で表される材料が好適に使用される。
As the oxide superconducting material forming the superconducting layer 3 of the present invention, known oxide superconductors forming a mica-like structure such as Bi-based, Y-based, Tl-based, Pb-based, and Ba-based materials.
System, Nd system, etc. can be used, especially Bi system Bi 2 Sr 2 Ca 2 Cu 3 O
x or Bi 2 Sr 2 CaCu 2 O y (where x is 9.80 to 1
0.25 and y are positive numbers of 8.00 to 8.35. )
The material represented by is preferably used.

【0016】なお、上記酸化物超電導体の原料粉末を金
属管に充填し線材を製造する方法は、従来既知の方法で
行えば十分であるが、通常は次に示す〜の製造プロ
セスに従う。すなわち、金属管とその内部に挿通され
た金属コアとによって空隙部を形成し、この空隙部に酸
化物超電導体の粉末を充填し、パイプの両端部を溶接な
どして金属パイプ内に封入して線材母材とする。つい
で、上記線材母材をスエージ加工、ダイス伸線(ダイ
スによる引抜き加工)または圧延加工し、太径線を細径
線にする。細径線を焼結および酸素アニール(少なく
とも800℃以上)し、超電導線として製品化する。上
記の方法によって、金属管1内に周方向へ雲母状に、か
つ、長手方向へ配向した筒状の構造を有する超電導層3
が形成された酸化物超電導線Dがえられる。
It is sufficient to fill the metal tube with the above-mentioned raw material powder of the oxide superconductor to manufacture a wire rod, although it is sufficient to use a conventionally known method, but the following manufacturing processes (1) to (2) are normally performed. That is, a void is formed by a metal tube and a metal core inserted therein, the void is filled with oxide superconductor powder, and both ends of the pipe are welded and enclosed in a metal pipe. The wire base material. Next, the wire rod base material is swaged, die wire-drawn (drawing with a die) or rolled to make a thick wire a thin wire. The thin wire is sintered and oxygen-annealed (at least 800 ° C. or higher) to produce a superconducting wire. By the above method, the superconducting layer 3 having a tubular structure in which the metal tube 1 is circumferentially oriented in the shape of mica and is oriented in the longitudinal direction.
Oxide superconducting wire D in which is formed is obtained.

【0017】なお、本発明では、上記筒状超電導層3の
膜厚を10〜150μm、好ましくは15〜100μ
m、さらに好ましくは20〜80μmに形成する。この
筒状超電導層3の膜厚が10μm未満のとき、加工精度
の限界により膜厚が不均一となり、150μmを越える
と、配向性の劣化に伴う臨界電流密度の低下が生じて好
ましくない。
In the present invention, the film thickness of the cylindrical superconducting layer 3 is 10 to 150 μm, preferably 15 to 100 μm.
m, more preferably 20 to 80 μm. When the film thickness of the cylindrical superconducting layer 3 is less than 10 μm, the film thickness becomes non-uniform due to the limitation of processing accuracy, and when it exceeds 150 μm, the critical current density is lowered due to the deterioration of orientation, which is not preferable.

【0018】[0018]

【作用】本発明によれば、図2の縦断面部分拡大図で示
すように、金属管1と金属コア2とによって形成される
空隙部Kに、周方向へ雲母状構造の環状超電導層3が形
成され、この環状超電導層3の構造は、微小角領域
(θ)では前記テープ形酸化物超電導線の超電導層と同
等であって、高臨界電流密度がえられる。また、図3の
横断面部分拡大図で示すように、上記環状超電導層3が
超電導線Dの長手方向へ配向した筒状構造に形成される
ので、この超電導線Dに様々な方向から磁場がかかって
も、臨界電流密度に対する依存性が平均化して緩和さ
れ、均一な臨界電流密度がえられる。さらに、丸形また
は多角形で高臨界電流密度がえられる酸化物超電導線が
形成できるので、コイルなどに巻き易くなる。
According to the present invention, as shown in the partially enlarged vertical sectional view of FIG. 2, the annular superconducting layer 3 having a mica-like structure in the circumferential direction is formed in the void portion K formed by the metal tube 1 and the metal core 2. The annular superconducting layer 3 has a structure similar to that of the tape-shaped oxide superconducting wire in the small angle region (θ), and a high critical current density can be obtained. Further, as shown in a partially enlarged view of the transverse cross section of FIG. 3, since the annular superconducting layer 3 is formed in a tubular structure oriented in the longitudinal direction of the superconducting wire D, magnetic fields are applied to the superconducting wire D from various directions. Even in such a case, the dependence on the critical current density is averaged and relaxed, and a uniform critical current density can be obtained. Furthermore, since it is possible to form an oxide superconducting wire having a round or polygonal shape and a high critical current density, it is easy to wind the coil into a coil or the like.

