JP3033606B2 - Manufacturing method of oxide superconducting wire - Google Patents
Manufacturing method of oxide superconducting wireInfo
- Publication number
- JP3033606B2 JP3033606B2 JP3017871A JP1787191A JP3033606B2 JP 3033606 B2 JP3033606 B2 JP 3033606B2 JP 3017871 A JP3017871 A JP 3017871A JP 1787191 A JP1787191 A JP 1787191A JP 3033606 B2 JP3033606 B2 JP 3033606B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- oxide superconductor
- oxide
- raw material
- oxide superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Wire Processing (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、酸化物超電導線材の製
造方法に関する。The present invention relates to a method for producing an oxide superconducting wire.
【0002】[0002]
【従来の技術】従来の酸化物超電導線材の製造方法とし
ては、図4(a)に示すように、銀シース40内に酸化
物超電導体用原料41を充填し銀シース複合体を形成
し、この銀シース複合体に減面加工を施し、これに酸化
物超電導体用原料を酸化物超電導体になすための熱処理
を施す方法、図4(b)に示すように、酸化物超電導体
用原料41内に銀部材42を分散させたものを線状体4
3に成形し、これに酸化物超電導体用原料を酸化物超電
導体になすための熱処理を施す方法、並びに図4(c)
に示すように、銀の棒状体44に形成されている所定寸
法の複数の穴45内に酸化物超電導体用原料41を充填
し、棒状体44に減面加工を施し、これに酸化物超電導
体用原料を酸化物超電導体になすための熱処理を施す方
法等がある。2. Description of the Related Art As a conventional method for manufacturing an oxide superconducting wire, as shown in FIG. 4A, a silver sheath 40 is filled with an oxide superconductor material 41 to form a silver sheath composite. A method of subjecting the silver sheath composite to surface reduction processing and performing a heat treatment on the raw material for oxide superconductor to form an oxide superconductor, as shown in FIG. 4 (b). A dispersion of silver members 42 in a linear body 4
3 and heat-treating the raw material for an oxide superconductor into an oxide superconductor, and FIG.
As shown in FIG. 7, a plurality of holes 45 having a predetermined size formed in a silver rod 44 are filled with an oxide superconductor raw material 41, and the rod 44 is subjected to surface reduction processing. There is a method of performing heat treatment for forming a body material into an oxide superconductor.
【0003】[0003]
【発明が解決しようとする課題】上記のような銀と酸化
物超電導体用原料を複合した複合体は加工性が悪いの
で、減面加工等の工程において酸化物超電導体用原料部
分が分離してしまい、結果として酸化物超電導線材の断
線を引き起こす。このため、このような方法で製造した
酸化物超電導線材の臨界電流密度は単結晶体や一方向凝
固した材料からなる超電導線材の臨界電流密度より低く
なってしまう。また、これにより酸化物超電導線材の電
流容量、すなわち電流値も小さくなる。Since the above-mentioned composite of silver and a raw material for an oxide superconductor has poor workability, the raw material portion for the oxide superconductor is separated in a step such as surface reduction. As a result, disconnection of the oxide superconducting wire is caused. Therefore, the critical current density of the oxide superconducting wire manufactured by such a method is lower than the critical current density of a superconducting wire made of a single crystal or a unidirectionally solidified material. This also reduces the current capacity of the oxide superconducting wire, that is, the current value.
