JPH09295813A - Oxide superconducting material, production of superconducting material and superconducting wire rod - Google Patents

Oxide superconducting material, production of superconducting material and superconducting wire rod

Info

Publication number
JPH09295813A
JPH09295813A JP8108898A JP10889896A JPH09295813A JP H09295813 A JPH09295813 A JP H09295813A JP 8108898 A JP8108898 A JP 8108898A JP 10889896 A JP10889896 A JP 10889896A JP H09295813 A JPH09295813 A JP H09295813A
Authority
JP
Japan
Prior art keywords
oxide superconducting
phase
oxide
plate
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8108898A
Other languages
Japanese (ja)
Other versions
JP3612856B2 (en
Inventor
Junichi Sato
淳一 佐藤
Akira Nomoto
明 野本
Yoshihiro Sato
義博 佐藤
Kazumi Ohata
一実 大圃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP10889896A priority Critical patent/JP3612856B2/en
Publication of JPH09295813A publication Critical patent/JPH09295813A/en
Application granted granted Critical
Publication of JP3612856B2 publication Critical patent/JP3612856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To make an oxide superconducting material highly compact and improve critical electric current density by forming plate-like particles containing a specific oxide superconducting phase as a main phase in the course of processing for decreasing cross section. SOLUTION: Plate granular particles having Bi-based composition, preferably containing Bi, Sr, Ca and Cu and as necessary, Pb (e.g. particle having a composition of Bi1.8 Pb0.4 Sr2.0 Ca2.0 Cu3.0 OX), containing an oxide superconducting phase having >=3 ratio (a/t) of the thickness (t) to the length (a) as a main phase are at least once formed in the course of processing for decreasing cross section. A main phase of oxide superconducting material finally obtained is preferably Bi-2212 phase or Bi-2223 phase. The phase is obtained by carrying out heat treatment in which plate-like particles mainly containing oxide superconducting phase having >=3 ratio (a/t) are at least once formed under conditions at 685 deg.C for <=200hr in 3-99% O2 concentration every 3-99% processing degree.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物超電導材
料、この酸化物超電導材料の製造方法、及び超電導線材
に関するものである。
TECHNICAL FIELD The present invention relates to an oxide superconducting material, a method for producing the oxide superconducting material, and a superconducting wire.

【0002】[0002]

【従来の技術】酸化物超電導線材は、金属或いは合金パ
イプ(例えば、銀、金、銀−金合金、銀−マグネシウム
合金等)の中に酸化物前駆動体を充填し、押し出し、引
き抜き、スウェージング等の縮径加工及び圧延、プレス
等によるテープ状加工を施す工程、及び少なくとも1回
以上の超電導化熱処理を行って製作している。この他、
必要に応じて加工工程の途中にシース材の焼き鈍しを行
うための熱処理を施す場合もある。
2. Description of the Related Art Oxide superconducting wires are prepared by filling a metal or alloy pipe (for example, silver, gold, silver-gold alloy, silver-magnesium alloy, etc.) with an oxide pre-driving member, and extruding, drawing out, and swaging. It is manufactured by performing a diameter reduction process such as ging and rolling, a step of performing a tape-shaped process such as pressing, and at least one or more superconducting heat treatments. In addition,
If necessary, a heat treatment for annealing the sheath material may be performed during the processing step.

【0003】酸化物超電導線材の機械的性質や超電導特
性等を向上させるには、酸化物超電導部の高密度化が必
要である。しかし、上記したように粉体を原料にした場
合、相対密度100%の酸化物超電導部を得ることはで
きない。これは、バルク体の場合も同様である。そこ
で、酸化物超電導部の高密度化を図るため、(i)初期
充填時の粉末の高密度化する、(ii)加工工程において
高密度化する等の処理が行われている。つまり、(i)
は、粉末をタッピング法により充填したり、予めプレス
法により緻密化したペレット状の粉体を充填する、或い
は冷間静水圧プレス法によりロッド状の粉体を作製し、
これを充填する等の方法である。また、(ii)は、組み
込み時から最終状態まで総加工度を大きくする等の方法
である。
In order to improve the mechanical properties and superconducting properties of the oxide superconducting wire, it is necessary to increase the density of the oxide superconducting portion. However, as described above, when powder is used as a raw material, an oxide superconducting portion having a relative density of 100% cannot be obtained. This also applies to the bulk body. Therefore, in order to increase the density of the oxide superconducting portion, treatments such as (i) increasing the density of the powder at the time of initial filling and (ii) increasing the density in the processing step are performed. That is, (i)
Is to fill the powder by a tapping method, or a pellet-shaped powder that has been densified by a pressing method in advance, or to prepare a rod-shaped powder by a cold isostatic pressing method,
It is a method of filling this. In addition, (ii) is a method such as increasing the total workability from the time of assembling to the final state.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の酸化物
超電導材料によると、酸化物超電導線材を製作する場
合、最終的に得られる線材の酸化物超電導部の密度(相
対密度)は、初期の充填密度と総加工度のみで決定され
る。つまり、最終的に高い酸化物超電導部の密度を得る
ためには、予め初期充填密度を高める、総加工度を
大きくするという2つの条件を満足する必要があるが、
未だ有効な方法が見出されていない。
However, according to the conventional oxide superconducting material, when the oxide superconducting wire is manufactured, the density (relative density) of the oxide superconducting portion of the finally obtained wire is the initial value. It is determined only by the packing density and the total workability. That is, in order to finally obtain a high density of the oxide superconducting portion, it is necessary to satisfy the two conditions of increasing the initial packing density and increasing the total workability in advance.
No effective method has been found yet.

【0005】そこで本発明は、酸化物コア部の高密度化
を促進し、最終的に得られる酸化物超電導部の密度を高
めることのできる酸化物超電導材料、この酸化物超電導
材料の製造方法、及び超電導線材を提供することを目的
としている。
Therefore, the present invention is directed to an oxide superconducting material capable of promoting the densification of the oxide core portion and increasing the density of the finally obtained oxide superconducting portion, a method for producing the oxide superconducting material, It is also intended to provide a superconducting wire.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明は、酸化物前駆体粉体を用いて作られた
酸化物超電導材料において、前記酸化物前駆体粉体を加
工して作られ、その厚さtと長さaの比(a/t)が、
(a/t)≧3である酸化物超電導相を主体にした板粒
状の粒子である構成の酸化物超電導材料にしている。
In order to achieve the above-mentioned object, the present invention provides an oxide superconducting material produced by using an oxide precursor powder, wherein the oxide precursor powder is processed. The ratio of thickness t to length a (a / t) is
(A / t) ≧ 3 The oxide superconducting material is composed of plate-shaped particles mainly composed of an oxide superconducting phase.

【0007】この構成によれば、加工工程の途中で板状
形状の酸化物超電導相を主体にした粒子が形成され、線
材に用いた場合、或る程度連続した空隙部を形成するこ
とができる。この状態で縮管等の加工による塑性加工を
施せば空隙部を減少させることができ、相対密度が向上
する。この結果、最終的に酸化物超電導材料の高密度化
が図られ、臨界電流密度Jcを向上させることが可能に
なる。
According to this structure, particles mainly composed of a plate-shaped oxide superconducting phase are formed in the middle of the processing step, and when used as a wire rod, it is possible to form a continuous void portion to some extent. . If plastic working is performed in this state by processing such as a reduced tube, the voids can be reduced and the relative density is improved. As a result, the density of the oxide superconducting material is finally increased, and the critical current density Jc can be improved.

【0008】前記板粒状の粒子は、Bi、Sr、Ca、
Cuのほか、必要に応じてPbを含むBi系である。こ
の構成によれば、多結晶のままでも適切な熱処理を施す
ことにより、強い配向結晶組織が得られやすい。この結
果、臨海電流密度Jcを高めることが容易になる。
The plate-shaped particles are made of Bi, Sr, Ca,
In addition to Cu, it is a Bi system containing Pb as required. According to this structure, a strong oriented crystal structure can be easily obtained by performing an appropriate heat treatment even in the polycrystalline state. As a result, it becomes easy to increase the critical current density Jc.

【0009】また、上記の目的は、酸化物前駆体粉末を
用いた酸化物超電導材料の製造方法において、酸化物前
駆体粉体に熱処理を加えて固化し、前記固化した物体を
粉砕して厚さtと長さaの比(a/t)が(a/t)≧
3で、酸化物超電導相が主体の板粒状の粒子を形成し、
前記板粒状の粒子に塑性加工を加える製造方法によって
達成される。
Further, the above-mentioned object is, in a method for producing an oxide superconducting material using an oxide precursor powder, subjecting the oxide precursor powder to heat treatment for solidification, and crushing the solidified body to a thickness. The ratio of the length t to the length a (a / t) is (a / t) ≧
In 3, the plate-shaped particles mainly composed of the oxide superconducting phase are formed,
This is achieved by a manufacturing method in which the plate-shaped particles are subjected to plastic working.

【0010】この方法によれば、酸化物前駆体粉体を混
合して熱処理した後、粉砕等により板状形状の酸化物超
電導相を主体にした粒子を形成し、所定の厚みと長さの
板粒状の粒子を形成すれば、線材に用いた場合、或る程
度連続した空隙部を形成することができる。この状態で
縮管等の加工による塑性加工を施せば空隙部を減少させ
ることができ、相対密度が向上する。この結果、最終的
に酸化物超電導材料の高密度化が図られ、かつ臨界電流
密度Jcを向上させることが可能になる。
According to this method, after the oxide precursor powder is mixed and heat-treated, particles having a plate-shaped oxide superconducting phase as a main component are formed by pulverization or the like, and particles having a predetermined thickness and length are formed. By forming plate-like particles, it is possible to form voids that are continuous to some extent when used in a wire rod. If plastic working is performed in this state by processing such as a reduced tube, the voids can be reduced and the relative density is improved. As a result, the density of the oxide superconducting material can be finally increased, and the critical current density Jc can be improved.