【0019】[0019]

【実施例】次に、実施例を挙げて本発明を更に詳細に説
明する。なお、本発明がこの実施例に限定されるもので
ないことはいうまでもない。 実施例1 (超電導線の作製)まず、図7で示すように、外径が1
0mm、肉厚1.4mm、長さ300mmに成形した銀管1の
中央内部に、外径が5mmの銀棒2を挿入し、銀管1の一
端部に外径が7.0mm、肉厚0.9mm、長さ100mmの
銀管5aを挿入し、この端部を溶接して銀棒2を固定す
るとともに、この一端部を封止した。ついで、上記銀管
1と銀棒2とで形成される空隙部Kに、仮焼したBi2Sr2
CaCu2Oy 粉を充填したのち、銀管1の他端部に外径が
7.0mm、肉厚0.9mm、長さ100mmの銀管5bを挿
入して端部を溶接して封止し線材母材Xを作製した。こ
の母材Xを外径が1mmになるまで伸線した。ついでこれ
を大気中でまず50℃/時間で昇温し、890℃となっ
た時点で昇温を停止し、10分間この温度雰囲気に保持
したのち、2.5℃/時間で降温して860℃の恒温中
に40時間保持し、ついで100℃/時間で降温させる
加熱を施し焼結させてBi系酸化物超電導線Dを作製し
た。
EXAMPLES Next, the present invention will be described in more detail with reference to examples. Needless to say, the present invention is not limited to this embodiment. Example 1 (Production of Superconducting Wire) First, as shown in FIG.
Insert a silver rod 2 with an outer diameter of 5 mm into the center of a silver tube 1 molded to have a thickness of 0 mm, a thickness of 1.4 mm, and a length of 300 mm, and one end of the silver tube 1 has an outer diameter of 7.0 mm and a wall thickness. A silver tube 5a having a length of 0.9 mm and a length of 100 mm was inserted, the end portion was welded to fix the silver rod 2, and the one end portion was sealed. Then, in the space K formed by the silver tube 1 and the silver rod 2, the calcined Bi 2 Sr 2
After filling the CaCu 2 O y powder, a silver tube 5 b having an outer diameter of 7.0 mm, a wall thickness of 0.9 mm and a length of 100 mm is inserted into the other end of the silver tube 1 and the end is welded and sealed. A wire rod base material X was produced. This base material X was drawn until the outer diameter became 1 mm. Then, the temperature is first raised in the air at 50 ° C./hour, stopped when the temperature reaches 890 ° C., maintained in this temperature atmosphere for 10 minutes, and then lowered at 2.5 ° C./hour to 860 A Bi-type oxide superconducting wire D was produced by keeping the temperature at 40 ° C. for 40 hours, then heating by lowering the temperature at 100 ° C./hour and sintering.