【0004】また、酸化物超電導体用原料は、焼結等の
加熱工程により酸化物超電導体になる際にガスを発生す
るので、線材化後の加熱処理工程において、いわゆる線
材の焼腫れが起こり酸化物超電導線材の線外径の変動が
起こる。従来、これを防止するために酸素透過性に優れ
たAg等の金属をあらかじめ酸化物超電導体用原料中に
分散させているが、単にこのような金属を酸化物超電導
体用原料に分散させるだけでは線材化後の加熱処理工程
における線材の焼腫れを充分に防止することができず、
しかも酸化物超電導線材の超電導特性を低下させてしま
う。[0004] Further, since the raw material for an oxide superconductor generates a gas when it becomes an oxide superconductor by a heating step such as sintering, so-called swelling of the wire occurs in the heat treatment step after the wire is formed. The outer diameter of the oxide superconducting wire fluctuates. Conventionally, in order to prevent this, a metal such as Ag having excellent oxygen permeability is dispersed in advance in the raw material for oxide superconductor, but simply dispersing such a metal in the raw material for oxide superconductor. Can not sufficiently prevent swelling of the wire in the heat treatment process after the wire is made,
In addition, the superconducting properties of the oxide superconducting wire are reduced.
【0005】本発明はかかる点に鑑みてなされたもので
あり、優れた超電導特性を発揮する酸化物超電導線材を
簡易に得ることができる酸化物超電導線材の製造方法を
提供することを目的とする。The present invention has been made in view of the above circumstances, and has as its object to provide a method of manufacturing an oxide superconducting wire capable of easily obtaining an oxide superconducting wire exhibiting excellent superconducting characteristics. .
【0006】[0006]
【課題を解決するための手段】本発明は、金属シース内
に酸化物超電導体原料を充填した金属シース複合体に減
面加工を施し、これに酸化物超電導体原料を酸化物超電
導体になすための熱処理を施す酸化物超電導線材の製造
方法において、前記金属シース複合体の内部に長手方向
に連続してAgまたはAg合金からなる線材を配置する
こと、および金属シース複合体を減面加工したものを金
属シースに被覆された状態のまま前記熱処理に供するこ
とを特徴とする酸化物超電導線材の製造方法を提供す
る。SUMMARY OF THE INVENTION The present invention is directed to a metal sheath
In the oxide subjected to a reduction process superconductor material into the metal sheath composite filled, a method of manufacturing an oxide superconducting wire subjected to a heat treatment for forming an oxide superconductor material in an oxide superconductor to the said metal A wire made of Ag or an Ag alloy is continuously arranged in the longitudinal direction inside the sheath composite , and the metal sheath composite obtained by reducing the surface of the metal is used as a metal.
Subject to the heat treatment while being covered with a metal sheath.
And a method for producing an oxide superconducting wire.
【0007】ここで、使用する酸化物超電導体用原料と
しては、Bi系、Y系、Tl系等のいずれも使用するこ
とができる。なお、必要に応じてこれらの酸化物超電導
体用原料にAg等の金属粉末を混合してもよい。Here, as a raw material for the oxide superconductor to be used, any of Bi-based, Y-based, Tl-based and the like can be used. In addition, you may mix metal powders, such as Ag, with these oxide superconductor raw materials as needed.
【0008】AgまたはAg合金からなる線材を酸化物
超電導体用原料からなる線状体の内部に長手方向に連続
して配置する方法としては、図1(a)に示すように、
酸化物超伝導体用原料10を圧縮成形等により線状体1
1に成形し、これに所望寸法の穴12を形成して、その
穴12の中にAgまたはAg合金の線材13を挿入し、
次いで線状体11を金属シース(図示せず)内に挿入す
る方法、図1(b)に示すように、金属シース14内に
酸化物超電導体用原料15を充填して金属シース複合体
16を成形し、しかる後酸化物超電導体用原料15部分
に所望寸法の穴12を形成して、その穴12の中にAg
またはAg合金線材13を挿入する方法等を用いること
が出来る。この場合、図1(c)に示すように、少なく
とも1本の線材13が酸化物超電導体用原料15部分に
長手方向に連続して配置されていれば、他の酸化物超電
導体用原料15部分に短いAgまたはAg合金17が分
散されていてもよい。金属シースの材料としては、酸素
透過性に優れたAgまたはAg合金を用いることができ
る。As a method of continuously arranging a wire made of Ag or an Ag alloy inside a linear body made of a raw material for an oxide superconductor in the longitudinal direction, as shown in FIG.