【0011】前記板粒状の粒子は、Bi、Sr、Ca、
Cuの他、必要に応じてPbを含むBi系にすることが
できる。この組成によれば、多結晶のままでも適切な熱
処理を施すことにより、強い配向結晶組織が得られやす
い。この結果、臨海電流密度Jcを高めることが容易に
なる。
The plate-shaped particles include Bi, Sr, Ca,
In addition to Cu, a Bi system containing Pb can be used if necessary. According to this composition, a strong oriented crystal structure can be easily obtained by performing an appropriate heat treatment even in the polycrystalline state. As a result, it becomes easy to increase the critical current density Jc.

【0012】前記製造方法における前記酸化物超電導相
は、最終的に得られる相の主相がBi−2212相又は
Bi−2223相にすることができる。この組成は、特
に銀シース構造の酸化物超電導線材に適し、熱処理性及
び超電導相形成に優れ、線材の長尺化を図ることが容易
になる。前記製造方法における前記塑性加工は、温度6
80℃〜865℃、200時間以下の加工時間、3〜9
9%の酸素濃度の各条件下で行うことができる。
The main phase of the finally obtained phase of the oxide superconducting phase in the above-mentioned manufacturing method can be the Bi-2212 phase or the Bi-2223 phase. This composition is particularly suitable for an oxide superconducting wire having a silver sheath structure, is excellent in heat treatment and forming a superconducting phase, and facilitates lengthening of the wire. The plastic working in the manufacturing method is performed at a temperature of 6
80 ° C to 865 ° C, processing time of 200 hours or less, 3 to 9
It can be performed under each condition of 9% oxygen concentration.

【0013】この方法によれば、所望の線材に縮径、成
形加工が行え、熱処理によって超電導相を形成すること
ができる。前記製造方法における前記塑性加工は、3〜
99%の加工度で行う縮径加工又はテープ状の加工であ
る。この方法によれば、板粒状の粒子の周囲に生じた空
隙部の減少処理を効果的に行え、また、超電導線材の均
一性及び破断を防止しながらの線材化が可能である。こ
の結果、空隙部を減少させることができるために相対密
度が向上し、最終的に酸化物超電導材料の高密度化が図
られ、臨界電流密度Jcを向上させることが可能にな
る。
According to this method, a desired wire can be reduced in diameter and molded, and a superconducting phase can be formed by heat treatment. The plastic working in the manufacturing method is 3 to
It is a diameter-reducing process or a tape-like process performed at a processing rate of 99%. According to this method, it is possible to effectively reduce the voids generated around the plate-shaped particles, and it is possible to make the superconducting wire into a wire while preventing its uniformity and breakage. As a result, since the voids can be reduced, the relative density is improved, the density of the oxide superconducting material is finally increased, and the critical current density Jc can be improved.

【0014】また、上記の目的は、酸化物前駆体粉体を
用いて作られた酸化物超電導材料を用いて製作される酸
化物超電導線材において、前記酸化物前駆体粉体を加工
して作られ、その厚さtと長さaの比(a/t)が、
(a/t)≧3である酸化物超電導相を主体にした板粒
状の粒子と、前記板粒状の粒子を充填した後で必要に応
じて縮管加工が施される金属或いは合金製のシースとを
備えた構成の酸化物超電導線材によっても達成される。
Further, the above object is to produce an oxide superconducting wire produced by using an oxide superconducting material produced by using the oxide precursor powder, by processing the oxide precursor powder. And the ratio (a / t) between the thickness t and the length a is
Plate-like particles mainly composed of an oxide superconducting phase with (a / t) ≧ 3, and a sheath made of a metal or an alloy, which is subjected to a shrinking process as necessary after filling the plate-like particles. It is also achieved by an oxide superconducting wire having a structure including and.

【0015】この構成によれば、酸化物前駆体粉体を混
合して熱処理した後、粉砕等により板状形状の酸化物超
電導相を主体にした所定の厚みと長さの板粒状の粒子を
形成し、これを線材に用いれば、或る程度連続した空隙
部が形成され、この空隙部を塑性加工を施して減少させ
れば、相対密度が向上する。この結果、最終的に酸化物
超電導材料の高密度化が図られ、かつ臨界電流密度Jc
を向上させた酸化物超電導線材を得ることができる。
According to this structure, after the oxide precursor powder is mixed and heat-treated, plate-like particles having a predetermined thickness and length mainly composed of a plate-shaped oxide superconducting phase are crushed or the like. If formed and used for a wire rod, a certain degree of continuous void portion is formed, and if this void portion is subjected to plastic working to reduce it, the relative density is improved. As a result, the density of the oxide superconducting material is finally increased, and the critical current density Jc is increased.
It is possible to obtain an oxide superconducting wire having improved

【0016】前記酸化物超電導線材における前記板粒状
の粒子は、Bi、Sr、Ca、Cuの他、必要に応じて
Pbを含むBi系が望ましい。この組成によれば、多結
晶のままでも適切な熱処理を施すことにより、強い配向
結晶組織が得られやすい。この結果、臨海電流密度Jc
を高めることが容易になる。
The plate-shaped particles in the oxide superconducting wire are preferably Bi-based particles containing Bi, Sr, Ca, Cu and optionally Pb. According to this composition, a strong oriented crystal structure can be easily obtained by performing an appropriate heat treatment even in the polycrystalline state. As a result, the critical current density Jc
Will be easier to increase.

【0017】前記酸化物超電導線材における前記板粒状
の粒子は、Bi1.8 Sr2.0 Ca2. 0 Cu3.0 Oxの組
成を含む組成にすることができる。この組成によれば、
Bi系の中でも、特に臨海電流密度Jcを高めることが
できる。前記酸化物超電導線材における前記酸化物超電
導相は、最終的に得られる相の主相がBi−2212相
又はBi−2223相であることが望ましい。
[0017] The plate granular particles in the oxide superconducting wire can be the composition comprising the composition of Bi 1.8 Sr 2.0 Ca 2. 0 Cu 3.0 Ox. According to this composition
Among the Bi type, the critical current density Jc can be particularly increased. The main phase of the finally obtained phase of the oxide superconducting phase in the oxide superconducting wire is preferably Bi-2212 phase or Bi-2223 phase.

【0018】この組成によれば、特に銀シース構造の酸
化物超電導線材に適し、熱処理性及び超電導相形成に優
れ、線材の長尺化を図ることが容易になる。
According to this composition, it is particularly suitable for an oxide superconducting wire having a silver sheath structure, excellent in heat treatment and formation of a superconducting phase, and it becomes easy to increase the length of the wire.

【0019】[0019]

【発明の実施の形態】図1は本発明による酸化物超電導
材料の構成を示す断面図である。本発明では、図1に示
すように、銀、金等の金属(或いは合金)パイプ1内に
酸化物前駆動体粉体2を充填して複合ビレットを作成す
る。この後、押し出し、引き抜き、スウェージング等の
減面加工及び圧延、プレス等によるテープ状に加工し、
最終的に超電導化熱処理を行うまでの過程で少なくとも
1回板状形状の酸化物超電導相を主体とする粒子を形成
し、コア部内に或る程度連続した空隙を形成する。これ
に、縮径、圧延等の塑性加工を加えることにより、上記
空隙部が減少し、これによって相対密度を向上させるこ
とができる。この結果、最終的に得られる酸化物超電導
部の密度を高めることができる。
1 is a sectional view showing the structure of an oxide superconducting material according to the present invention. In the present invention, as shown in FIG. 1, a composite billet is prepared by filling a metal (or alloy) pipe 1 such as silver or gold with an oxide pre-driving body powder 2. After this, extrusion, drawing, surface reduction processing such as swaging and rolling, processing into a tape shape by pressing,
In the process until the superconducting heat treatment is finally performed, particles having a plate-shaped oxide superconducting phase as a main component are formed at least once, and voids that are continuous to some extent are formed in the core portion. By subjecting this to plastic working such as diameter reduction and rolling, the above-mentioned voids are reduced, whereby the relative density can be improved. As a result, the density of the finally obtained oxide superconducting portion can be increased.

【0020】[0020]

【実施例】【Example】

(実施例1)次に、本発明による酸化物超電導材料の実
施例について、図2を参照して説明する。まず、組成と
して、Bi(ビスマス)1.8 Pb(鉛)0.4 Sr(スト
ロンチウム)2.0 Ca(カルシウム)2.0 Cu(銅)
3.0 Oxが得られるように、Bi23 (三酸化ビスマ
ス)、PbO(酸化鉛)、SrCO3 (炭酸ストロンチ
ウム)、CuO(酸化第二銅)の粉末を混合した(工程
101)。この混合粉末を大気中で800℃×20時間
の熱処理(工程102)を行った後、乳鉢で粉砕し、平
均粒径5.5μmのBi−2212相主相の粉末を得た
(工程103)。ついで、この粉末を外径8mm、内径
6mm、長さ250mmのAg(銀)パイプ(シース)
1中にタッピング充填し(工程104)て予備成形体
(複合ビレット2)を形成した(工程105)。この段
階における粉末の密度を調べたところ、2.2g/cm
3 であった。
(Example 1) Next, an example of the oxide superconducting material according to the present invention will be described with reference to FIG. First, as a composition, Bi (bismuth) 1.8 Pb (lead) 0.4 Sr (strontium) 2.0 Ca (calcium) 2.0 Cu (copper)
Powders of Bi 2 O 3 (bismuth trioxide), PbO (lead oxide), SrCO 3 (strontium carbonate), and CuO (cupric oxide) were mixed so that 3.0 Ox was obtained (step 101). This mixed powder was heat-treated in the air at 800 ° C. for 20 hours (step 102) and then crushed in a mortar to obtain a Bi-2212 phase main phase powder having an average particle diameter of 5.5 μm (step 103). . Then, this powder was made into an Ag (silver) pipe (sheath) with an outer diameter of 8 mm, an inner diameter of 6 mm, and a length of 250 mm.
1 was tapped and filled (step 104) to form a preform (composite billet 2) (step 105). When the density of the powder at this stage was examined, it was 2.2 g / cm.
Was 3 .

