JPH01194213A - Manufacture of complex oxide superconductive multi-core wire material - Google Patents

Manufacture of complex oxide superconductive multi-core wire material

Info

Publication number
JPH01194213A
JPH01194213A JP63016651A JP1665188A JPH01194213A JP H01194213 A JPH01194213 A JP H01194213A JP 63016651 A JP63016651 A JP 63016651A JP 1665188 A JP1665188 A JP 1665188A JP H01194213 A JPH01194213 A JP H01194213A
Authority
JP
Japan
Prior art keywords
complex
composite
metal
billet
wire material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63016651A
Other languages
Japanese (ja)
Inventor
Tomiharu Matsushita
富春 松下
Kazuhiko Nakajima
和彦 中島
Yasuhiko Inoue
康彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63016651A priority Critical patent/JPH01194213A/en
Publication of JPH01194213A publication Critical patent/JPH01194213A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To easily obtain a long multi-core wire material by inserting a sintered bar obtained from powder of a complex oxide line superconductor and binder into a metal tube so as to form a complex bar and inserting it into a metal capsule to make a complex billet for hot still water extrusion. CONSTITUTION:A sintered bar 4 is obtained from the powder of complex oxide superconductor shown by Ln Ba2 Cu3 Ox(Ln expresses Y, Lu, Yb, Tm, Er, Ho, Dy and Se, and X shall be oxidation number decided by the manufacturing condition) and the binder, and the sintered bar 4 is inserted into a metal tube 5 to obtain a long complex bar. Next, plural complex bars are housed in a metal capsule 7 to obtain a complex billet, and this billet 9 is hot-still water- extruded at, for example, 800-950 deg.C, but since the temperature is high and it is covered with metal, extrusion at high surface reduction rate is possible. And the flow of a material becomes uniform, the complex ratio between the complex oxide and the metal is made uniform, and a long multi-core wire material 10 high in quality of the wire material can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複合酸化物系超電導多芯線材の製造方法に関
し、特に長尺で巻線等に加工しやすい多芯線材を得るの
に有用である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a composite oxide superconducting multicore wire, and is particularly useful for obtaining a long multicore wire that is easy to process into winding wires, etc. It is.

〔従来の技術〕[Conventional technology]

従来、合金系超電導線材が知られているが、近年、より
優れた超電導特性をもつ複合酸化物による超電導線材が
開発されている。
Conventionally, alloy-based superconducting wires have been known, but in recent years, superconducting wires made of composite oxides with even better superconducting properties have been developed.

複合酸化物による超電導線材の製造方法としては、例え
ば複合酸化物粉末をバインダーに混ぜてダイスを通して
押出して糸状に成形し、焼結する技術が知られている。
As a method for manufacturing a superconducting wire using a composite oxide, a technique is known in which, for example, composite oxide powder is mixed with a binder, extruded through a die, formed into a thread, and sintered.

また、複合酸化物粉末を金属管中に詰め込み、これをス
ウェージ、線引き。
Additionally, composite oxide powder is packed into a metal tube, which is then swaged and drawn.

圧延などによって線状に加工し、熱処理する技術が知ら
れている。
A technique is known in which the material is processed into a linear shape by rolling or the like and then heat treated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の複合酸化物系超電導線材は、いわば単芯線材であ
り、多芯線材ではない、しかし、線材を例えば巻線に加
工する場合に断線等を生じないためには、単芯の線材よ
りも多芯の線材とするのが好ましい。
The above-mentioned composite oxide superconducting wire is a single-core wire and not a multi-core wire.However, in order to avoid breakage when processing the wire into a winding wire, it is necessary to It is preferable to use a multicore wire.

しかるに、複合酸化物粉末を用いた多芯線材の製造方法
は従来知られていない。
However, a method for producing a multifilamentary wire using composite oxide powder has not been known so far.

したがって、本発明の目的とするところは、複合酸化物
粉末を用いて多芯の超電導線材を製造する方法を提供す
ることにある。
Therefore, an object of the present invention is to provide a method for manufacturing a multicore superconducting wire using composite oxide powder.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の複合酸化物系超電導多芯線材の製造方法は、複
合酸化物系超電導体の粉末をバインダーに混ぜて棒状に
押出し、焼結し、焼結棒を得る工程、上記焼結棒を金属
管内に挿入し、複合棒を得る工程、複数の上記複合棒を
金属カプセル内に収容し、複合ビレットを得る工程、お
よび、上記複合ビレットを800℃以上950℃以下の
温度で熱間静水圧押出しし、多芯線材を得る工程を具備
することを構成上の特徴とするものである。
The method for producing a composite oxide superconducting multicore wire of the present invention includes a step of mixing composite oxide superconductor powder with a binder, extruding it into a rod shape, and sintering it to obtain a sintered rod. A step of inserting the composite rod into a pipe to obtain a composite rod, a step of accommodating a plurality of the composite rods in a metal capsule to obtain a composite billet, and hot isostatic extrusion of the composite billet at a temperature of 800° C. or higher and 950° C. or lower. The structure is characterized in that it includes a step of obtaining a multifilamentary wire.