The raw material 10 for oxide superconductor is formed into a linear body 1 by compression molding or the like.
1, a hole 12 having a desired size is formed therein, and a wire 13 made of Ag or an Ag alloy is inserted into the hole 12 ;
Next, a method of inserting the linear body 11 into a metal sheath (not shown), as shown in FIG. 1B, filling a metal sheath 14 with a raw material 15 for an oxide superconductor. A metal sheath composite 16 is formed, and thereafter, a hole 12 having a desired size is formed in a portion of the raw material 15 for an oxide superconductor.
Alternatively, a method of inserting the Ag alloy wire 13 or the like can be used. In this case, as shown in FIG. 1C, if at least one wire 13 is continuously arranged in the longitudinal direction at the portion of the oxide superconductor material 15, the other oxide superconductor material 15 may be used. Short Ag or Ag alloy 17 may be dispersed in the portion. As a material of the metal sheath, Ag or an Ag alloy having excellent oxygen permeability can be used.
【0009】減面加工としては、線状体、テープ状体等
の形状に応じてそれぞれ押出、圧延、引抜、スウェージ
ング等の従来の加工手段が用いられる。したがって、減
面加工により、酸化物超電導線材の断面形状を円形、楕
円形、多角形、矩形、またはテープ形状等いずれの形状
にもすることができる。酸化物超電導体用原料を酸化物
超電導体となすための熱処理の温度は、酸化物用超電導
体用原料の種類に応じて選定する。As the surface reduction processing, conventional processing means such as extrusion, rolling, drawing, and swaging are used according to the shape of a linear body, a tape-like body, or the like. Therefore, the cross-sectional shape of the oxide superconducting wire can be made any shape such as a circle, an ellipse, a polygon, a rectangle, or a tape shape by the surface reduction processing. The heat treatment temperature for forming the oxide superconductor raw material into an oxide superconductor is selected according to the type of the oxide superconductor raw material.
【0010】AgまたはAg合金からなる線材の断面形
状は特に限定されず、図2(a)および図2(b)に示
すように酸化物超電導体用原料20内に配置されるAg
またはAg合金線材22が長手方向に連続したテープ形
状でもよい。The cross-sectional shape of the wire made of Ag or an Ag alloy is not particularly limited, and Ag shown in FIG. 2A and FIG.
Alternatively, the Ag alloy wire rod 22 may have a tape shape continuous in the longitudinal direction.
【0011】AgまたはAg合金からなる線材同士の間
隔(図3(a)におけるds)は、5〜500μmであ
ることが好ましい。これは、AgまたはAg合金線材同
士の間隔が5μm未満であると加工性の問題から超電導
体部がかれてしまい、線材同士の間隔が500μmを超
えると超電導相が配向せずJcが下がるからである。The distance between wires made of Ag or Ag alloy (ds in FIG. 3A) is preferably 5 to 500 μm. This is because if the distance between Ag or Ag alloy wires is less than 5 μm, the superconductor portion will be removed due to workability problems, and if the distance between wires exceeds 500 μm, the superconducting phase will not be oriented and Jc will decrease. is there.
【0012】[0012]
【作用】本発明の酸化物超電導線材の製造方法は、酸化
物超電導体用原料からなる線状体の内部に長手方向に連
続してAgまたはAg合金からなる線材を配置すること
を特徴としている。The method of manufacturing an oxide superconducting wire according to the present invention is characterized in that a wire made of Ag or an Ag alloy is continuously arranged in a longitudinal direction inside a linear body made of a raw material for an oxide superconductor. .