【0021】ついで、このようにして得た複合ビレット
を用い、1つには外径2.0mmまで引き抜き加工して
従来例に相当する試料を得た(工程106)。また、
途中の外径5.65mm(間の加工度50.1%)、
4.0mm(間の加工度49.8%)、2.83mm
(間の加工度49.8%)の際に夫々大気中で820℃
×5時間の熱処理を施し、外径2.0mmまで引き抜き
加工して本発明にかかる試料を得た。更に、同様の外
径の際に、夫々大気中で845℃×5時間の熱処理を施
し(工程107)、外径2.0mmまで引き抜き加工
し、本発明にかかる試料を得た。
Next, using the composite billet thus obtained, one of them was drawn to an outer diameter of 2.0 mm to obtain a sample corresponding to the conventional example (step 106). Also,
Outer diameter 5.65 mm in the middle (working ratio 50.1%),
4.0 mm (working ratio 49.8%), 2.83 mm
At the time of (working ratio between 49.8%), it was 820 ° C in the atmosphere.
The sample according to the present invention was obtained by subjecting to a heat treatment of × 5 hours and subjecting to an outer diameter of 2.0 mm for drawing. Further, at the same outer diameter, heat treatment was performed in the atmosphere at 845 ° C. for 5 hours (step 107) and the outer diameter was drawn to 2.0 mm to obtain a sample according to the present invention.

【0022】この後、圧延加工と大気中における840
℃×50時間の熱処理を2回繰り返し、最終的に厚さ
0.16mm、幅3.8mmのテープ線材を夫々作製し
た(工程108)。以上の結果(各試料の相対密度と臨
界電流密度Jc〔A/cm2 〕の関係)を示したのが以
下に示す表1である。
After this, rolling and 840 in the atmosphere
The heat treatment at 50 ° C. for 50 hours was repeated twice, and finally tape wires each having a thickness of 0.16 mm and a width of 3.8 mm were produced (step 108). The above results (relationship between the relative density of each sample and the critical current density Jc [A / cm 2 ]) are shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から明らかなように、試料は相対密
度が低く、臨界電流密度Jcも低いのに対し、本発明に
よる試料,では試料に較べて相対密度及び臨界電
流密度Jcが高くなっている。特に、試料が優れてい
る。更に、1回目の840℃×50時間の熱処理の直前
のテープのAgを剥がしてコア部分のX線回折を行っ
た。その結果、試料ではBi−2212相が主体であ
り、Bi−2223相は認められなかった。試料では
Bi−2212相が主体ではあるものの、Bi−222
3相を14%含んでいた。因みに、試料はBi−22
12相が主体であったが、そのピーク強度は試料,
に比較して弱かった。なお、Bi−2223相は認めら
れなかった。
As is clear from Table 1, the sample has a low relative density and a low critical current density Jc, whereas the sample according to the present invention has a higher relative density and a critical current density Jc than the sample. . Especially, the sample is excellent. Further, Ag of the tape was peeled off immediately before the first heat treatment at 840 ° C. for 50 hours, and the core portion was subjected to X-ray diffraction. As a result, in the sample, the Bi-2212 phase was the main component, and the Bi-2223 phase was not observed. In the sample, although the Bi-2212 phase is the main component, Bi-222
It contained 14% of 3 phases. By the way, the sample is Bi-22
12 phases were the main, but the peak intensity was
Was weaker than In addition, Bi-2223 phase was not recognized.

【0025】また、外径4.0mmの状態で各試料の破
面を観察した(試料についてはそのまま、試料,
については熱処理後)。その結果、試料は厚さtと長
さaの比a/tが「2.1」の粒状結晶の集合体であっ
たのに対し、試料の比a/tは「8.3」、試料の
比a/tは「8.2」の板状結晶の集合体であり、更に
連続した空隙も認められた。
Further, the fracture surface of each sample was observed under the condition that the outer diameter was 4.0 mm.
About after heat treatment). As a result, the sample was an aggregate of granular crystals in which the ratio a / t of the thickness t and the length a was “2.1”, while the ratio a / t of the sample was “8.3”. The ratio of a / t was “8.2”, which was an aggregate of plate-like crystals, and continuous voids were also observed.

【0026】(実施例2)ここでは、Bi−2212相
が主相のBi1.84Pb0.34Sr1.0 Ca2.2 Cu 3.1
x組成の原料粉末を用意した。本粉末を冷間静水圧プレ
ス法により、直径3.8mm、長さ200mmのロッド
に成形した。このロッドを外径6mm、内径4mm、長
さ200mmのAg−13.5at%Au(金)パイプ
中に組み込み、外径1mmまで引き抜き加工を行った
後、厚さ0.5mmまで圧延し、1つはそのまま厚さ
0.2mmまで圧延し、更に、Ar−7%O2 雰囲気で
825℃×100時間の熱処理を施して従来例としての
試料を得た。
(Embodiment 2) Here, the Bi-2212 phase is used.
Is the main phase Bi1.84Pb0.34Sr1.0Ca2.2Cu 3.1O
Raw material powder of x composition was prepared. Apply this powder to a cold isostatic press.
Rod with a diameter of 3.8 mm and a length of 200 mm
Molded. This rod has an outer diameter of 6 mm, an inner diameter of 4 mm, and a length
200mm Ag-13.5at% Au (gold) pipe
It was assembled inside and drawn to an outer diameter of 1 mm
After that, rolled to a thickness of 0.5 mm, one is the same thickness
Rolled to 0.2 mm and further Ar-7% OTwoIn the atmosphere
After heat treatment at 825 ° C for 100 hours,
A sample was obtained.

【0027】また、厚さ0.5mmまで圧延したものを
780℃×1時間及びAr(アルゴン)−7%O2 雰囲
気中で熱処理し、厚さ0.2mmまで圧延した後、Ar
−7%O2 雰囲気中825℃×100時間の熱処理を施
して本発明にかかる試料を得た。更に、厚さ0.5m
mのものをAr−7%O2 雰囲気中で825℃×30分
の熱処理し、厚さ0.2mmまで圧延した後、Ar−7
%O2 雰囲気中で825℃×100時間の熱処理を施し
て比較例としての試料を得た。以上の結果、表2を得
ることができた(ただし、臨界電流密度Jcは、4.2
Kにおけるもの)。
Further, the material rolled to a thickness of 0.5 mm is heat-treated in an atmosphere of Ar (argon) -7% O 2 at 780 ° C. for 1 hour, rolled to a thickness of 0.2 mm, and then Ar.
A sample according to the present invention was obtained by performing a heat treatment at 825 ° C. for 100 hours in a −7% O 2 atmosphere. Furthermore, thickness 0.5m
m was heat-treated in an Ar-7% O 2 atmosphere at 825 ° C. for 30 minutes and rolled to a thickness of 0.2 mm, and then Ar-7.
A heat treatment was performed at 825 ° C. for 100 hours in a% O 2 atmosphere to obtain a sample as a comparative example. As a result of the above, Table 2 could be obtained (however, the critical current density Jc was 4.2).
In K).

【0028】[0028]

【表2】 [Table 2]

【0029】表2から明らかなように、従来例である試
料は相対密度が低く、臨界電流密度Jcも低いのに対
し、本発明による試料では試料に較べて相対密度及
び臨界電流密度Jcが高くなっている。また、比較例で
ある試料は、相対密度は高くなったが、臨界電流密度
Jcはそれほど大きくはならなかった。試料と試料
の結果の差は、試料は0.5mmにおける熱処理後に
試料内部にBi−2212相を主相にした比a/tが
「5」の板状結晶の集合体になるために空隙が生じ、そ
の後の0.2mmまでの圧延により、相対密度が向上し
たことにある。
As is clear from Table 2, the conventional sample has a low relative density and a low critical current density Jc, whereas the sample according to the present invention has a higher relative density and a critical current density Jc than the sample. Has become. Further, in the sample which is the comparative example, the relative density was high, but the critical current density Jc was not so large. The difference between the results of the sample and the sample is that after the heat treatment at 0.5 mm, the sample becomes an aggregate of plate crystals having a Bi-2212 phase as a main phase and a ratio a / t of “5”, and thus voids are formed. It occurs that the relative density is improved by the subsequent rolling to 0.2 mm.