【0020】(超電導層の構造)この超電導線Dを縦に
切断してその超電導層3を観察したところ、図1(a)
で示すように、銀管1とその内部に挿通した銀棒2とに
よって形成される空隙部Kに、膜厚60μmのBi2Sr2Ca
Cu2Oy が充填された環状超電導層3が形成され、この環
状超電導層3は、図2の部分拡大模式図で示すように、
銀管1の周方向へ雲母状構造を形成したものであった。
また、この超電導線Dを横に切断してその超電導層3を
観察したところ、図3で示すように、銀棒2の全周にわ
たり長手方向へ配向した筒形構造のものであった。
(Structure of Superconducting Layer) This superconducting wire D was vertically cut and the superconducting layer 3 was observed. As shown in FIG.
As shown in, the gap K formed by the silver tube 1 and the silver rod 2 inserted into the silver tube 1 is filled with Bi 2 Sr 2 Ca having a film thickness of 60 μm.
A ring-shaped superconducting layer 3 filled with Cu 2 O y is formed, and the ring-shaped superconducting layer 3 is, as shown in a partially enlarged schematic view of FIG.
The mica-like structure was formed in the circumferential direction of the silver tube 1.
Further, when this superconducting wire D was laterally cut and the superconducting layer 3 was observed, as shown in FIG. 3, it had a cylindrical structure in which the silver rod 2 was oriented in the longitudinal direction over the entire circumference.

【0021】(超電導線の特性)さらに、得られた超電
導線材の中央部より長さ50mmの試験片をサンプリング
し、超電導特性を調べたところ、臨界温度は83K、臨
界電流密度は、液体He中において1.5×105 A/
cm2 であった。
(Characteristics of Superconducting Wire) Further, a test piece having a length of 50 mm was sampled from the central portion of the obtained superconducting wire and the superconducting characteristics were examined. The critical temperature was 83 K and the critical current density was in liquid He. At 1.5 × 10 5 A /
It was cm 2 .

【0022】比較例1 実施例1と同じBi2Sr2CaCu2Oy 粉を用いて、銀シース法
により膜厚60μmの超電導層を形成した縦0.1mm,
横3.0mmのテープ形超電導線材を製造し、得られた超
電導線材の中央部より長さ50mmの試験片をサンプリン
グし、超電導特性を調べたところ、臨界温度は83K、
臨界電流密度は:液体He中において2.0×105
/cm2 であった。
Comparative Example 1 Using the same Bi 2 Sr 2 CaCu 2 O y powder as in Example 1, a superconducting layer having a thickness of 60 μm was formed by a silver sheath method, and the length was 0.1 mm.
A tape-shaped superconducting wire with a width of 3.0 mm was manufactured, and a test piece with a length of 50 mm was sampled from the center of the obtained superconducting wire, and the superconducting characteristics were examined. The critical temperature was 83 K,
The critical current density is: 2.0 × 10 5 A in liquid He
It was / cm 2 .

【0023】実験例 上記実施例1および比較例1の試験片を用いて、それぞ
れに外部から磁場(B)を印加して臨界電流密度変化を
測定した。なお、比較例1のテープ形超電導線材には、
テープ面に対して垂直方向(記号●)および平行方向
(記号○)の2方向から磁界を印加した。この測定結果
を、横軸には磁場強度(B)を、縦軸には印加磁場0時
の臨界電流密度(Jc0 )に対する各磁場強度における
臨界電流密度(Jc)の比をとりプロットしたところ、
図8で示すグラフとなった。この図から明らかなよう
に、実施例1のBi系酸化物超電導線が、臨界電流密度の
外部印加磁場方向に対する依存性が小さく優れていた。
Experimental Example Using the test pieces of Example 1 and Comparative Example 1 above, a magnetic field (B) was externally applied to each of them to measure the change in critical current density. In addition, in the tape-shaped superconducting wire of Comparative Example 1,
A magnetic field was applied from two directions, a vertical direction (symbol ●) and a parallel direction (symbol ○) to the tape surface. The measurement results are plotted by plotting the magnetic field strength (B) on the horizontal axis and the ratio of the critical current density (Jc) at each magnetic field strength to the critical current density (Jc 0 ) when the applied magnetic field is 0 on the vertical axis. ,
The result is the graph shown in FIG. As is clear from this figure, the Bi-based oxide superconducting wire of Example 1 was excellent in that the dependence of the critical current density on the externally applied magnetic field direction was small.