【0013】このため、AgまたはAg合金からなる線
材が酸化物超電導線状体全体の加工性を向上させ、これ
により減面加工中において酸化物超電導線材が断線する
ことを防止し、得られる線材に優れた超電導特性を発揮
させる。さらに内在させたAgまたはAg合金からなる
線材が、加熱処理の際の線状体の焼腫れを抑制する。し
たがって、線径の変動を引き起こすことなく目的とする
酸化物超電導線材を製造することができる。For this reason, the wire made of Ag or Ag alloy improves the workability of the entire oxide superconducting wire, thereby preventing the oxide superconducting wire from breaking during the surface-reduction processing, and obtaining the obtained wire. Demonstrates excellent superconducting properties. Furthermore, the wire made of Ag or Ag alloy contained therein suppresses swelling of the linear body during the heat treatment. Therefore, the target oxide superconducting wire can be manufactured without causing a change in the wire diameter.
【0014】また、AgまたはAg合金からなる線材が
酸化物超電導線材内の酸化物超電導体の配向を高めるの
で、得られる酸化物超電導線材の高磁界における超電導
特性の低下を抑えることができる。Further, since the wire made of Ag or Ag alloy enhances the orientation of the oxide superconductor in the oxide superconducting wire, the superconducting properties of the obtained oxide superconducting wire in a high magnetic field can be prevented from deteriorating.
【0015】[0015]
【実施例】以下、本発明の実施例について図面を参照し
て具体的に説明する。 実施例1〜6DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. Examples 1 to 6
【0016】まず、Bi:Sr:Ca:Cuの組成比が
2:2:1:2であるBi系酸化物超電導体用原料粉末
と、粒径が約5μmのAg粉末とをそれぞれ9:1の割
合で配合し、充分に混合した。この混合粉末を外径80
mm、長さ100mmの6つの円柱状体に充填し仮成形し、
これらの仮成形体に180MPaの静水圧圧縮処理を施
して6つの成形体を得た。First, a raw material powder for a Bi-based oxide superconductor having a composition ratio of Bi: Sr: Ca: Cu of 2: 2: 1: 2 and an Ag powder having a particle size of about 5 μm are respectively 9: 1. And mixed thoroughly. This mixed powder is made to have an outer diameter of 80.
mm, 6 columns of 100mm in length and filled and preformed,
These temporary compacts were subjected to a hydrostatic pressure compression treatment of 180 MPa to obtain six compacts.
【0017】次いで、これらの成形体に直径が11.4
mmの長手方向に連続した穴を相互の間隔が11.4mmと
なるようにして各々7つ形成した。この7つの穴にそれ
ぞれ直径11.3mmのAgからなる棒状体を挿入した。
これらの成形体を外径100mm、内径81mmのAgパイ
プの中にそれぞれ挿入して端部を封印した。これらに1
50MPaの静水圧圧縮処理を施して6個の押出用ビレ
ットを作製した。次いで、これらの押出用ビレットに常
温で静水圧圧縮処理を施して外径25mmφの6本の線状
体を作製した。Next, these molded articles have a diameter of 11.4.
Seven holes each having a length of 1 mm were formed so that the distance between them was 11.4 mm. A rod made of Ag having a diameter of 11.3 mm was inserted into each of the seven holes.
These molded articles were inserted into Ag pipes having an outer diameter of 100 mm and an inner diameter of 81 mm, respectively, and the ends were sealed. One of these
Six extruded billets were produced by applying a 50 MPa isostatic pressing treatment. Next, these extruded billets were subjected to isostatic pressing at room temperature to produce six linear bodies having an outer diameter of 25 mmφ.
【0018】その後、これらの線状体にそれぞれスェー
ジ中で減面加工を施し、図3(a)に示すような断面を
有する6本の線材30を得た。続けてこれらの線材をそ
れぞれ異なる溝を有する圧延機に供して図3(b)に示
す対辺Lがそれぞれ3mm(実施例1)、2mm(実施例
2)、1mm(実施例3)、0.5mm(実施例4)、0.