上記構成において、複合酸化物系超電導体としては、L
n Bi 2 Cu 30x  (LnはY、Lu。
In the above configuration, the composite oxide superconductor is L
n Bi 2 Cu 30x (Ln is Y, Lu.

Yb 、Tea +  Er 、Ho + Dy 、S
eを表す、Xは製造条件で決まる酸化数を表す、)を具
体例として挙げられる。
Yb, Tea + Er, Ho + Dy, S
(X represents the oxidation number determined by the manufacturing conditions) is given as a specific example.

バインダーとしては、熱可塑性樹脂と揮発性溶媒の混合
材(例えばエポキシ系樹脂とアルコールの混合液)を具
体例として挙げられる。
A specific example of the binder is a mixture of a thermoplastic resin and a volatile solvent (for example, a mixture of an epoxy resin and alcohol).

金属管としては、鋼管、 !fil系合金管(例えば銅
二・7ケル管やliI銀クラッド管)、銀管を用いるこ
とが出来る。
Steel pipes are the metal pipes! A fil-based alloy tube (for example, a copper 2.7 Kel tube or a LiI silver clad tube) or a silver tube can be used.

金属カプセルとしては、銅カプセル、銅系合金カプセル
、銀カプセルを用いることが出来る。
As the metal capsule, a copper capsule, a copper-based alloy capsule, or a silver capsule can be used.

(作用〕 本発明の製造方法では、複合酸化物系超電導体の粉末を
焼結棒にして金属管内に挿入し、複合棒を得ている。こ
こで、焼結棒は固体であるから、長尺に形成しても容易
に管内に挿入することが出来る。したがって、長尺の複
合棒を容易に得ることが出来る。なお、粉体のままでは
長尺の管に充填するのが困難であり、長尺の複合棒を得
にくい。
(Function) In the manufacturing method of the present invention, a composite oxide superconductor powder is made into a sintered rod and inserted into a metal tube to obtain a composite rod. Even if it is formed into a long shape, it can be easily inserted into a pipe. Therefore, a long composite rod can be easily obtained. However, it is difficult to fill a long pipe as it is in powder form. , it is difficult to obtain long composite rods.

次に、多数の複合棒を金属カプセル内に収容して複合ビ
レットを得、その複合ビレットを800℃〜950℃の
温度で熱間静水圧押出しするが、高温であり且つ金属被
覆しているから、高減面率の押出しが可能であり、所望
の線径の線材をワンパスで得ることが出来るようになる
Next, a large number of composite rods are housed in a metal capsule to obtain a composite billet, and the composite billet is hot isostatically extruded at a temperature of 800°C to 950°C. , it is possible to extrude with a high area reduction rate, and a wire rod with a desired wire diameter can be obtained in one pass.

そして、静水圧押出しであるために、材料の流れが均一
となり、均一な変形となる。この結果、複合酸化物と金
属の複合比を一様に出来るので、線材としての品質を高
めることが出来る。
Since it is hydrostatic extrusion, the flow of the material is uniform, resulting in uniform deformation. As a result, the composite ratio of the composite oxide and metal can be made uniform, so that the quality of the wire can be improved.

言うまでもなく、多芯線材であるから、加工性が向上す
る。
Needless to say, since it is a multi-filamentary wire, workability is improved.

〔実施例〕〔Example〕

以下、図面を参照し、本発明の実施例について説明する
。ここに第1図は複合酸化物系超電導体の粉末とバイン
ダーとを混合した状態を示す断面図、第2図は棒状に押
出しする状態を示す断面図、第3図は焼結棒と金属管の
斜視図、第4図は複合棒の斜視図、第5図は複合ビレッ
トの断面図、第6図は複合ビレットを熱間静水圧押出し
する状態の断面図である。なお、この実施例により本発
明が限定されるものではない。
Embodiments of the present invention will be described below with reference to the drawings. Here, Fig. 1 is a cross-sectional view showing a state in which composite oxide superconductor powder and a binder are mixed, Fig. 2 is a cross-sectional view showing a state in which it is extruded into a rod shape, and Fig. 3 is a sintered rod and a metal tube. 4 is a perspective view of a composite rod, FIG. 5 is a cross-sectional view of a composite billet, and FIG. 6 is a cross-sectional view of the composite billet in a state of hot isostatic extrusion. Note that the present invention is not limited to this example.