【0030】一方、試料,の間の結果の差は、試料
では熱処理後に試料内部にBi−2223相を主相に
した比a/tが「8」の板状結晶の集合体になり、その
結果、空隙が生じ、その後の0.2mmまでの圧延によ
り、相対密度が向上したが、その後の熱処理時に破壊さ
れた粒界の結合が十分に行われないからである。 (実施例3)ここでは、Bi−2212相が主相のBi
2.0 Sr1.0 Ca1.0 Cu2.0 Ox組成の原料粉末を用
意した。本粉末を外径6mm、内径4mm、長さ200
mmのAgパイプ中にタッピング充填して予備成形体
(複合ビレット)を形成した。この複合ビレットを引き
抜き加工し、1つはそのまま外径1mmまで引き抜き加
工を行った。残る1つは外径3.5mm及び2mmのと
き、夫々850℃×1時間大気中で熱処理し、1mmま
で引き抜き加工を行った。その後、両者を夫々厚さ0.
2mm、幅3.2mmまで圧延加工して試料及び試料
を得た。両試料共に880℃×10分保持した後、5
℃/hの冷却速度で830℃まで徐々に冷却し、更に1
時間保持して炉冷した。以上の結果、表3を得ることが
できた(ただし、臨界電流密度Jcは、4.2Kにおけ
るもの)。
On the other hand, the difference in the results between the sample and the sample is that after the heat treatment, the sample becomes an aggregate of plate crystals having a Bi-2223 phase as a main phase and a ratio a / t of "8". As a result, voids are generated, and the relative density is improved by the subsequent rolling to 0.2 mm, but the grain boundaries destroyed during the subsequent heat treatment are not sufficiently bonded. (Example 3) Here, Bi-2212 phase is the main phase of Bi
A raw material powder having a composition of 2.0 Sr 1.0 Ca 1.0 Cu 2.0 Ox was prepared. This powder has an outer diameter of 6 mm, an inner diameter of 4 mm, and a length of 200.
A preform (composite billet) was formed by tapping filling into a Ag pipe of mm. This composite billet was drawn, and one was drawn as it was to an outer diameter of 1 mm. When the remaining ones had outer diameters of 3.5 mm and 2 mm, they were heat-treated in the atmosphere at 850 ° C. for 1 hour, respectively, and drawn to 1 mm. After that, both of them have a thickness of 0.
A sample and a sample were obtained by rolling to a width of 2 mm and a width of 3.2 mm. After holding both samples at 880 ℃ for 10 minutes, 5
Gradually cool to 830 ° C at a cooling rate of ° C / h, then 1
The furnace was cooled by holding for a certain time. As a result of the above, Table 3 could be obtained (however, the critical current density Jc is at 4.2K).

【0031】[0031]

【表3】 [Table 3]

【0032】表3から明らかなように、従来例である試
料は相対密度が低く、臨界電流密度Jcも低いのに対
し、本発明による試料では相対密度及び臨界電流密度
Jcが高くなっている。両者の差は、試料が途中の熱
処理後に試料内部にBi−2212相を主相とした比a
/tが板状結晶の集合体となり、その結果、空隙が生
じ、その後の加工によって相対密度が向上したことにあ
る。すなわち、緻密化が行われ、臨界電流密度Jcが向
上した結果による。
As is clear from Table 3, the sample of the conventional example has a low relative density and a low critical current density Jc, whereas the sample of the present invention has a high relative density and a high critical current density Jc. The difference between the two is that the ratio a with the Bi-2212 phase as the main phase inside the sample after heat treatment during the process
/ T is an aggregate of plate crystals, and as a result, voids are formed, and the relative density is improved by the subsequent processing. That is, it is because the densification is performed and the critical current density Jc is improved.

【0033】なお、本発明は、金属あるいは合金を複合
しないバルク体でも同様に適用可能である。また、上記
の実施の形態においては、最終的に得られる相の主相が
Bi−2212であるとしたが、Bi−2223であっ
てもよい。以上の実施結果のほか、本発明者らの検討に
よれば、a/tを≧3にすれば、期待した結果を得るこ
とができる。また、熱処理は、680℃〜865℃で1
分〜200時間、酸素濃度を3〜99%の条件のもとで
行えば期待した結果が得られた。更に、熱処理は、3〜
99.0%の加工度で行えば良好な結果が得られること
も確かめられた。
The present invention can be similarly applied to a bulk body which does not contain a metal or alloy. Further, in the above-described embodiment, the main phase of the finally obtained phases is Bi-2212, but Bi-2223 may be used. According to the study of the present inventors, in addition to the above-described results of implementation, expected results can be obtained by setting a / t to ≧ 3. The heat treatment is performed at 680 ° C to 865 ° C for 1 hour.
The expected result was obtained by performing the treatment under the condition of oxygen concentration of 3 to 99% for minutes to 200 hours. Furthermore, the heat treatment is 3 to
It was also confirmed that good results could be obtained if the workability was 99.0%.

【0034】[0034]

【発明の効果】以上より明らかなように、本発明の酸化
物超電導材料によれば、酸化物前駆体粉体を加工して、
厚さtと長さaの比(a/t)が≧3である酸化物超電
導相を主体にした板粒状の粒子を形成して酸化物超電導
材料にしたので、最終的に酸化物超電導材料の高密度化
が図られ、臨界電流密度Jcを向上させることが可能に
なる。
As is apparent from the above, according to the oxide superconducting material of the present invention, the oxide precursor powder is processed into
Since the plate-shaped particles mainly composed of the oxide superconducting phase having the ratio (a / t) of the thickness t and the length a of ≧ 3 were formed into the oxide superconducting material, the oxide superconducting material was finally obtained. The density can be increased, and the critical current density Jc can be improved.

【0035】また、本発明の酸化物超電導材料の製造方
法においては、酸化物前駆体粉体に熱処理を加えて固化
し、厚さtと長さaの比(a/t)が≧3である酸化物
超電導相を主体にした板粒状の粒子を形成して酸化物超
電導材料にしたので、最終的に酸化物超電導材料の高密
度化が図られ、かつ臨界電流密度Jcを向上させること
が可能になる。
Further, in the method for producing an oxide superconducting material of the present invention, the oxide precursor powder is heat-treated to be solidified, and the ratio of the thickness t to the length a (a / t) is ≧ 3. Since the plate-shaped particles mainly composed of a certain oxide superconducting phase are formed into the oxide superconducting material, the density of the oxide superconducting material can be finally increased and the critical current density Jc can be improved. It will be possible.

【0036】また、本発明の酸化物超電導線材において
は、酸化物前駆体粉体に熱処理を加えて固化し、厚さt
と長さaの比(a/t)が≧3である酸化物超電導相を
主体にした板粒状の粒子を形成して酸化物超電導材料に
し、これを金属或いは合金製のシースに充填した後、必
要に応じて縮管加工を施すことにより、最終的に酸化物
超電導材料の高密度化が図られ、かつ臨界電流密度Jc
を向上させた超電導線材を得ることができる。
Further, in the oxide superconducting wire of the present invention, the oxide precursor powder is heat-treated to be solidified to have a thickness t.
After forming plate-shaped particles mainly composed of an oxide superconducting phase having a ratio (a / t) of ≧ 3 and the length a into an oxide superconducting material and filling the sheath with a metal or alloy, Finally, if necessary, the oxide superconducting material can be densified by shrinking the tube, and the critical current density Jc can be increased.
It is possible to obtain a superconducting wire having improved

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による酸化物超電導材料の構成を示す断
面図である。
FIG. 1 is a sectional view showing a structure of an oxide superconducting material according to the present invention.

【図2】本発明による酸化物超電導材料の製造工程を示
す説明図である。
FIG. 2 is an explanatory view showing a manufacturing process of an oxide superconducting material according to the present invention.

【符号の説明】[Explanation of symbols]

1 パイプ 2 酸化物前駆体粉末 1 Pipe 2 Oxide precursor powder

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年4月25日[Submission date] April 25, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 酸化物超電導、この酸化物超電導
の製造方法及び超電導線材
[Title of Invention] oxide superconducting material, the oxide superconducting material <br/> preparation and superconducting wire

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は酸化物超電導材料、
この酸化物超電導材料の製造方法及び超電導線材に関す
るものである。
TECHNICAL FIELD The present invention relates to an oxide superconducting material,
The present invention relates to a method for producing the oxide superconducting material and a superconducting wire.

【0002】[0002]

【従来の技術】酸化物超伝導線材は、金属或いは合金パ
イプ(例えば、金、銀、銀−金合金、銀ーマグネシウム
合金等)の中に酸化物前駆体を充填し、押出し、引抜
き、スウェージング等の縮径加工及び圧延、プレス等に
よるテープ状加工を施す工程、及び少なくとも1回の超
電導化熱処理を行って製作されている。この他、必要に
応じて加工工程の途中にシース材の焼き鈍しを行うため
の熱処理を施す場合もある。
2. Description of the Related Art Oxide superconducting wires are prepared by filling a metal or alloy pipe (for example, gold, silver, silver-gold alloy, silver-magnesium alloy, etc.) with an oxide precursor, extruding, drawing, and swaging. It is manufactured by performing a diameter reduction process such as ging and rolling, a step of performing a tape-shaped process such as pressing, and at least one superconducting heat treatment. In addition, a heat treatment for annealing the sheath material may be performed during the processing step, if necessary.

【0003】酸化物超電導線材の機械的性質や超電導特
性等を向上させるには、酸化物超電導部の高密度化が必
要である。しかし、上記したように粉体を原料にした場
合、相対密度100%の酸化物超電導部を得ることはで
きない。これはバルク体の場合も同様である。
In order to improve the mechanical properties and superconducting properties of the oxide superconducting wire, it is necessary to increase the density of the oxide superconducting portion. However, as described above, when powder is used as a raw material, an oxide superconducting portion having a relative density of 100% cannot be obtained. This also applies to the bulk body.