2mm(実施例5)、および0.1mm(実施例6)の矩形
線材32を作製した。Thereafter, each of these linear bodies was subjected to surface reduction processing in a swage to obtain six wires 30 having a cross section as shown in FIG. Subsequently, these wire rods are supplied to rolling mills having different grooves, and the opposite sides L shown in FIG. 3B are 3 mm (Example 1), 2 mm (Example 2), 1 mm (Example 3), 0. 5 mm (Example 4), 0.
Rectangular wires 32 of 2 mm (Example 5) and 0.1 mm (Example 6) were produced.
【0019】それぞれの矩形線材の100mmをサンプリ
ングし、それぞれの試料に900℃、10分間の加熱処
理、続けて840℃、50時間の加熱処理を施し、その
後冷却して実施例1〜6の酸化物超電導線を得た。 実施例7〜10A 100 mm sample of each rectangular wire was sampled, and each sample was subjected to a heat treatment at 900 ° C. for 10 minutes, followed by a heat treatment at 840 ° C. for 50 hours. A superconducting wire was obtained. Examples 7 to 10
【0020】実施例1と同様にして4つの成形体を得
た。次いで、これらの成形体に10mm×2mmの長手方向
に連続した穴を複数形成し、その中に10mm×2mmのA
gテープを挿入した。次いで、実施例1と同様にして、
図2(a)に示すような断面を有する4つの線材を得
た。続けてこれらの線材をそれぞれ異なる溝を有する圧
延機に供して対辺がそれぞれ1mm(実施例7)、0.5
mm(実施例8)、0.2mm(実施例9)、および0.1
mm(実施例10)の矩形線材を作製し、実施例1と同様
の加熱処理を施して実施例7〜10の酸化物超電導線を
得た。 比較例1〜3In the same manner as in Example 1, four molded articles were obtained. Next, a plurality of 10 mm × 2 mm continuous holes in the longitudinal direction were formed in these molded articles, and a 10 mm × 2 mm A was formed therein.
g Tape was inserted. Then, in the same manner as in Example 1,
Four wires having cross sections as shown in FIG. 2A were obtained. Subsequently, these wire rods were supplied to rolling mills having different grooves, and the opposite sides were each 1 mm (Example 7), 0.5 mm
mm (Example 8), 0.2 mm (Example 9), and 0.1
mm (Example 10) was prepared and subjected to the same heat treatment as in Example 1 to obtain oxide superconducting wires of Examples 7 to 10. Comparative Examples 1-3
【0021】Bi:Sr:Ca:Cuの組成比が2:
2:1:2であるBi系酸化物超電導体用原料粉末と、
粒径が約5μmのAg粉末とをそれぞれ8:2、6:4
の割合(すなわち、Ag粉末添加率が20%、40%)
で配合し充分に混合して得られた混合粉末(比較例1,
2)、Bi系酸化物超電導体用原料粉末のみ(比較例
3)を外径80mm、長さ100mmの3つのAgパイプに
それぞれ充填して3つの押出用ビレットを作製し、実施
例1と同様にして対辺が2mmの矩形線材を作製し、実施
例1と同様の加熱処理を施して比較例1〜3の酸化物超
電導線を得た。The composition ratio of Bi: Sr: Ca: Cu is 2:
2: 1: 2 Bi-based oxide superconductor raw material powder;
Ag powder having a particle size of about 5 μm was mixed with 8: 2 and 6: 4, respectively.
(Ie, Ag powder addition rate is 20%, 40%)
Mixed powder obtained by mixing and thoroughly mixing (Comparative Example 1,
2) Only the raw material powder for Bi-based oxide superconductor (Comparative Example 3) was filled into three Ag pipes each having an outer diameter of 80 mm and a length of 100 mm to produce three extruded billets. Then, a rectangular wire having a width of 2 mm was prepared and subjected to the same heat treatment as in Example 1 to obtain oxide superconducting wires of Comparative Examples 1 to 3.
