JPH05114313A - Superconducting current limiting wire and its manufacture - Google Patents

Superconducting current limiting wire and its manufacture

Info

Publication number
JPH05114313A
JPH05114313A JP3304045A JP30404591A JPH05114313A JP H05114313 A JPH05114313 A JP H05114313A JP 3304045 A JP3304045 A JP 3304045A JP 30404591 A JP30404591 A JP 30404591A JP H05114313 A JPH05114313 A JP H05114313A
Authority
JP
Japan
Prior art keywords
powder
oxide superconductor
current limiting
superconducting
inorganic insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3304045A
Other languages
Japanese (ja)
Inventor
Keisuke Yamamoto
啓介 山本
Makoto Hiraoka
誠 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP3304045A priority Critical patent/JPH05114313A/en
Publication of JPH05114313A publication Critical patent/JPH05114313A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting current limiting wire using an oxide superconductor which can obtain a long size linear substance easily and has an excellent critical current density, and having an excellent circuit limiting property, and to provide its manufacturing method. CONSTITUTION:A body having in order a super conducting current limiting wire which has an inorganic insulating layer 2 and a metallic coverage layer 3 in order on the outer surface of an oxide superconducting layer 1; a tubular body made by forming an oxide superconducting material at the outer side of a rod made by forming an oxide superconductor powder; and a metallic tube; is made into a fine wire and rolled. And after that, it is heat-treated to sinter the powder of the oxide superconductor and, the inorganic insulating material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体を用い
てなり、限流精度に優れる金属被覆型の超電導限流線、
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-coated superconducting current limiting line which is made of an oxide superconductor and is excellent in current limiting accuracy.
And a manufacturing method thereof.

【0002】[0002]

【従来の技術】酸化物超電導体に臨界電流密度以上の電
流が流れると抵抗が急激に増大する性質を利用して限流
素子の開発が試みられており、600Vを超える大容量
の送電系や配電系における遮断器への適用が特に期待さ
れている。従来、酸化物超電導体を利用した限流素子と
しては、酸化物超電導体の粉末を板等に成形し、それを
焼結処理して得たバルク体を線状に加工してなるものが
知られていた。しかしながら、長尺線状体として得るこ
とが困難で、臨界電流密度も103A/cm2程度と劣るな
どの問題点があり、実用性に乏しい難点があった。
2. Description of the Related Art Development of a current limiting element has been attempted by taking advantage of the property that resistance rapidly increases when a current exceeding a critical current density flows in an oxide superconductor. It is especially expected to be applied to circuit breakers in distribution systems. Conventionally, as a current limiting element using an oxide superconductor, there is known one in which a powder of oxide superconductor is molded into a plate or the like, and a bulk body obtained by sintering the powder is processed into a linear shape. It was being done. However, there are problems that it is difficult to obtain a long linear body and the critical current density is inferior to about 10 3 A / cm 2, and the practicality is poor.

【0003】[0003]

【発明が解決しようとする課題】前記に鑑みて本発明者
等は、長尺体を得ることが容易で、臨界電流密度にも優
れる、金属被覆型の酸化物超電導テープの使用を試み
た。しかしこの場合、臨界電流密度以上の電流が流れて
も抵抗が急激に増大せず限流素子として利用できないこ
とが判明した。本発明は、長尺線状体を得ることが容易
で臨界電流密度にも優れる、酸化物超電導体を用いた超
電導限流線、及びその製造方法の開発を課題とする。
In view of the above, the present inventors have tried to use a metal-coated oxide superconducting tape which is easy to obtain a long body and is excellent in critical current density. However, in this case, it was found that the resistance did not increase sharply even if a current of the critical current density or more flows, and the device cannot be used as a current limiting element. An object of the present invention is to develop a superconducting current limiting line using an oxide superconductor, which is easy to obtain a long linear body and is excellent in critical current density, and a manufacturing method thereof.