Y203 + Bl CO3,CuO粉末(−350m
esh)をY:B、:Cu原子比が1:2:3となるよ
うに配合し、900℃X12M熱処理(02雰囲気)を
行い、仮焼体を得た。この仮焼体がYBa 2 Cu 
z Ox III化物であることをX線回折により確認
した。
Y203 + Bl CO3, CuO powder (-350m
esh) were blended so that the Y:B, :Cu atomic ratio was 1:2:3, and heat treatment was performed at 900°C for 12M (02 atmosphere) to obtain a calcined body. This calcined body is YBa 2 Cu
It was confirmed by X-ray diffraction that it was a z Ox III compound.

この仮焼体をボールミルによって5hr粉砕し、粉末を
得た。
This calcined body was ground for 5 hours using a ball mill to obtain a powder.

コ(7) Y B @ 2 Cu 30 x粉末を、エ
ポキシ系樹脂とアルコールを混合した混合液に混ぜ合わ
せ、第1図に示す如き可塑物1とした。
The (7) Y B @ 2 Cu 30 x powder was mixed with a liquid mixture of an epoxy resin and alcohol to form a plastic material 1 as shown in FIG.

この可塑物1を、第2図に示すようにダイス2を通して
押出しし、直径4m−1長さ20CImの棒材3を得た
。この棒材3を950’CX1hrの加熱により脱バイ
ンダー処理し、第3図に示す如き焼結棒4を得た。
This plastic material 1 was extruded through a die 2 as shown in FIG. 2 to obtain a bar 3 having a diameter of 4 m and a length of 20 CI m. This bar 3 was subjected to a binder removal treatment by heating at 950'CX 1 hr to obtain a sintered bar 4 as shown in FIG.

他方、外径67龍、内径25鰭の銅円筒の内面に、外P
124.9 +n、内径20.0 mの銀円筒を挿入し
、両者を両端で真空中にて溶接し、次に、750℃で熱
間静水圧押出しし、外径l0m5.内径7龍の銅/銀複
合管を得た。さらに、冷間引き抜きを繰り返し、第3図
に示す如き六角形管5とした。
On the other hand, on the inner surface of a copper cylinder with an outer diameter of 67 fins and an inner diameter of 25 fins, an outer P
124.9 +n, a silver cylinder with an inner diameter of 20.0 m was inserted, and both ends were welded in a vacuum, and then hot isostatic extrusion was performed at 750°C, and an outer diameter of 10 m5. A copper/silver composite tube with an inner diameter of 7 mm was obtained. Furthermore, cold drawing was repeated to form a hexagonal tube 5 as shown in FIG.

この六角形管5の対辺寸法は4.7 mであり、内径は
4.2酊である。内面には銀がクラッドされている。
The hexagonal tube 5 has an opposite side dimension of 4.7 m and an inner diameter of 4.2 m. The inside is clad with silver.

次に、焼結棒4を六角形管5内に挿入し、第4図に示す
如き複合棒6を得た。Itさは20a1に揃えた。
Next, the sintered rod 4 was inserted into the hexagonal tube 5 to obtain a composite rod 6 as shown in FIG. The size was set to 20a1.

次に、第5図に示すように、外径67龍、内径60mの
銅カプセル7中に、多数の複合棒6.6、・・・を収容
し、銅プラグ8を取り付は真空中で熔接し、密封し、複
合ビレット9を得た。
Next, as shown in Fig. 5, a large number of composite rods 6, 6, ... are housed in a copper capsule 7 with an outer diameter of 67 mm and an inner diameter of 60 m, and the copper plugs 8 are attached in a vacuum. The composite billet 9 was obtained by welding and sealing.

なお、銅カブセルフの内部空洞を六角穴にしておけば、
六角形管6を稠密に挿入することが出来るが、円形穴と
し、′空隙に銅細線を詰めてもよい。
In addition, if the internal cavity of the copper turnip is made into a hexagonal hole,
Although the hexagonal tubes 6 can be inserted densely, it is also possible to make the holes circular and fill the gaps with thin copper wires.