【0004】そこで酸化物超電導部の高密度化を図るた
め、(i)初期充填時の粉末を高密度化する、(ii)加
工工程において高密度化する等の処理が行われている。
つまり(i)は、粉末をタッピング法により充填した
り、予めプレス法により緻密化したペレット状の粉体を
充填する、或いは冷間静水圧プレス法によりロッド状の
粉体を作製し、これを充填する等の方法である。また、
(ii)は、組込み時から最終状態まで総加工度を大きく
する等の方法である。
Therefore, in order to increase the density of the oxide superconducting portion, treatments such as (i) densifying the powder at the time of initial filling and (ii) densifying in the processing step are performed.
That is, in (i), the powder is filled by the tapping method, the pellet-shaped powder that has been densified in advance by the pressing method is filled, or the rod-shaped powder is manufactured by the cold isostatic pressing method. It is a method such as filling. Also,
(Ii) is a method such as increasing the total working ratio from the time of assembling to the final state.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の酸化物
超電導材料によると、酸化物超電導線材を製作する場
合、最終的に得られる線材の酸化物超電導部の密度(相
対密度)は、初期の充填密度と総加工度のみで決定され
る。つまり、最終的に高い酸化物超電導部の密度を得る
ためには、予め初期充填密度を高める、総加工度を
大きくする、という2つの条件を満足する必要がある
が、未だ有効な方法が見出されていない。
However, according to the conventional oxide superconducting material, when an oxide superconducting wire is manufactured, the density (relative density) of the oxide superconducting portion of the finally obtained wire is the initial value. It is determined only by the packing density and the total workability. In other words, in order to finally obtain the high density of the oxide superconducting portion, it is necessary to satisfy the two conditions of increasing the initial packing density and increasing the total working ratio in advance, but an effective method has not yet been found. It has not been issued.

【0006】そこで本発明は、酸化物コア部の高密度化
を促進し、最終的に得られる酸化物超電導部の密度を高
めることのできる酸化物超電導材料、この酸化物超電導
材料の製造方法及び超電導線材を提供することを目的と
している。
Therefore, the present invention is directed to an oxide superconducting material capable of promoting the densification of the oxide core portion and increasing the density of the finally obtained oxide superconducting portion, a method for producing the oxide superconducting material, and The purpose is to provide a superconducting wire.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、厚さtと長さaとの比(a/t)が
(a/t)≧3である酸化物超電導相を主体にした板粒
状の粒子である構成の酸化物超電導材料を断面積減少
(減面)加工の途中において形成させている。この構成
によれば、加工工程の途中で板粒状の酸化物超電導相を
主体にした粒子が形成され、例えば線材に用いた場合、
ある程度連続した空隙部を形成することができる。この
ような状態が得られることにより縮径等の加工による塑
性加工を施せば、空隙部を減少させることができ、相対
密度が向上する。この結果、最終的に酸化物超電導材料
の高密度化が図られ、臨界電流密度Jcを向上させるこ
とが可能になる。
In order to achieve the above object, the present invention provides an oxide superconducting material having a ratio (a / t) of thickness t to length a (a / t) ≧ 3. Cross- sectional area reduction of oxide superconducting material composed of plate-like particles mainly composed of phase
(Reduction of surface area) Formed during processing . According to this configuration, particles mainly composed of a plate-shaped oxide superconducting phase are formed in the middle of the processing step, and when used for a wire, for example ,
It is possible to form voids that are continuous to some extent. this
When such a state is obtained, if plastic working is performed by working such as reducing the diameter , the voids can be reduced and the relative density is improved. As a result, the density of the oxide superconducting material is finally increased, and the critical current density Jc can be improved.

【0008】前記板粒状の粒子は、Bi、Sr、Ca、
Cuのほか、必要に応じてPbを含むBi系である。こ
の構成によれば、多結晶のままでも適切な熱処理を施す
ことにより、強い配向組織が得られ易い。この結果、臨
界電流密度Jcを高めることが容易になる。
The plate-shaped particles are made of Bi, Sr, Ca,
In addition to Cu, it is a Bi system containing Pb as required. According to this structure, a strong orientation structure is easily obtained by performing an appropriate heat treatment even in the polycrystalline state. As a result, it becomes easy to increase the critical current density Jc.

【0009】また、上記の目的は、減面加工の途中にお
いて、熱処理を加えて厚さtと長さaの比(a/t)が
(a/t)≧3で、酸化物超電導相が主体の板粒状の粒
子を形成し、更に減面加工を加える製造方法によって達
成される。この方法によれば、減面加工の途中で熱処理
を行って板状形状の酸化物超電導相を主体にした粒子を
形成し、所定の厚みと長さの板粒状の粒子を形成すれ
ば、線材に用いた場合、ある程度連続した空隙部を形成
することができる。この状態で縮径等の加工による塑性
加工を施せば、空隙部を減少させることができ、相対密
度が向上する。この結果、最終的に酸化物超電導材料の
高密度化が図られ、かつ臨界電流密度を向上させること
が可能となる。
Further, the above-mentioned purpose is to be applied during the surface-reduction processing.
Then, heat treatment is applied to form plate-like particles mainly composed of an oxide superconducting phase when the ratio (a / t) of the thickness t and the length a is (a / t) ≧ 3, and further surface-reduction processing is performed. This is accomplished by an added manufacturing method. According to this method , heat treatment is performed in the middle of surface reduction processing.
By forming a particle mainly composed of a plate-shaped oxide superconducting phase and forming a plate-shaped particle having a predetermined thickness and length, when used for a wire, a continuous void is formed to some extent. be able to. If plastic working is performed in this state, such as by reducing the diameter, the voids can be reduced and the relative density is improved. As a result, the density of the oxide superconducting material can be finally increased, and the critical current density can be improved.

【0010】前記板粒状の粒子は、Bi、Sr、Ca、
Cuのほかに、必要に応じてPbを含むBi系にするこ
とができる。この組成によれば、多結晶のままでも適切
な熱処理を施すことにより、強い配向結晶組織が得られ
やすい。この結果、臨界電流密度を高めることが容易に
なる。
The plate-shaped particles include Bi, Sr, Ca,
In addition to Cu, a Bi-based material containing Pb may be added if necessary. According to this composition, a strong oriented crystal structure can be easily obtained by performing an appropriate heat treatment even in the polycrystalline state. As a result, it becomes easy to increase the critical current density.

【0011】前記製造方法における酸化物超電導材料
は、最終的に得られる相の主体がBi−2212相また
はBi−2223相にすることができる。この組成は、
特に銀シース構造の酸化物超電導線材に適し、熱処理性
及び超電導相形成に優れ、線材の長尺化を図ることが容
易になる。
In the oxide superconducting material in the above-mentioned manufacturing method, the main phase of the finally obtained phase can be Bi-2212 phase or Bi-2223 phase. This composition is
In particular, it is suitable for an oxide superconducting wire having a silver sheath structure, is excellent in heat treatment and forming a superconducting phase, and facilitates lengthening of the wire.

【0012】前記製造方法における前記熱処理は、温度
680〜865℃、200時間以下の時間、3〜99%
の酸素濃度の各条件下で行うことができる。この方法に
よれば、所望の線材に縮径、成形加工が行え、超電導化
熱処理によって超電導材料を形成することができる。
The heat treatment in the manufacturing method is performed at a temperature of 680 to 865 ° C. for a time of 200 hours or less, 3 to 99%.
Can be carried out under various conditions of oxygen concentration. According to this method, reduced diameter to a desired wire, molding is performed, it is possible to form the superconducting material by superconductive <br/> heat treatment.

【0013】前記製造方法における塑性加工は、3〜9
9%の加工度毎に行う縮径加工またはテープ状加工であ
る。この方法によれば、板粒状の粒子の周囲に生じた空
隙部の減少処理が効果的に行え、また、超電導線材の均
一性及び破断を防止しながらの線材化が可能である。こ
の結果、空隙間部を減少させることができるために相対
密度が向上し、最終的に酸化物超電導材料の高密度化が
図られ、臨界電流密度を向上させることが可能になる。
The plastic working in the above manufacturing method is 3-9.
It is a diameter-reducing process or a tape-like process that is performed every 9% processing degree . According to this method, it is possible to effectively reduce the voids generated around the plate-like particles, and it is possible to make the superconducting wire into a wire while preventing its uniformity and breakage. As a result, since the voids can be reduced, the relative density is improved, and the density of the oxide superconducting material is finally increased, so that the critical current density can be improved.

【0014】また、上記の目的は、酸化物超電導線材に
おいて、減面加工の途中でその厚さtと長さaの比(a
/t)が、(a/t)≧3である酸化物超電導相を主体
にした板粒状の粒子を形成し、必要に応じて縮径加工が
施される金属或いは合金製のシースを備えた構成の酸化
物超電導線材によって達成される。この構成によれば、
減面加工の途中で板状形状の酸化物超電導相を主体にし
た所定の厚さと長さの板粒状の粒子を形成し、これを線
材に用いれば、ある程度連続した空隙部が形成され、こ
の空隙部を塑性加工を施して減少させれば、相対密度が
向上する。この結果、最終的に酸化物超電導材料の高密
度化が図られ、かつ臨界電流密度を向上させた酸化物超
電導線材を得ることができる。
Further, the above object is to provide an oxide superconducting wire.
In the middle of the surface reduction processing, the ratio of the thickness t to the length a (a
/ T) is (a / t) ≧ 3, and forms a plate- shaped particle mainly composed of an oxide superconducting phase, and is provided with a sheath made of a metal or an alloy that is subjected to diameter reduction processing if necessary. This is achieved by the oxide superconducting wire having the constitution. According to this configuration,
Form plate-shaped particles of a predetermined thickness and length mainly composed of a plate-shaped oxide superconducting phase in the middle of surface-reduction processing, and if this is used for a wire, a continuous void is formed to some extent. If the voids are subjected to plastic working and reduced, the relative density is improved. As a result, finally, the density of the oxide superconducting material can be increased, and an oxide superconducting wire having an improved critical current density can be obtained.