【0004】[0004]

【課題を解決するための手段】本発明は、酸化物超電導
層の外周に無機絶縁層を有し、その無機絶縁層の外周に
金属被覆層を有することを特徴とする超電導限流線、及
び酸化物超電導体の粉末を成形してなるロッドの外側
に、無機絶縁材料の粉末を成形してなる筒体と、金属チ
ューブとを順次有するものを細線化して圧延した後、そ
れを加熱処理して酸化物超電導体と無機絶縁材料の粉末
を焼結させることを特徴とする前記の超電導限流線の製
造方法を提供するものである。
The present invention provides a superconducting current limiting line characterized by having an inorganic insulating layer on the outer periphery of an oxide superconducting layer and a metal coating layer on the outer periphery of the inorganic insulating layer, and On the outside of the rod formed by molding the powder of the oxide superconductor, a cylindrical body formed by molding the powder of the inorganic insulating material and a metal tube are sequentially thinned and rolled, and then heat treated. An oxide superconductor and a powder of an inorganic insulating material are sintered to provide a method for manufacturing the superconducting current limiting line.

【0005】[0005]

【作用】金属チューブ等を用いた金属被覆型の酸化物超
電導体とすることにより、長尺線状体を容易に得ること
ができ、臨界電流密度にも優れる超電導限流線とするこ
とができる。そして、酸化物超電導層と金属被覆層の間
に無機絶縁層を介在させることにより、酸化物超電導体
の超電導特性を実質的に低下させることなく、限流素子
に必要な、酸化物超電導層に臨界電流密度以上の電流が
流れると抵抗が急激に増大する性質を付与することがで
きる。この結果より、上記した絶縁層を有しない従来の
金属被覆型の酸化物超電導テープでは臨界電流密度以上
の電流が流れると金属被覆層に電流が分流し、抵抗の超
電導体的増大が抑制されるものと考えられる。
[Function] By using a metal-coated oxide superconductor using a metal tube or the like, a long linear body can be easily obtained, and a superconducting current limiting line excellent in critical current density can be obtained. .. Then, by interposing the inorganic insulating layer between the oxide superconducting layer and the metal coating layer, without substantially reducing the superconducting properties of the oxide superconductor, the oxide superconducting layer required for the current limiting device is formed. It is possible to impart a property that the resistance sharply increases when a current of a critical current density or more flows. From this result, in the conventional metal-clad oxide superconducting tape having no insulating layer as described above, when a current of a critical current density or more flows, the current is shunted to the metal-clad layer, and the superconducting increase in resistance is suppressed. Thought to be a thing.

【0006】[0006]

【実施例】図1に、本発明の超電導限流線を例示した。
1が酸化物超電導層、2が無機絶縁層、3が金属被覆層
である。かかる構造の超電導限流線の製造は、例えば次
の方法により行うことができる。
EXAMPLE FIG. 1 illustrates a superconducting current limiting line of the present invention.
1 is an oxide superconducting layer, 2 is an inorganic insulating layer, and 3 is a metal coating layer. The superconducting current limiting line having such a structure can be manufactured, for example, by the following method.

【0007】すなわち、先ず図2に例示の如く、酸化物
超電導体の粉末を成形してなるロッド4の外側に、無機
絶縁材料の粉末を成形してなる筒体5と、金属チューブ
6とを順次有するものを形成し、次いでそれを細線化し
て圧延した後、加熱処理して酸化物超電導体と無機絶縁
材料の粉末を焼結させる方法である。
That is, first, as illustrated in FIG. 2, a cylindrical body 5 formed by molding powder of an inorganic insulating material and a metal tube 6 are provided outside a rod 4 formed by molding powder of an oxide superconductor. This is a method in which the oxide superconductor and the powder of the inorganic insulating material are sintered by heat-treating them after thinning them into thin wires and rolling them.

【0008】前記の酸化物超電導体の粉末からなるロッ
ド4や、無機絶縁材料の粉末からなる筒体5は、例えば
ゴム等からなる成形型の内部に所定の粉末を充填し、そ
れを水中等に浸漬して加圧処理する冷間等方加圧成形方
式などにより形成することができる。
The rod 4 made of the oxide superconductor powder and the cylindrical body 5 made of the inorganic insulating material powder are filled with a predetermined powder in a molding die made of, for example, rubber or the like, which is then filled in water or the like. It can be formed by a cold isotropic pressure molding method in which the material is dipped in and pressurized.