【0022】実施例1〜10および比較例1〜3の酸化
物超電導線について77K、0Tおよび1Tにおける臨
界電流密度(Jc)および臨界電流(Ic)、加熱処理
前後の線径、並びに酸化物超電導体の配向率を調べた。
その結果を下記表1に示す。また、実施例1〜10の線
材についてはAg線材同士の間隔も調べ、その結果も下
記表1に併記した。With respect to the oxide superconducting wires of Examples 1 to 10 and Comparative Examples 1 to 3, critical current density (Jc) and critical current (Ic) at 77 K, 0 T and 1 T, wire diameter before and after heat treatment, and oxide superconductivity The orientation ratio of the body was examined.
The results are shown in Table 1 below. Further, for the wires of Examples 1 to 10, the distance between Ag wires was also examined, and the results are also shown in Table 1 below.
【0023】[0023]
【表1】 [Table 1]
【0024】表1から明らかなように、本発明の方法に
より得られた酸化物超電導線(実施例1〜10)は、優
れた超電導特性を発揮し、しかも加熱処理前後で線径の
変動がなかった。また、対辺が2mmを超えた場合および
0.1mm未満の場合では、臨界電流密度が低下する。酸
化物超電導体の配向率が大きいほど高磁界における臨界
電流密度の低下率が小さい。さらに、いずれの酸化物超
電導線もその内部で断線がないことが確認された。As is evident from Table 1, the oxide superconducting wires (Examples 1 to 10) obtained by the method of the present invention exhibit excellent superconducting properties, and the fluctuation of the wire diameter before and after the heat treatment. Did not. Further, when the opposite side exceeds 2 mm and when the opposite side is less than 0.1 mm, the critical current density decreases. As the orientation ratio of the oxide superconductor increases, the rate of decrease in critical current density in a high magnetic field decreases. Further, it was confirmed that there was no disconnection in any of the oxide superconducting wires.
【0025】これに対して従来の方法により得られた酸
化物超電導線(比較例1〜3)は、超電導特性が悪く、
加熱処理前後で線径の変動があり、しかも線材内部で酸
化物超電導体の断線があることが確認された。On the other hand, the oxide superconducting wires obtained by the conventional method (Comparative Examples 1 to 3) have poor superconducting characteristics,
It was confirmed that the wire diameter fluctuated before and after the heat treatment, and that the oxide superconductor was broken inside the wire.
【0026】[0026]
【発明の効果】以上説明した如く本発明の酸化物超電導
線材の製造方法は、高臨界電流密度および高磁界におけ
る高電流密度等の優れた超電導特性を発揮する酸化物超
電導線材を簡易に得ることができるAs described above, the method for producing an oxide superconducting wire according to the present invention can easily obtain an oxide superconducting wire exhibiting excellent superconducting properties such as a high critical current density and a high current density in a high magnetic field. Can
【図1】(a)〜(c)は本発明の方法の一実施例を示
す説明図。FIGS. 1A to 1C are explanatory diagrams showing an embodiment of the method of the present invention.
【図2】(a)、(b)は本発明の方法の他の実施例を
示す説明図。FIGS. 2A and 2B are explanatory views showing another embodiment of the method of the present invention.
【図3】(a)、(b)は本発明の方法における矩形線
材を説明するための図。FIGS. 3A and 3B are diagrams for explaining a rectangular wire in the method of the present invention.
【図4】(a)〜(c)は従来の酸化物超電導線材の製
造方法を説明するための図。FIGS. 4A to 4C are views for explaining a conventional method for manufacturing an oxide superconducting wire.