【0024】実施例2〜3および比較例2〜3 実施例1の方法において、超電導層の膜厚を表1に示す
ように変化させる以外は全て同じ方法でBi系酸化物超電
導線を製造した。得られた超電導線の臨界温度および臨
界電流密度は、表1に示す通りであった。
Examples 2 to 3 and Comparative Examples 2 to 3 Bi type oxide superconducting wires were manufactured by the same method as in Example 1 except that the thickness of the superconducting layer was changed as shown in Table 1. .. The critical temperature and the critical current density of the obtained superconducting wire are as shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例4 実施例1において、銀管1に替えて内側に銀層1a、金
属層にタンタル1b、導電層金属部に銅1cとして形成
される金属パイプ1を使用する以外は、すべて同じ方法
で、図9で示す縦断面構造のBi系酸化物超電導線Dを製
造した。得られた超電導線の臨界温度および臨界電流密
度は、実施例1の超電導線とほぼ同じ値であった。
Example 4 In Example 1, except that the silver tube 1 was replaced by a silver layer 1a on the inside, tantalum 1b on the metal layer, and a metal pipe 1 formed as copper 1c on the conductive layer metal part, all were used. By the same method, a Bi-based oxide superconducting wire D having a vertical sectional structure shown in FIG. 9 was manufactured. The critical temperature and the critical current density of the obtained superconducting wire were almost the same values as those of the superconducting wire of Example 1.

【0027】なお、上記実施例では、金属管として丸形
の銀管を用いたが、多角形銀管または多層金属管を用い
て酸化物超電導線とすることができる。また、金属コア
として銀棒を用いたが、銀パイプあるいは外側に銀層を
形成した金属棒または金属パイプを用いて酸化物超電導
線とすることができる。また、酸化物超電導材料として
Bi2Sr2CaCu2O yを用いたが、Bi2Sr2Ca2Cu3O xや他の酸
化物超電導材料を用いて酸化物超電導線とすることがで
きる。さらに、特定の加熱処理で焼結したが、プレス等
の加工および熱処理を組合わせる方法で焼結を行い、酸
化物超電導線を製造することができる。
Although a round silver tube is used as the metal tube in the above embodiment, a polygonal silver tube or a multi-layer metal tube may be used to form the oxide superconducting wire. Further, although the silver rod is used as the metal core, an oxide superconducting wire can be formed by using a silver pipe or a metal rod or metal pipe having a silver layer formed on the outside. Also, as an oxide superconducting material
Although Bi 2 Sr 2 CaCu 2 O y was used, an oxide superconducting wire can be formed using Bi 2 Sr 2 Ca 2 Cu 3 O x or another oxide superconducting material. Furthermore, although the oxide superconducting wire was sintered by a specific heat treatment, the oxide superconducting wire can be manufactured by performing a sintering by a method combining processing such as pressing and heat treatment.

【0028】[0028]

【発明の効果】以上述べた通り、本発明の酸化物超電導
体は、磁場方向にほとんど依存しない均一な高臨界電流
密度がえられる超電導線材となる。また、丸形または多
角形の高臨界電流密度の超電導線材を形成できるので、
コイル等に巻付けやすく、マグネットコイル用として有
用である。したがって、本発明の酸化物超電導体をマグ
ネットコイルに用いると、高性能のマグネットコイルが
作製できる。
As described above, the oxide superconductor of the present invention is a superconducting wire which can obtain a uniform high critical current density that is almost independent of the magnetic field direction. Also, since it is possible to form a round or polygonal superconducting wire with high critical current density,
It is easy to wind around a coil and is useful as a magnet coil. Therefore, when the oxide superconductor of the present invention is used for a magnet coil, a high-performance magnet coil can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸化物超電導線の一実施例を示す縦断
面図である。
FIG. 1 is a vertical sectional view showing an example of an oxide superconducting wire of the present invention.

【図2】酸化物超電導線の環状超電導層を示す縦断面部
分拡大模式図である。
FIG. 2 is a partially enlarged schematic view of a longitudinal section showing an annular superconducting layer of an oxide superconducting wire.