【0015】前記酸化物超電導線材における板粒状の粒
子は、Bi、Sr、Ca、Cuのほか、必要に応じてP
bを含むBi系が望ましい。この組成によれば、多結晶
のままでも適切な熱処理を施すことにより、板粒状の粒
が得られやすい。この結果、臨界電流密度を高めるこ
とが容易になる。前記酸化物超電導線材における板粒状
の粒子は、必要に応じてPbを含む(Bi,Pb)2
2 Ca1 Cu2 Oxの、いわゆるBi−2212相
組成を含む組成にすることができ、この組成によれば、
Bi系の中でも特に臨界電流密度を高めることができ
る。
The plate-shaped particles in the oxide superconducting wire include Bi, Sr, Ca, Cu and, if necessary, P.
A Bi system containing b is desirable. According to this composition, even if it remains polycrystalline, it can be processed into a plate-like grain by performing an appropriate heat treatment.
Easy to get children . As a result, it becomes easy to increase the critical current density. The plate-shaped particles in the oxide superconducting wire include Pb (Bi, Pb) 2 S as necessary.
A composition including a so-called Bi-2212 phase composition of r 2 Ca 1 Cu 2 Ox can be used. According to this composition,
Among the Bi-based materials, the critical current density can be particularly increased.

【0016】前記酸化物超電導線材における酸化物超電
導材は、最終的に得られる相の主相がBi−2212相
又はBi−2223相であることが望ましく、この組成
によれば、特に銀シース構造の酸化物超電導線材に適
し、熱処理性及び超電導相形成に優れ、線材の長尺化を
図ることが容易になる。
Oxide superconductivity in the oxide superconducting wire
The conductive material preferably has a Bi-2212 phase or Bi-2223 phase as the main phase of the finally obtained phase. According to this composition, it is particularly suitable for an oxide superconducting wire having a silver sheath structure, and has a heat treatment property and The superconducting phase is excellently formed, and it becomes easy to increase the length of the wire.

【0017】[0017]

【発明の実施の形態】図1は本発明による酸化物超電導
材料の構成を示す断面図である。本発明では、図1に示
すように、銀、金等の金属(或いは合金)製パイプ1内
に酸化物超電導前駆体粉末2を充填して複合ビレットを
作成する。この後、押出し、引抜き、スウェージング等
の減面加工及び圧延、プレス等によるテープ状加工によ
り最終的に超電導化熱処理を行うまでの過程で少なくと
も1回、板状形状の酸化物超電導相を主体とする粒子を
形成し、コア部内にある程度連続した空隙を形成する。
これに縮径、圧延等の塑性加工を加えることにより、前
記空隙部が減少し、これによって相対密度を向上させる
ことができる。この結果、最終的に得られる酸化物超電
導部の密度を高めることができる。
1 is a sectional view showing the structure of an oxide superconducting material according to the present invention. In the present invention, as shown in FIG. 1, a composite billet is prepared by filling a metal (or alloy) pipe 1 such as silver or gold with an oxide superconducting precursor powder 2. After that, at least once in the process until the superconducting heat treatment is finally performed by surface-reduction processing such as extrusion, drawing, swaging, etc. and tape processing by rolling, etc., the plate-shaped oxide superconducting phase is mainly used. To form a continuous void in the core to some extent.
By subjecting this to plastic working such as diameter reduction and rolling, the voids are reduced, and thereby the relative density can be improved. As a result, the density of the finally obtained oxide superconducting portion can be increased.

【0018】[0018]

【実施例】次に、本発明による酸化物超電導材料の実施
例について説明する。
EXAMPLES Next, examples of the oxide superconducting material according to the present invention will be described.

【0019】(実施例1)まず、組成としてBi(ビス
マス)1.8 Pb(鉛)0.4 Sr(ストロンチウム)2.0
Ca(カルシウム)2.0 Cu(銅)3.0 Oxが得られる
ように、Bi2 3 、PbO、SrCO3 、CuOの各
粉末を混合した。この混合粉末を大気中で800℃×2
0時間の熱処理を行った後、乳鉢で粉砕し、平均粒径
5.5μmのBi−2212相主相の粉末を得た。次い
でこの粉末を外径8mm、内径6mm、長さ2500m
mのAg(銀)製パイプ(シース)1中にタッピング充
填して複合ビレット3本を形成した。この段階における
粉末の密度を調べたところ、2.2g/cm3 であっ
た。
Example 1 First, as a composition, Bi (bismuth) 1.8 Pb (lead) 0.4 Sr (strontium) 2.0 was used.
Powders of Bi 2 O 3 , PbO, SrCO 3 , and CuO were mixed so that Ca (calcium) 2.0 Cu (copper) 3.0 Ox was obtained. This mixed powder is 800 ℃ × 2 in the atmosphere
After heat treatment for 0 hours, the powder was ground in a mortar to obtain a Bi-2212 phase main phase powder having an average particle size of 5.5 μm. Next, this powder is 8 mm in outer diameter, 6 mm in inner diameter, and 2500 m in length.
m of Ag (silver) pipe (sheath) 1 was tapped and filled to form three composite billets. When the density of the powder at this stage was examined, it was 2.2 g / cm 3 .

【0020】次いで、このようにして得た複合ビレット
を用い、1つには外径2.0mmまで引抜加工して従来
例に相当する試料1を得た。また、途中の外径5.65
mm(間の加工度50.1%)、4.0mm(間の加工
度49.8%)、2.83mm(間の加工度49.8
%)の際に夫々大気中で820℃×5時間の熱処理を施
し、外径2.0mmまで引抜加工して本発明にかかる
料2を得た。更に、同様の外径の際に、夫々大気中で8
45℃×5時間の熱処理を施し、外径2.0mmまで引
抜加工し、本発明にかかる試料3を得た。
Then, using the composite billet thus obtained, one of them was drawn to an outer diameter of 2.0 mm to obtain a sample 1 corresponding to a conventional example. Also, the outside diameter of 5.65 on the way
mm (working ratio of 50.1%), 4.0 mm (working ratio of 49.8%), 2.83 mm (working ratio of 49.8)
%) Subjected to a heat treatment at each atmosphere 820 ° C. × 5 hours during, trial according to drawing process to the present invention to the outer diameter 2.0mm
I got the charge 2 . Furthermore, at the same outer diameter, the
Heat treatment was carried out at 45 ° C. for 5 hours, and the sample was drawn to an outer diameter of 2.0 mm to obtain Sample 3 according to the present invention.

【0021】この後、各試料1、2、3の線材につい
て、夫々圧延加工と大気中における840℃×50時間
の熱処理を2回繰返し、最終的に厚さ0.16mm、幅
3.8mmのBi−2223相のテープ線材を作成し、
前記試料1、2、3の順に試料4、5、6を得た。この
ようにして得られた試料1、2、3の相対密度と試料
4、5、6の臨界電流密度(Jc:A/cm2 )を表1
に示す
After this, the wire rods of the samples 1, 2 and 3 were
Then, the rolling process and the heat treatment at 840 ° C. for 50 hours in the atmosphere are each repeated twice, and finally a Bi-2223 phase tape wire having a thickness of 0.16 mm and a width of 3.8 mm is prepared.
Samples 4, 5 and 6 were obtained in the order of Samples 1, 2 and 3. this
Relative density and samples of samples 1, 2, and 3 obtained in this way
The critical current densities (Jc: A / cm 2 ) of 4, 5, and 6 are shown in Table 1.
Shown in

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、従来例は相対密
度が低く、臨海電流密度も低いのに対し、本発明による
実施例1−1、1−2は比較例に比べて相対密度及び臨
界電流密度が高くなっており、特に実施例1−1が優れ
ている。
As is clear from Table 1, the conventional example has a low relative density and a low critical current density.
Examples 1-1 and 1-2 have higher relative densities and critical current densities than the comparative examples , and particularly Example 1-1 is excellent.

【0024】更に、1回目の840℃×50時間の熱処
理の直前のテープ線材のAgシースを剥がしてコア部分
のX線回析を行った。その結果、試料1に基づくものは
Bi−2212相が主体であり、Bi−2223相は認
められなかった。試料3に基づくものはBi−2212
相が主題ではあるものの、Bi−2223相を14%含
んでいた。因みに試料1に基づくものはBi−2212
相が主体であったが、そのピーク強度は他の2者に比較
して弱かった。なお、Bi−2223相は認められなか
った。
Further, immediately before the first heat treatment at 840 ° C. for 50 hours, the Ag sheath of the tape wire was peeled off, and the X-ray diffraction of the core portion was performed. As a result, the sample based on Sample 1 was mainly composed of the Bi-2212 phase, and the Bi-2223 phase was not observed. Bi-2212 based on sample 3
Although the subject phase was, it contained 14% Bi-2223 phase. Incidentally, the one based on Sample 1 is Bi-2212.
Although the phase was the main component, its peak intensity was weaker than the other two . In addition, Bi-2223 phase was not recognized.