上記複合ビレット9を、600,700,800.90
0,950.1000℃の各温度で、第6図に示すよう
に、ダイス角2α=60°、押出し速度5m/sec 
 (ステム速度)で熱間静水圧押出しし、外径IQms
の多芯線材10を得た。
600,700,800.90 of the above composite billet 9
At each temperature of 0,950.1000°C, as shown in Fig. 6, the die angle 2α = 60° and the extrusion speed 5 m/sec.
Hot isostatic extrusion at (stem speed), outer diameter IQms
A multifilamentary wire 10 was obtained.

その結果、600℃と700℃の温度のものでは外径が
不揃いで、V B、 2 Cu 30xと銅の複合比も
所望どうりではなかった。また、1000℃の温度のも
のはくびれが発生していた。一方、800℃、900℃
、950℃の温度のものは、外径が一定であり、YBa
 2Cu 30xと銅の複合比も所定の値であり、良好
な多芯線材であった。
As a result, the outer diameters of those heated to 600° C. and 700° C. were uneven, and the composite ratio of V B, 2 Cu 30x and copper was not as desired. In addition, constriction occurred in the case of the sample at a temperature of 1000°C. On the other hand, 800℃, 900℃
, the one with a temperature of 950°C has a constant outer diameter, and the YBa
The composite ratio of 2Cu 30x and copper was also at a predetermined value, and the wire was a good multicore wire.

なお、超電導特性は、何れの場合にも認められた。Note that superconducting properties were observed in all cases.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複合酸化物系超電導体の粉末をバイン
ダーに混ぜて棒状に押出し、焼結し、焼結棒を得る工程
、上記焼結棒を金属管内に挿入し、複合棒を得る工程、
複数の上記複合棒を金属カプセル内に収容し、複合ビレ
ットを得る工程、および、上記複合とレフトを800℃
以上950℃以下の温度で熱間静水圧押出しし、多芯線
材を得る工程を具備することを特徴とする複合酸化物系
超電導多芯線材の製造方法が提供され、これにより複合
酸化物系超電導体の粉末を用いた多芯線材を好適に得る
ことが出来る。特に長尺の多芯線材を得るのに有用であ
り、従来の鋼管に粉末を先議する方法では長さ3閣〜5
請が限界であるのに対し、長さ3(1+〜50−の長尺
の多芯線材を容易に得られるようになる。
According to the present invention, a step of mixing composite oxide superconductor powder with a binder, extruding it into a rod shape, and sintering it to obtain a sintered rod; and a step of inserting the sintered rod into a metal tube to obtain a composite rod. ,
A step of accommodating a plurality of the above composite rods in a metal capsule to obtain a composite billet, and heating the above composite and left at 800°C.
There is provided a method for producing a composite oxide superconducting multicore wire, which comprises a step of hot isostatic extrusion at a temperature of 950° C. or lower to obtain a multicore wire; It is possible to suitably obtain a multi-filamentary wire using the powder. It is particularly useful for obtaining long multicore wire rods, and the conventional method of applying powder to steel pipes has a length of 3 to 5 mm.
However, it becomes possible to easily obtain a long multifilamentary wire with a length of 3 (1+ to 50-).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複合酸化物系超電導体の粉末とバインダーとを
混合した状態を示す断面図、第2図は棒状に押出しする
状態を示す断面図、第3図は焼結棒と金属管の斜視図、
第4図は複合棒の斜視図、第5図は複合ビレットの断面
図、第6図は複合ビレットを熱間静水圧押出しする状態
の断面図である。 〔符号の説明〕 l・・・可塑物     2・・・ダイス3・・・棒材
      4・・・焼結棒5・・・六角形管    
6・・・複合棒7・・・銅カプセル   8・・・プラ
グ9・・・複合ビレット 10・・・多芯線材。
Figure 1 is a cross-sectional view showing the mixed oxide superconductor powder and binder, Figure 2 is a cross-sectional view showing how it is extruded into a rod, and Figure 3 is a perspective view of the sintered rod and metal tube. figure,
FIG. 4 is a perspective view of the composite rod, FIG. 5 is a cross-sectional view of the composite billet, and FIG. 6 is a cross-sectional view of the composite billet in a state of hot isostatic extrusion. [Explanation of symbols] l...Plastic material 2...Dice 3...Bar material 4...Sintered rod 5...Hexagonal tube
6... Composite rod 7... Copper capsule 8... Plug 9... Composite billet 10... Multicore wire.