【0009】図3にロッド成形用のゴム型41、42、
43を、図4に筒体成形用のゴム型51、52、53と
芯棒54からなる成形型をそれぞれ例示した。ロッドは
成形型の内部に酸化物超電導体の粉末44を充填して、
筒体は成形型の内部に無機絶縁材料の粉末55を充填し
て成形することにより得られる。なお、無機絶縁材料の
粉末からなる筒体と酸化物超電導体の粉末からなるロッ
ドとは、ロッドを筒体内部に殆ど隙間なく収容できる寸
法関係で形成することが好ましい。成形に供する粉末の
粒径は、100μm以下、就中0.1〜10μmが適当で
ある。
FIG. 3 shows a rubber mold 41, 42 for molding a rod.
In FIG. 4, a molding die composed of rubber dies 51, 52, 53 for molding a cylinder and a core rod 54 is illustrated in FIG. 4, respectively. The rod is filled with oxide superconductor powder 44 inside the mold,
The cylindrical body is obtained by filling the inside of the molding die with the powder 55 of the inorganic insulating material and molding. It should be noted that the cylindrical body made of the powder of the inorganic insulating material and the rod made of the powder of the oxide superconductor are preferably formed in such a dimensional relationship that the rod can be housed in the cylindrical body with almost no space. The particle size of the powder used for molding is 100 μm or less, preferably 0.1 to 10 μm.

【0010】ロッドの成形に用いる酸化物超電導体の粉
末の種類については特に限定はない。その例としては、
Bi2Sr2CaCu2yやBi2-xPbxSr2Ca2Cu3yの如
きBi系酸化物超電導体、YBa2Cu3yやYBa2Cu4
yの如きY系酸化物超電導体、Ba1-xxBiO3の如きB
a系酸化物超電導体、Nd2-xCexCuOyの如きNd系酸化
物超電導体、その他La系酸化物超電導体、Tl系酸化物
超電導体、Pb系酸化物超電導体などからなるものがあ
げられる。
There is no particular limitation on the kind of powder of the oxide superconductor used for forming the rod. For example,
Bi - based oxide superconductors such as Bi 2 Sr 2 CaCu 2 O y and Bi 2-x Pb x Sr 2 Ca 2 Cu 3 O y , YBa 2 Cu 3 O y and YBa 2 Cu 4 O
Y-based oxide superconductor such as y , B 1-x K x Bio 3 such as B
a-based oxide superconductor, Nd - based oxide superconductor such as Nd 2-x Ce x CuO y , La-based oxide superconductor, Tl-based oxide superconductor, Pb-based oxide superconductor, etc. can give.

【0011】また、前記のBi等の成分を他の希土類元
素で置換したもの、Sr等の成分を他のアルカリ土類金
属で置換したもの、あるいはO成分をFなどで置換した
ものなどもあげられる。さらに、ピンニングセンターを
含有させたものなどもあげられる。ピンニングセンター
含有の酸化物超電導体は、そのピンニングセンターによ
る磁束のピン止め効果により、高い磁場下においても大
きな臨界電流密度を示す利点を有する。ピンニングセン
ター含有の酸化物超電導体は、例えばMPMG法(Melt
Powdering Melt Growth)などにより得ることができ
る。
Further, the above-mentioned components such as Bi are substituted with other rare earth elements, the components such as Sr are substituted with other alkaline earth metals, and the O components are substituted with F and the like. Be done. Furthermore, the thing containing the pinning center etc. is mentioned. The pinning center-containing oxide superconductor has the advantage of exhibiting a large critical current density even under a high magnetic field due to the effect of pinning the magnetic flux by the pinning center. The oxide superconductor containing the pinning center is, for example, the MPMG method (Melt
Powdering Melt Growth) and the like.

【0012】筒体の成形に用いる無機絶縁材料の粉末の
種類についても特に限定はない。酸化物超電導層とのク
ラック等のない接合性や、超電導特性の劣化予防などの
点より好ましく用いうるものは、酸化物超電導層を形成
する元素で構成される超電導を示さない組成の酸化物な
どである。すなわちTl系酸化物超電導体の場合を例と
すると、それを形成するTl、Ba、Ca、Cu、あるいは
PbやSrの全部又は一部で構成される超電導を示さない
組成の酸化物などである。他の酸化物超電導体を例に、
より具体的に示すとBi系酸化物超電導体に対するCa2
PbO4の如きCa-Pb-O系酸化物やSr-Ca-Pb-O系酸
化物、Y系酸化物超電導体に対するY2BaCuOyの如き
Y-Ba-Cu-O系酸化物やCu-O系酸化物などである。
There is no particular limitation on the type of powder of the inorganic insulating material used for molding the cylindrical body. Bondability without cracks and the like with an oxide superconducting layer, and those that can be preferably used from the viewpoint of preventing deterioration of superconducting properties are oxides having a composition that does not show superconductivity composed of elements forming the oxide superconducting layer. Is. That is, taking the case of a Tl-based oxide superconductor as an example, it is an oxide having a composition that does not exhibit superconductivity and is composed of all or part of Tl, Ba, Ca, Cu, or Pb or Sr that forms it. .. Taking other oxide superconductors as an example,
More specifically, Ca 2 for a Bi-based oxide superconductor
Such as PbO 4 Ca-PbO-based oxide and Sr-Ca-PbO-based oxide, Y-based oxide such as Y-Ba-Cu-O based oxide Y 2 BaCuO y for superconductors and Cu- O-based oxides and the like.