【0025】また、外径4.0mmの状態で各試料の破
面を観察した(試料1になるものについてはそのまま、
試料2、3になるものについては熱処理後)。その結
果、試料1になるものは厚さtと長さaの比a/tが
「2.1」の粒状結晶の集合体であったのに対し、試料
2になるもののa/tは「8.3」、試料3になるもの
のa/tは「8.2」の板状結晶の集合体であり、更に
連続した空隙も認められた。
Further, in the state of the outer diameter 4.0mm were observed fracture surface of each sample (as for those made in the sample 1,
Samples 2 and 3 were heat treated). As a result, while those made on the sample 1 is the ratio a / t of the thickness t and the length a was an aggregate of granular crystals of "2.1", the sample
A / t of 2 to become what is "8.3", a / t of <br/> made on the sample 3 is the aggregate of plate crystals of "8.2", also observed more continuous voids Was given.

【0026】(実施例2)ここでは、Bi−2212相
が主相のBi1.84Pb0.34Sr 1.9 Ca2.2 Cu3.1
x組成の原料粉末を用意した。本粉末を冷間静水圧プレ
ス法により直径3.8mm、長さ200mmのロッドに
成形した。このロッドを外径6mm、内径4mm、長さ
200mmのAgー13.5at%Au(金)製パイプ
中に組込んで複合ビレット3本を形成した。このように
して得た各複合ビレットを外径1mmまで引抜加工を行
った後、厚さ0.5mmまで圧延し、1つはそのまま厚
さ0.2mmまで圧延し、更に、Ar(アルゴン)−7
%O2 雰囲気中で825℃×100時間の超電導化熱処
理を施して従来例としての試料7を得た。
(Example 2) In this example, the Bi-2212 phase is the main phase of Bi 1.84 Pb 0.34 Sr 1.9 Ca 2.2 Cu 3.1 O.
Raw material powder of x composition was prepared. This powder was molded into a rod having a diameter of 3.8 mm and a length of 200 mm by the cold isostatic pressing method. This rod was incorporated into a pipe made of Ag-13.5 at% Au (gold) having an outer diameter of 6 mm, an inner diameter of 4 mm and a length of 200 mm to form three composite billets. in this way
Each composite billet obtained as described above was drawn to an outer diameter of 1 mm, and then rolled to a thickness of 0.5 mm, one of which was rolled to a thickness of 0.2 mm as it was, and further Ar (argon) -7.
Sample 7 as a conventional example was obtained by performing superconducting heat treatment at 825 ° C. for 100 hours in a% O 2 atmosphere.

【0027】また、厚さ0.5mmまで圧延したもの
1つを780℃×1時間及びAr−7%O2 雰囲気中で
熱処理し、厚さ0.2mmまで圧延した後、Ar−7%
2雰囲気中で825℃×100時間の超電導化熱処理
を施して本発明にかかる試料8を得た。更に、厚さ0.
5mmのものの残る1つをAr−7%O2 雰囲気中で8
25℃×30時間の熱処理し、厚さ0.2mmまで圧延
した後、Ar−7%O2 雰囲気中で825℃×100時
間の超電導化熱処理を施して比較例としての試料9を得
た。以上のようにして得られた各試料の相対密度と臨界
電流密度(4.2K)を測定した結果を表2に示す
[0027] In addition, of those that were rolled to a thickness of 0.5mm
One was heat-treated at 780 ° C. for 1 hour in an Ar-7% O 2 atmosphere, rolled to a thickness of 0.2 mm, and then Ar-7%.
Sample 8 according to the present invention was obtained by subjecting it to superconducting heat treatment at 825 ° C. for 100 hours in an O 2 atmosphere. Furthermore, the thickness is 0.
The remaining one of 5 mm is 8 in Ar-7% O 2 atmosphere.
After heat treatment at 25 ° C. for 30 hours and rolling to a thickness of 0.2 mm, superconducting heat treatment at 825 ° C. for 100 hours was performed in an Ar-7% O 2 atmosphere to obtain Sample 9 as a comparative example. Relative density and criticality of each sample obtained as above
The results of measuring the current density (4.2K) are shown in Table 2 .

【0028】[0028]

【表2】 [Table 2]

【0029】表2から明らかなように、従来例である
料7は相対密度が低く、臨界電流密度も低いのに対し、
本発明による試料8では、試料7に比べて相対密度及び
臨界電流密度が高くなっている。また、比較例である
料9は、相対密度は高くなったが、臨海電流密度はそれ
ほど高くならなかった。試料7と試料8の結果の差は、
試料8は0.5mmにおける熱処理後に試料内部にBi
−2212相を主相にした(a/t)の比が「5」の板
状結晶の集合体なるために空隙が生じ、その後の0.2
mmまでの圧延により相対密度が向上したことにある。
As is clear from Table 2, the test of the conventional example
Material 7 has a low relative density and a low critical current density,
The sample 8 according to the present invention has higher relative density and critical current density than the sample 7 . In addition, a trial that is a comparative example
Sample No. 9 had a higher relative density, but the seaside current density did not become so high. The difference between the results of Sample 7 and Sample 8 is
Sample 8 had Bi inside the sample after heat treatment at 0.5 mm.
-2212 phase as the main phase (a / t) ratio of "5" because it is an aggregate of plate-like crystals, resulting in voids, 0.2
The reason is that the relative density was improved by rolling to mm.

【0030】一方、試料8、9の間の結果の差は、試料
では熱処理後に試料内部がBi−2223相を主相に
したa/t比が「8」の板状結晶の集合体になり、その
結果、空隙が生じ、その後の0.2mmまでの圧延によ
り相対密度が向上したが、その後の超電導化熱処理時に
破壊された粒界の結合が十分に行われないからである。
[0030] On the other hand, the difference in the results between the sample 8 and 9, sample
In No. 9 , after heat treatment, the inside of the sample became an aggregate of plate crystals having a Bi-2223 phase as a main phase and an a / t ratio of “8”, and as a result, voids were formed, and then rolling to 0.2 mm was performed. This is because the relative density was improved, but the grain boundaries destroyed during the subsequent superconducting heat treatment were not sufficiently bonded.

【0031】(実施例3)ここでは、Bi−2212相
が主相のBi2.0 Sr 2.0 Ca1.0 Cu2.0 Ox組成の
原料粉末を用意した。本粉末を外径6mm、内径4m
m、長さ200mmのAg製パイプ中にタッピング充填
して複合ビレット2本を形成した。この複合ビレットを
引抜加工し、1つはそのまま外径1mmまで引抜加工を
行った。残る1つは外径3.5mm及び2mmのとき、
夫々850℃×1時間大気中で熱処理し、1mmまで引
抜加工を行った。その後、両者を夫々厚さ0.2mm、
幅3.2mmまで圧延して従来例としての試料10と本
発明にかかる試料11を得た。両試料を共に880℃×
10分保持した後、5℃/hの冷却速度で830℃まで
徐々に冷却し、更に1時間保持して炉冷し、Bi−22
12相が主相のテープ線材を作成した
(Example 3) Here, a raw material powder having a composition of Bi 2.0 Sr 2.0 Ca 1.0 Cu 2.0 Ox having a Bi-2212 phase as a main phase was prepared. This powder has an outer diameter of 6 mm and an inner diameter of 4 m
Two composite billets were formed by tapping filling an Ag pipe having a length of m and a length of 200 mm. This composite billet was drawn, and one was drawn as it was to an outer diameter of 1 mm. The remaining one is 3.5 mm and 2 mm outer diameter,
Each of them was heat-treated in the atmosphere at 850 ° C. for 1 hour and drawn to 1 mm. After that, both of them are 0.2mm thick,
Rolled to a width of 3.2 mm and sample 10 as a conventional example
Sample 11 according to the invention was obtained. Both samples are 880 ℃ ×
After holding 10 minutes, then gradually cooled to 830 ° C. at a cooling rate of 5 ° C. / h, and furnace cooling was further held for 1 hour, Bi-22
A tape wire having 12 phases as a main phase was prepared .

【0032】以上のようにして得た両試料の相対密度と
臨界電流密度(42.K)を測定した結果を表3に示
The relative densities of both samples obtained as described above
The results of measuring the critical current density (42.K) are shown in Table 3.
You

【0033】[0033]

【表3】 [Table 3]

【0034】表3から明らかなように、従来例である
料10は相対密度が低く、臨界電流密度も低いのに対
し、本発明による試料11では相対密度及び臨界電流密
度が高くなっている。両者の差は、試料11が途中の熱
処理後に試料内部にBi−2212相を主相とした板状
結晶の集合体となり、その結果、空隙が生じ、その後の
加工によって相対密度が向上したことにある。すなわ
ち、緻密化が行われ、臨界電流密度Jcが向上した結果
による。
As is clear from Table 3, the test of the conventional example
The material 10 has low relative density and low critical current density, whereas the sample 11 according to the present invention has high relative density and critical current density. The difference between the two is that the sample 11 became an aggregate of plate-like crystals having the Bi-2212 phase as the main phase inside the sample after the heat treatment during the process, and as a result, voids were generated and the relative density was improved by the subsequent processing. is there. That is, it is because the densification is performed and the critical current density Jc is improved.

【0035】なお、本発明は、金属或いは合金を複合し
ないバルク体でも同様に適用可能である。また、上記の
実施の形態においては、最終的に得られる相の主相がB
i−2212であっても、Bi−2223であってもよ
い。
The present invention can be similarly applied to a bulk body which does not contain a metal or an alloy. Further, in the above embodiment, the main phase of the finally obtained phases is B.
even in the i-2212, it may be a Bi-2223.