Claims (1)

【特許請求の範囲】 1、(a)複合酸化物系超電導体の粉末をバインダーに
混ぜて棒状に押出し、焼結し、焼結棒を得る工程、 (b)上記焼結棒を金属管内に挿入し、複合棒を得る工
程、 (c)複数の上記複合棒を金属カプセル内に収容し、複
合ビレットを得る工程、 および、 (d)上記複合ビレットを800℃以上950℃以下の
温度で熱間静水圧押出しし、多芯線材を得る工程 を具備することを特徴とする複合酸化物系超電導多芯線
材の製造方法。
[Claims] 1. (a) A step of mixing composite oxide superconductor powder with a binder, extruding it into a rod shape, and sintering it to obtain a sintered rod; (b) Inserting the sintered rod into a metal tube. (c) accommodating the plurality of composite rods in a metal capsule to obtain a composite billet, and (d) heating the composite billet at a temperature of 800°C or higher and 950°C or lower. 1. A method for producing a composite oxide superconducting multifilamentary wire, comprising the step of isostatic extrusion to obtain a multifilamentary wire.
JP63016651A 1988-01-27 1988-01-27 Manufacture of complex oxide superconductive multi-core wire material Pending JPH01194213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63016651A JPH01194213A (en) 1988-01-27 1988-01-27 Manufacture of complex oxide superconductive multi-core wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63016651A JPH01194213A (en) 1988-01-27 1988-01-27 Manufacture of complex oxide superconductive multi-core wire material

Publications (1)

Publication Number Publication Date
JPH01194213A true JPH01194213A (en) 1989-08-04

Family

ID=11922247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63016651A Pending JPH01194213A (en) 1988-01-27 1988-01-27 Manufacture of complex oxide superconductive multi-core wire material

Country Status (1)

Country Link
JP (1) JPH01194213A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149712A (en) * 1989-11-02 1991-06-26 Hitachi Cable Ltd Manufacture of oxide superconductive wire material
WO1999028978A1 (en) * 1997-11-26 1999-06-10 Siemens Aktiengesellschaft Method for producing an elongated supraconductor
JP2003086031A (en) * 2001-09-07 2003-03-20 Tokuriki Honten Co Ltd Sheath material for superconductive material, manufacturing method therefor and superconductive wire material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647417A (en) * 1987-06-30 1989-01-11 Nippon Steel Corp Manufacture of superconductive wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647417A (en) * 1987-06-30 1989-01-11 Nippon Steel Corp Manufacture of superconductive wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149712A (en) * 1989-11-02 1991-06-26 Hitachi Cable Ltd Manufacture of oxide superconductive wire material
WO1999028978A1 (en) * 1997-11-26 1999-06-10 Siemens Aktiengesellschaft Method for producing an elongated supraconductor
JP2003086031A (en) * 2001-09-07 2003-03-20 Tokuriki Honten Co Ltd Sheath material for superconductive material, manufacturing method therefor and superconductive wire material

Similar Documents

Publication Publication Date Title
JPH01194213A (en) Manufacture of complex oxide superconductive multi-core wire material
JP3813260B2 (en) Oxide multi-core superconducting conductor and method for producing the same
JPH06325634A (en) Multi-core oxide superconducting wire
JPH0773757A (en) Manufacture of oxide superconductor
RU2101792C1 (en) Process of manufacture of ribbon superconductive cable
JPWO2005124793A1 (en) Superconducting wire manufacturing method
JPH05266726A (en) Oxide superconducting wire
JP2516642B2 (en) Method for producing multi-core oxide superconducting wire
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JP3033606B2 (en) Manufacturing method of oxide superconducting wire
JPH0850827A (en) Manufacture of superconductor
JPH0554731A (en) Multicore ceramics superconducting wire rod and manufacture thereof
JP2951423B2 (en) Manufacturing method of ceramic superconducting conductor
JPH0745136A (en) Oxide superconductor
JP3445308B2 (en) Oxide superconducting conductor for power transport and method for producing the same
JPH06325633A (en) Multi-core oxide superconducting wire
JP3042558B2 (en) Ceramic superconducting conductor
JP3186092B2 (en) Oxide superconducting wire
JPH04277410A (en) Tape-like multi-core ceramic superconductor and cable using it
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
RU2258970C2 (en) Method for producing long composite conductors around high-temperature superconducting compounds
JP3052309B2 (en) Method for producing multi-core oxide superconducting wire
JPH01169815A (en) Manufacture of superconductive cable with high critical current density
JPH04184819A (en) Manufacture of oxide superconducting wire