【0013】金属チューブ6の細線化は、その内部に無
機絶縁材料の粉末からなる筒体5を介して酸化物超電導
体の粉末からなるロッド4を収容した状態で行われる。
その場合、内部を真空引きして金属チューブ6の両端を
封止することが超電導特性の安定化等の点より好まし
い。細線化処理は、ダイスを介する方式などの適宜な方
式で行ってよい。また細線化したものの圧延処理も、ピ
ンチロールやプレス機械等による適宜な方式で行ってよ
い。
The thinning of the metal tube 6 is carried out in a state where the rod 4 made of the oxide superconductor powder is housed inside the cylindrical body 5 made of the powder of the inorganic insulating material.
In that case, it is preferable to vacuum the inside to seal both ends of the metal tube 6 from the viewpoint of stabilizing the superconducting characteristics. The thinning process may be performed by an appropriate method such as a method through a die. Further, the rolling treatment of the thinned wire may be performed by an appropriate method using a pinch roll, a press machine or the like.

【0014】細線化条件や圧延条件は、目的とする超電
導限流線の使用目的等により適宜に決定してよい。一般
には、金属被覆層の厚さ5〜500μm、無機絶縁層の
厚さ1〜500μm、酸化物超電導層の厚さ10μm〜3
mmとされる。なお金属チューブとしては例えば銀、金、
白金、かかる金属を含有する合金、就中、銀・白金合
金、銀・パラジウム合金の如き高融点合金などからなる
ものが好ましく用いられる。
The thinning conditions and rolling conditions may be appropriately determined depending on the intended use of the superconducting current limiting line. Generally, the metal coating layer has a thickness of 5 to 500 μm, the inorganic insulating layer has a thickness of 1 to 500 μm, and the oxide superconducting layer has a thickness of 10 μm to 3 μm.
mm. As the metal tube, for example, silver, gold,
Platinum, alloys containing such metals, especially those made of high melting point alloys such as silver-platinum alloys and silver-palladium alloys are preferably used.

【0015】圧延処理して得られたテープ体等は次に、
酸化物超電導体と無機絶縁材料の粉末を焼結するための
加熱処理に供される。その際、加熱処理に先立ってプレ
ス処理を施してもよい。プレス処理は、品質の安定化、
ないし超電導特性の向上に有効である。プレス処理は複
数回繰り返してもよく、その場合には前後のプレス処理
間に加熱工程が設けられる。
The tape or the like obtained by the rolling treatment is then
It is subjected to a heat treatment for sintering the oxide superconductor and the powder of the inorganic insulating material. At that time, a press treatment may be performed prior to the heat treatment. The pressing process stabilizes the quality,
It is also effective for improving superconducting properties. The press treatment may be repeated a plurality of times, in which case a heating step is provided between the press treatments before and after.

【0016】また前記のプレス処理は、前記テープ体等
をコイル形態等の限流素子形態としたものに対して施し
てもよい。さらにテープ体等を限流素子形態として加熱
処理後その形態を解いてプレス処理し、再び限流素子形
態として加熱処理する操作を必要回数繰り返してもよ
い。
The pressing process may be performed on the tape body or the like having a current limiting element shape such as a coil shape. Further, the operation of heat-treating the tape body or the like in the form of a current limiting device, unfolding the form, press-processing, and again performing heat treatment in the form of a current limiting device may be repeated a necessary number of times.