10,15,20…酸化物超電導体用原料、11…線状
体、12…穴、13,22…線材、14…金属シース、
16…金属シース複合体、17…Ag部材、30…線
材、32…矩形線材。10, 15, 20: raw material for oxide superconductor, 11: linear body, 12: hole, 13, 22: wire, 14: metal sheath,
16: metal sheath composite, 17: Ag member, 30: wire, 32: rectangular wire.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 13/00 565 H01B 12/00 - 12/16 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01B 13/00 565 H01B 12/00-12/16
Claims (1)
した金属シース複合体に減面加工を施し、これに酸化物
超電導体原料を酸化物超電導体になすための熱処理を施
す酸化物超電導線材の製造方法において、前記金属シー
ス複合体の内部に長手方向に連続してAgまたはAg合
金からなる線材を配置すること、および金属シース複合
体を減面加工したものを金属シースに被覆された状態の
まま前記熱処理に供することを特徴とする酸化物超電導
線材の製造方法。An oxide superconductor in which a metal sheath composite in which a metal sheath is filled with an oxide superconductor raw material is subjected to a surface reduction process, and a heat treatment for forming the oxide superconductor raw material into an oxide superconductor is performed. In the method for manufacturing a wire rod, a wire rod made of Ag or an Ag alloy is continuously arranged in the longitudinal direction inside the metal sheath composite, and a metal sheath composite obtained by reducing the surface of the metal sheath composite is covered with a metal sheath. A method for producing an oxide superconducting wire, which is subjected to the heat treatment as it is.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3017871A JP3033606B2 (en) | 1991-02-08 | 1991-02-08 | Manufacturing method of oxide superconducting wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3017871A JP3033606B2 (en) | 1991-02-08 | 1991-02-08 | Manufacturing method of oxide superconducting wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04255615A JPH04255615A (en) | 1992-09-10 |
JP3033606B2 true JP3033606B2 (en) | 2000-04-17 |
Family
ID=11955743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3017871A Expired - Lifetime JP3033606B2 (en) | 1991-02-08 | 1991-02-08 | Manufacturing method of oxide superconducting wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3033606B2 (en) |
-
1991
- 1991-02-08 JP JP3017871A patent/JP3033606B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04255615A (en) | 1992-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5100867A (en) | Process for manufacturing wire or strip from high temperature superconductors and the sheaths used for implementing the process | |
EP0045584B1 (en) | Methods of making multifilament superconductors | |
JP3033606B2 (en) | Manufacturing method of oxide superconducting wire | |
EP0435286B1 (en) | Method of manufacturing oxide superconducting wire | |
JPH01134822A (en) | Manufacture of oxide superconductive wire | |
JPH04337213A (en) | Manufacture of multi-layer ceramic superconductor | |
JP2951423B2 (en) | Manufacturing method of ceramic superconducting conductor | |
JPH02183918A (en) | Manufacture of oxide superconductor | |
JPH0850827A (en) | Manufacture of superconductor | |
JP3109077B2 (en) | Manufacturing method of oxide superconducting wire | |
JP2966134B2 (en) | Method for producing Bi-based oxide superconductor | |
JPH09295813A (en) | Oxide superconducting material, production of superconducting material and superconducting wire rod | |
JPH04209419A (en) | Manufacture of ceramic superconductor | |
JPH02278616A (en) | Manufacture of multicore-type oxide superconductor | |
JPH03149712A (en) | Manufacture of oxide superconductive wire material | |
JP3109076B2 (en) | Manufacturing method of oxide superconducting wire | |
JP2997808B2 (en) | Manufacturing method of oxide superconducting wire | |
JP3052309B2 (en) | Method for producing multi-core oxide superconducting wire | |
JP2507745B2 (en) | Method for producing single-core and multi-core oxide superconducting wires | |
JPH0554735A (en) | Manufacture of ceramic superconductor | |
JPH04118816A (en) | Manufacture of ceramic superconductor | |
JPH04292805A (en) | Manufacture of oxide superconductive wire | |
JPS63271820A (en) | Manufacture of ceramic superconductive wire | |
JPH02192619A (en) | Manufacture of oxide superconductor | |
JPS63225410A (en) | Compound superconductive wire and its manufacture |