【図3】酸化物超電導線の環状超電導層を示す横断面図
である。
FIG. 3 is a cross-sectional view showing an annular superconducting layer of an oxide superconducting wire.

【図4】テープ形酸化物超電導線の超電導層構造を示す
斜視図である。
FIG. 4 is a perspective view showing a superconducting layer structure of a tape-shaped oxide superconducting wire.

【図5】磁場を印加したときにテープ形超電導線の臨界
電流密度が磁場方向に依存することを示すグラフであ
る。
FIG. 5 is a graph showing that the critical current density of a tape-shaped superconducting wire when a magnetic field is applied depends on the magnetic field direction.

【図6】マグネットコイルに生じる磁界分布を示す断面
図である。
FIG. 6 is a cross-sectional view showing a magnetic field distribution generated in a magnet coil.

【図7】本発明の酸化物超電導線の製造例を示す断面図
である。
FIG. 7 is a cross-sectional view showing a production example of the oxide superconducting wire of the present invention.

【図8】磁場を印加したときの酸化物超電導線の臨界電
流密度変化を示す対数グラフである。
FIG. 8 is a logarithmic graph showing a change in critical current density of an oxide superconducting wire when a magnetic field is applied.

【図9】本発明の酸化物超電導線の他の実施例を示す縦
断面図である。
FIG. 9 is a vertical sectional view showing another embodiment of the oxide superconducting wire of the present invention.

【符号の説明】[Explanation of symbols]

1 金属管 2 金属コア 3 超電導層 D 超電導線 K 空隙部 1 metal tube 2 metal core 3 superconducting layer D superconducting wire K void

フロントページの続き (72)発明者 甲斐 純一 兵庫県尼崎市東向島西之町8番地 三菱電 線工業株式会社内Front Page Continuation (72) Inventor Junichi Kai, 8 Nishinomachi, Higashimukaijima, Amagasaki City, Hyogo Prefecture Mitsubishi Electric Wire & Cable Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属管とその内部に挿通された金属コア
とによって形成され、かつ、上記金属コアの全周にわた
り形成される空隙部が酸化物超電導体で充填され、当該
酸化物超電導体で周方向へ雲母状に、かつ、長手方向へ
配向された筒状構造の超電導層を形成することを特徴と
する酸化物超電導線。
1. A void formed by a metal tube and a metal core inserted through the metal tube, the void being formed around the entire circumference of the metal core is filled with an oxide superconductor. An oxide superconducting wire characterized by forming a cylindrical superconducting layer oriented in the circumferential direction in the shape of mica and in the longitudinal direction.
【請求項2】 金属管が、少なくともその内周面に銀層
を形成したものである請求項1記載の酸化物超電導線。
2. The oxide superconducting wire according to claim 1, wherein the metal tube has a silver layer formed on at least the inner peripheral surface thereof.
【請求項3】 金属コアが、少なくともその外周面に銀
層を形成したパイプ状またはロッド状のものである請求
項1記載の酸化物超電導線。
3. The oxide superconducting wire according to claim 1, wherein the metal core has a pipe shape or a rod shape in which a silver layer is formed on at least the outer peripheral surface thereof.
【請求項4】 筒状超電導層が10〜150μm厚さに
形成されたものである請求項1記載の酸化物超電導線。
4. The oxide superconducting wire according to claim 1, wherein the tubular superconducting layer is formed to have a thickness of 10 to 150 μm.
【請求項5】 酸化物超電導体が、Bi2Sr2Ca2Cu3O X
たはBi2Sr2CaCu2O y(ただし、xは9.80〜10.2
5、yは8.00〜8.35の正の数である。)で表さ
れるものである請求項1記載の酸化物超電導線。
5. The oxide superconductor is Bi 2 Sr 2 Ca 2 Cu 3 O X or Bi 2 Sr 2 CaCu 2 O y (where x is 9.80 to 10.2).
5, y is a positive number from 8.00 to 8.35. ) The oxide superconducting wire according to claim 1, which is represented by
JP4093467A 1992-03-19 1992-03-19 Oxide superconducting wire Pending JPH05266726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4093467A JPH05266726A (en) 1992-03-19 1992-03-19 Oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4093467A JPH05266726A (en) 1992-03-19 1992-03-19 Oxide superconducting wire