【0017】焼結のための加熱処理は、従来の酸化物超
電導体の粉末の焼結処理に準じてよい。従って通例、7
00〜1200℃の加熱温度で焼結処理される。なお焼
結のための加熱処理は、コイル等の二次形態からなる限
流素子形態などとしたものに対して施してもよい。
The heat treatment for sintering may be in accordance with the conventional sintering treatment of oxide superconductor powder. Therefore, it is usually 7
Sintering is performed at a heating temperature of 00 to 1200 ° C. The heat treatment for sintering may be performed on a current limiting element such as a coil having a secondary shape.

【0018】実施例1 冷間等方加圧方式で成形した、粒径0.1〜10μmのB
i9Pb2Sr10Ca12Cu15y粉末(公称組成)からなる直
径4mm、長さ100mmのロッドを、粒径0.1〜10μm
のCa2PbO4粉末からなる外径6mm、内径4.2mm、長
さ100mmの筒体の内部に収容した後、それを外径8.
5mm、内径6.2mm、長さ500mmの銀チューブ内に収
容し、両端をPb-Sn半田で真空封止した後、ダイスを
介し伸線加工して外径1.4mmに細線化し、それをピン
チロールで圧延して幅2.6mm、厚さ0.2mm、長さ約
40mのテープを得、それより約8mの長尺体を切り出
してセラミック製リール(外径45mm、長さ190mm)
にソレノイド状に巻回し(53回ターン)、大気中83
5℃で160時間加熱処理した。次いで、テープをリー
ルから巻戻しつつ油圧プレスで1軸加圧(15t)して
幅3.4mm、厚さ0.16mmのテープとし、それを再び
リールにソレノイド状に巻回して、大気中835℃で4
0時間加熱処理し、超電導限流線を得た。
Example 1 B having a particle size of 0.1 to 10 μm formed by a cold isostatic pressing method
A rod made of i 9 Pb 2 Sr 10 Ca 12 Cu 15 O y powder (nominal composition), having a diameter of 4 mm and a length of 100 mm, had a particle size of 0.1 to 10 μm.
After being housed inside a cylindrical body made of Ca 2 PbO 4 powder having an outer diameter of 6 mm, an inner diameter of 4.2 mm, and a length of 100 mm, the outer diameter was set to 8.
It is housed in a silver tube of 5 mm, inner diameter of 6.2 mm, and length of 500 mm, vacuum sealed at both ends with Pb-Sn solder, and then wire-drawn through a die to make an outer diameter of 1.4 mm, which is then thinned. Roll with a pinch roll to obtain a tape with a width of 2.6 mm, a thickness of 0.2 mm, and a length of about 40 m, and cut a length of about 8 m from it to make a ceramic reel (outer diameter 45 mm, length 190 mm).
It is wound like a solenoid (53 turns) in the air
Heat treatment was performed at 5 ° C. for 160 hours. Then, while rewinding the tape from the reel, it is uniaxially pressed (15 t) with a hydraulic press to form a tape having a width of 3.4 mm and a thickness of 0.16 mm, which is rewound on the reel like a solenoid, and 835 in the atmosphere. 4 at ℃
After heat treatment for 0 hour, a superconducting current limiting line was obtained.

【0019】比較例 冷間等方加圧方式で成形した、粒径0.1〜10μmのB
i9Pb2Sr10Ca12Cu15y粉末からなる直径4.8mm、
長さ100mmのロッドを、外径8mm、内径5mm、長さ5
00mmの銀チューブ内に収容し、両端をPb-Sn半田で
真空封止し、それを用いて前記実施例1に準じ伸線加
工、圧延加工、リールへの巻回加熱処理、巻戻しプレス
処理、再度の巻回加熱処理を施して比較サンプルを得
た。
Comparative Example B molded by the cold isostatic pressing method and having a particle size of 0.1 to 10 μm
i 9 Pb 2 Sr 10 Ca 12 Cu 15 O y powder made of 4.8 mm diameter,
A rod with a length of 100 mm, an outer diameter of 8 mm, an inner diameter of 5 mm, and a length of 5
It was housed in a silver tube of 00 mm, both ends were vacuum-sealed with Pb-Sn solder, and using it, wire drawing, rolling, winding heat treatment on reel, and rewinding press treatment according to Example 1 were performed. Then, the sample was subjected to the re-winding heat treatment to obtain a comparative sample.