Publications (1)

Publication Number Publication Date
JPH05266726A true JPH05266726A (en) 1993-10-15

Family

ID=14083146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4093467A Pending JPH05266726A (en) 1992-03-19 1992-03-19 Oxide superconducting wire

Country Status (1)

Country Link
JP (1) JPH05266726A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525790A (en) * 1998-08-05 2002-08-13 アベンテイス・リサーチ・ウント・テクノロジーズ・ゲー・エム・ベー・ハー・ウント・コンパニー・カー・ゲー Protected superconducting component and its manufacturing method
US6498302B2 (en) 2000-04-25 2002-12-24 Sumitomo Electric Industries, Ltd. Multifilamentary oxide superconducting wire and method of producing the same, and stranded oxide superconducting wire and method of producing the same
US8238991B2 (en) 2008-08-05 2012-08-07 Sumitomo Electric Industries, Ltd. Precursor wire of oxide superconducting wire and production method thereof and oxide superconducting wire produced by using the precursor wire
KR101441139B1 (en) * 2005-07-29 2014-09-17 아메리칸 수퍼컨덕터 코포레이션 High temperature superconducting wires and coils

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525790A (en) * 1998-08-05 2002-08-13 アベンテイス・リサーチ・ウント・テクノロジーズ・ゲー・エム・ベー・ハー・ウント・コンパニー・カー・ゲー Protected superconducting component and its manufacturing method
US6498302B2 (en) 2000-04-25 2002-12-24 Sumitomo Electric Industries, Ltd. Multifilamentary oxide superconducting wire and method of producing the same, and stranded oxide superconducting wire and method of producing the same
KR101441139B1 (en) * 2005-07-29 2014-09-17 아메리칸 수퍼컨덕터 코포레이션 High temperature superconducting wires and coils
US8238991B2 (en) 2008-08-05 2012-08-07 Sumitomo Electric Industries, Ltd. Precursor wire of oxide superconducting wire and production method thereof and oxide superconducting wire produced by using the precursor wire

Similar Documents

Publication Publication Date Title
US4988669A (en) Electrical conductor in wire or cable form composed of a sheathed wire or of a multiple-filament conductor based on a ceramic high-temperature superconductor
US3509622A (en) Method of manufacturing composite superconductive conductor
US3836404A (en) Method of fabricating composite superconductive electrical conductors
US7162287B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JPH05266726A (en) Oxide superconducting wire
US3857173A (en) Method of producing a composite superconductor
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH06139848A (en) Manufacture of oxide high-temperature superconducting wire rod
WO2005124793A1 (en) Method for producing superconducting wire
JP3158408B2 (en) Oxide superconducting wire and manufacturing method thereof
US5758405A (en) Consumable mandrel for superconducting magnetic coils
JPH0773757A (en) Manufacture of oxide superconductor
JPH04262308A (en) Oxide superconductive wire rod
JPH0382105A (en) Manufacture of oxide superconducting coil
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment
JPH0465034A (en) Manufacture of oxide superconducting wire
JPH06325633A (en) Multi-core oxide superconducting wire
JPH0745136A (en) Oxide superconductor
JPH05144330A (en) Tape-like oxide superconductive wire rod
JPH06349346A (en) Oxide superconductor for power transportation
JPH05114313A (en) Superconducting current limiting wire and its manufacture
JP3248190B2 (en) Oxide superconducting wire, its manufacturing method and its handling method
JPH01194213A (en) Manufacture of complex oxide superconductive multi-core wire material
US6451742B1 (en) High temperature superconducting composite conductor and method for manufacturing the same
JP2599138B2 (en) Method for producing oxide-based superconducting wire