【0020】評価試験 実施例1、比較例で得た超電導限流線又は比較サンプル
について下記の特性を調べた。 臨界温度 0.1A/mm2の電流密度下、液体窒素で冷却しながら4
端子法で電気抵抗の温度変化を測定し、電圧端子間の発
生電圧が0となるときの温度を調べた。
Evaluation Test The following characteristics of the superconducting current limiting line or the comparative sample obtained in Example 1 and Comparative Example were examined. While cooling with liquid nitrogen at a current density of 0.1 A / mm 2 which is the critical temperature, 4
The temperature change of the electric resistance was measured by the terminal method, and the temperature when the generated voltage between the voltage terminals became 0 was investigated.

【0021】臨界電流密度 パワーリードと共に液体窒素で冷却しながら徐々に電流
値を上げて、4端子法により電圧端子間の電圧の印加電
流による変化を測定し、X−Yレコーダにおいて0.1
μv/cmの電圧が出現したときの電流値を超電導体(テ
ープ中の酸化物超電導層)の断面積で除すことにより算
出した。
Critical Current Density While cooling with liquid nitrogen along with the power lead, the current value was gradually increased, and the change in the voltage between the voltage terminals due to the applied current was measured by the 4-terminal method.
It was calculated by dividing the current value when a voltage of μv / cm appeared by the cross-sectional area of the superconductor (oxide superconducting layer in the tape).

【0022】V−I特性 臨界温度以下で直流による電圧−電流特性を調べた。VI Characteristics Voltage-current characteristics due to direct current were examined below the critical temperature.

【0023】限流効果 図5に示した交流回路を形成し、種々の電源電圧:E、
負荷抵抗:RL、及び短絡電流の最大値を制限するため
の模擬電源抵抗:ROにおいて限流効果を調べた。なお
図中、CLEは液体窒素中に配置した超電導限流線又は
比較サンプルである。
Current limiting effect The AC circuit shown in FIG. 5 is formed, and various power supply voltages: E,
Load resistance: R L, and the maximum value simulated power resistor for limiting a short-circuit current was investigated current limiting effect in R O. In the figure, CLE is a superconducting current limiting line or a comparative sample placed in liquid nitrogen.

【0024】前記の臨界温度と臨界電流密度の結果を表
1に示した。またV−I特性の結果を図6に示した。さ
らに限流効果の結果を表2に示した。
The results of the above critical temperature and critical current density are shown in Table 1. The results of VI characteristics are shown in FIG. The results of the current limiting effect are shown in Table 2.

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明によれば、無機絶縁層を介在させ
た金属被覆型の酸化物超電導体を用いたので、臨界電流
密度に優れる長尺線状体を容易に得ることができ、優れ
た限流性能を安定して示す超電導限流線を得ることがで
きる。
According to the present invention, since the metal-coated oxide superconductor with the inorganic insulating layer interposed is used, it is possible to easily obtain a long linear body having an excellent critical current density. It is possible to obtain a superconducting current limiting line that exhibits stable current limiting performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の部分断面斜視図。FIG. 1 is a partial cross-sectional perspective view of an embodiment.

【図2】細線処理対象を例示した部分断面斜視図。FIG. 2 is a partial cross-sectional perspective view illustrating a thin line processing target.

【図3】ロッドの成形型を例示した斜視図。FIG. 3 is a perspective view illustrating a mold of a rod.

【図4】筒体の成形型を例示した斜視図。FIG. 4 is a perspective view exemplifying a molding die for a cylindrical body.

【図5】実験回路の説明図。FIG. 5 is an explanatory diagram of an experimental circuit.

【図6】V−I特性を示したグラフ。FIG. 6 is a graph showing VI characteristics.

【符号の説明】[Explanation of symbols]

1:酸化物超電導層 2:無機絶縁層 3:金属被覆層 4:酸化物超電導体の粉末からなるロッド 5:無機絶縁材料の粉末からなる筒体 6:金属チューブ 1: Oxide superconducting layer 2: Inorganic insulating layer 3: Metal coating layer 4: Rod made of powder of oxide superconductor 5: Cylindrical body made of powder of inorganic insulating material 6: Metal tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導層の外周に無機絶縁層を有
し、その無機絶縁層の外周に金属被覆層を有することを
特徴とする超電導限流線。
1. A superconducting fault current limiter characterized by having an inorganic insulating layer on the outer periphery of an oxide superconducting layer, and having a metal coating layer on the outer periphery of the inorganic insulating layer.
【請求項2】 酸化物超電導体の粉末を成形してなるロ
ッドの外側に、無機絶縁材料の粉末を成形してなる筒体
と、金属チューブとを順次有するものを細線化して圧延
した後、それを加熱処理して酸化物超電導体と無機絶縁
材料の粉末を焼結させることを特徴とする請求項1に記
載の超電導限流線の製造方法。
2. A rod having a powder formed of an oxide superconductor and having a cylindrical body formed of a powder of an inorganic insulating material and a metal tube are formed on the outer side of the rod. The method for producing a superconducting current limiting line according to claim 1, wherein the oxide superconductor and the powder of the inorganic insulating material are sintered by heat treatment.
JP3304045A 1991-10-23 1991-10-23 Superconducting current limiting wire and its manufacture Pending JPH05114313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3304045A JPH05114313A (en) 1991-10-23 1991-10-23 Superconducting current limiting wire and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3304045A JPH05114313A (en) 1991-10-23 1991-10-23 Superconducting current limiting wire and its manufacture

Publications (1)

Publication Number Publication Date
JPH05114313A true JPH05114313A (en) 1993-05-07

Family

ID=17928387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3304045A Pending JPH05114313A (en) 1991-10-23 1991-10-23 Superconducting current limiting wire and its manufacture

Country Status (1)

Country Link
JP (1) JPH05114313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124793A1 (en) * 2004-06-22 2005-12-29 Sumitomo Electric Industries, Ltd. Method for producing superconducting wire
US7162287B2 (en) 2000-08-29 2007-01-09 Sumitomo Electric Industries, Ltd. Oxide high-temperature superconducting wire and method of producing the same
JP4709455B2 (en) * 1999-11-08 2011-06-22 住友電気工業株式会社 Oxide high-temperature superconducting wire and manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709455B2 (en) * 1999-11-08 2011-06-22 住友電気工業株式会社 Oxide high-temperature superconducting wire and manufacturing method
US7162287B2 (en) 2000-08-29 2007-01-09 Sumitomo Electric Industries, Ltd. Oxide high-temperature superconducting wire and method of producing the same
WO2005124793A1 (en) * 2004-06-22 2005-12-29 Sumitomo Electric Industries, Ltd. Method for producing superconducting wire
JPWO2005124793A1 (en) * 2004-06-22 2008-04-17 住友電気工業株式会社 Superconducting wire manufacturing method
US7749557B2 (en) 2004-06-22 2010-07-06 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire
JP4605156B2 (en) * 2004-06-22 2011-01-05 住友電気工業株式会社 Superconducting wire manufacturing method

Similar Documents

Publication Publication Date Title
JPH05114313A (en) Superconducting current limiting wire and its manufacture
EP0409150B1 (en) Superconducting wire
JPH065414A (en) Superconducting magnet
JP3015389B2 (en) Superconducting coil manufacturing method
JPH0737443A (en) Bismuth-containing oxide superconductive wire and preparation of wire thereof
JPH08315655A (en) Superconducting wire and manufacture thereof
JP2509642B2 (en) Superconducting power lead manufacturing method
JPH0757570A (en) Manufacture of oxide superconducting insulated coil and raw material thereof
JPH05101723A (en) Manufacture of oxide superconductive wire
JPS63291311A (en) Superconducting wire
JPH05114509A (en) Manufacture of oxide superconducting coil
JP2979547B2 (en) Manufacturing method of oxide superconducting coil
JPH0676650A (en) Oxide superconducting wire material and superconducting wire made therefrom
JPH05266726A (en) Oxide superconducting wire
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
JP2727565B2 (en) Superconductor manufacturing method
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
US6207619B1 (en) Oxidic superconductor with a bismuth phase of the 2223 type and method of manufacture thereof
JP4709455B2 (en) Oxide high-temperature superconducting wire and manufacturing method
JP3086237B2 (en) Manufacturing method of oxide superconducting wire
JP2979546B2 (en) Manufacturing method of oxide superconducting coil
JPH05101724A (en) Manufacture of oxide superconductive wire
JPH07115018A (en) Manufacture of oxide superconducting insulation coil
JPH06302236A (en) Manufacture of oxide superconductor wire
JPH06309967A (en) Manufacture of oxide type superconducting wire