【0036】以上の実施結果のほか、発明者らの検討に
よれば、a/tを≧3にすれば、期待した結果を得るこ
とができる。また、熱処理は680℃〜865℃で1分
〜200時間、酸素濃度を3〜99%の条件のもとで行
えば期待した結果が得られた。更に、熱処理は、3〜9
9%の加工度毎に行えば良好な結果が得られることも確
かめられた。
In addition to the results of the above implementation, according to the study by the inventors, if a / t is ≧ 3, the expected result can be obtained. Further, the heat treatment was performed at 680 ° C. to 865 ° C. for 1 minute to 200 hours, and the expected result was obtained if the oxygen concentration was 3 to 99%. Further, the heat treatment is 3 to 9
It was also confirmed that good results could be obtained at every processing rate of 9%.

【0037】[0037]

【発明の効果】以上より明らかなように、本発明によれ
ば、減面加工の途中に主に熱処理により厚さtと長さa
の比(a/t)が≧3である酸化物超電導相を主体にし
た板粒状の粒子を形成し、連続した空隙部を形成するの
で、その後の塑性加工により空隙部が減少し、最終的に
酸化物超電導材料の高密度化が図られ、臨界電流密度を
向上させることが可能になる。
As is apparent from the above , according to the present invention.
For example, the thickness t and the length a are mainly due to heat treatment during the surface reduction processing.
The plate-shaped particles mainly composed of the oxide superconducting phase having a ratio (a / t) of ≧ 3 are formed to form continuous voids.
Then, the void portion is reduced by the subsequent plastic working, the density of the oxide superconducting material is finally increased, and the critical current density can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による酸化物超電導材料の断面図であ
る。
FIG. 1 is a cross-sectional view of an oxide superconducting material according to the present invention.

【符号の説明】 1 パイプ 2 酸化物前駆体粉末[Explanation of symbols] 1 pipe 2 oxide precursor powder

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】削除[Correction method] Deleted

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 C04B 35/00 ZAAK (72)発明者 大圃 一実 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H01B 13/00 565 C04B 35/00 ZAAK (72) Inventor Kazumi Ohta Kidayo, Tsuchiura, Ibaraki Prefecture 3550, Machi, Hitachi Cable Ltd. Advanced Research Center

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】酸化物前駆体粉体を用いて作られた酸化物
超電導材料において、 前記酸化物前駆体粉体を加工して作られ、その厚さtと
長さaの比(a/t)が、(a/t)≧3である酸化物
超電導相を主体にした板粒状の粒子からなることを特徴
とする酸化物超電導材料。
1. An oxide superconducting material produced by using an oxide precursor powder, which is produced by processing the oxide precursor powder, and has a ratio (a / An oxide superconducting material, wherein t) is composed of plate-shaped particles mainly composed of an oxide superconducting phase in which (a / t) ≧ 3.
【請求項2】前記板粒状の粒子は、Bi、Sr、Ca、
Cuのほか、必要に応じてPbを含むBi系であること
を特徴とする請求項1記載の酸化物超電導材料。
2. The plate-shaped particles are made of Bi, Sr, Ca,
The oxide superconducting material according to claim 1, wherein the oxide superconducting material is a Bi-based material containing Pb in addition to Cu, if necessary.
【請求項3】酸化物前駆体粉体を用いた酸化物超電導材
料の製造方法において、 酸化物前駆体粉体に熱処理を加えて固化し、 前記固化した物体を粉砕して厚さtと長さaの比(a/
t)が(a/t)≧3で、酸化物超電導相が主体の板粒
状の粒子を形成し、 前記板粒状の粒子に塑性加工を加えることを特徴とする
酸化物超電導材料の製造方法。
3. A method for manufacturing an oxide superconducting material using an oxide precursor powder, wherein the oxide precursor powder is heat-treated to be solidified, and the solidified body is crushed to obtain a thickness t and a length. Ratio of a (a /
t) is (a / t) ≧ 3, plate-like particles mainly composed of an oxide superconducting phase are formed, and plastic working is applied to the plate-like particles, and a method for producing an oxide superconducting material.
【請求項4】前記板粒状の粒子は、Bi、Sr、Ca、
Cuの他、必要に応じてPbを含むBi系であることを
特徴とする請求項3記載の酸化物超電導材料の製造方
法。
4. The plate-shaped particles include Bi, Sr, Ca,
The method for producing an oxide superconducting material according to claim 3, wherein the oxide is a Bi-based material containing Pb as required in addition to Cu.
【請求項5】前記酸化物超電導相は、最終的に得られる
相の主相がBi−2212相又はBi−2223相であ
ることを特徴とする請求項3又は4記載の酸化物超電導
材料の製造方法。
5. The oxide superconducting phase according to claim 3, wherein a main phase of a finally obtained phase is a Bi-2212 phase or a Bi-2223 phase. Production method.
【請求項6】前記塑性加工は、温度680℃〜865
℃、200時間以下の加工時間、3〜99%の酸素濃度
の各条件下で行うことを特徴とする請求項3記載の酸化
物超電導材料の製造方法。
6. The plastic working is performed at a temperature of 680 ° C. to 865.
The method for producing an oxide superconducting material according to claim 3, wherein the method is carried out under each condition of a processing time of 200 ° C. or less and an oxygen concentration of 3 to 99%.
【請求項7】前記塑性加工は、3〜99%の加工度で行
う縮径加工又はテープ状の加工であることを特徴とする
請求項3記載の酸化物超電導材料の製造方法。
7. The method for producing an oxide superconducting material according to claim 3, wherein the plastic working is a diameter reducing work or a tape-like working performed at a working degree of 3 to 99%.
【請求項8】酸化物前駆体粉体を用いて作られた酸化物
超電導材料を用いて製作される酸化物超電導線材におい
て、 前記酸化物前駆体粉体を加工して作られ、その厚さtと
長さaの比(a/t)が、(a/t)≧3である酸化物
超電導相を主体にした板粒状の粒子と、 前記板粒状の粒子を充填した後で必要に応じて縮管加工
が施される金属或いは合金製のシースとを備えたことを
特徴とする酸化物超電導線材。
8. An oxide superconducting wire produced by using an oxide superconducting material produced by using an oxide precursor powder, wherein the oxide precursor powder is processed to obtain a thickness thereof. Plate-like particles mainly composed of an oxide superconducting phase in which the ratio (a / t) of t to the length a is (a / t) ≧ 3, and if necessary after filling the plate-like particles. An oxide superconducting wire, comprising: a sheath made of a metal or an alloy that is subjected to a shrinkage process.
【請求項9】前記板粒状の粒子は、Bi、Sr、Ca、
Cuの他、必要に応じてPbを含むBi系であることを
特徴とする請求項8記載の酸化物超電導線材。
9. The plate-shaped particles include Bi, Sr, Ca,
9. The oxide superconducting wire according to claim 8, wherein the oxide superconducting wire is Cu-based and optionally contains Pb in addition to Cu.
【請求項10】前記板粒状の粒子は、Bi1.8 Sr2.0
Ca2.0 Cu3.0 Oxの組成を含むことを特徴とする請
求項8記載の酸化物超電導線材。
10. The plate-shaped particles are made of Bi 1.8 Sr 2.0.
The oxide superconducting wire according to claim 8, comprising a composition of Ca 2.0 Cu 3.0 Ox.
【請求項11】前記酸化物超電導相は、最終的に得られ
る相の主相がBi−2212相又はBi−2223相で
あることを特徴とする請求項8記載の酸化物超電導線
材。
11. The oxide superconducting wire according to claim 8, wherein a main phase of a finally obtained phase of the oxide superconducting phase is a Bi-2212 phase or a Bi-2223 phase.
JP10889896A 1996-04-30 1996-04-30 Manufacturing method of oxide superconductor Expired - Fee Related JP3612856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10889896A JP3612856B2 (en) 1996-04-30 1996-04-30 Manufacturing method of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10889896A JP3612856B2 (en) 1996-04-30 1996-04-30 Manufacturing method of oxide superconductor

Publications (2)

Publication Number Publication Date
JPH09295813A true JPH09295813A (en) 1997-11-18
JP3612856B2 JP3612856B2 (en) 2005-01-19

Family

ID=14496424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10889896A Expired - Fee Related JP3612856B2 (en) 1996-04-30 1996-04-30 Manufacturing method of oxide superconductor

Country Status (1)

Country Link
JP (1) JP3612856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208322A (en) * 2001-01-10 2002-07-26 Dowa Mining Co Ltd Oxide superconducting synthetic powder and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208322A (en) * 2001-01-10 2002-07-26 Dowa Mining Co Ltd Oxide superconducting synthetic powder and its manufacturing method
JP4617493B2 (en) * 2001-01-10 2011-01-26 Dowaエレクトロニクス株式会社 Oxide superconducting synthetic powder and manufacturing method thereof

Also Published As

Publication number Publication date
JP3612856B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
CA2063281C (en) Method of preparing oxide superconducting wire
EP0311337B1 (en) Method of producing a superconductive oxide conductor and a superconductive oxide conductor produced by the method
JPH04237910A (en) Manufacture of bismuth oxide superconducting wire rod
EP0397943B1 (en) Method of producing a superconductive oxide cable and wire
JPH09295813A (en) Oxide superconducting material, production of superconducting material and superconducting wire rod
US5429791A (en) Silver-high temperature superconductor composite material manufactured based on powder method, and manufacturing method therefor
JP3848449B2 (en) Manufacturing method of oxide superconducting wire
JP3033606B2 (en) Manufacturing method of oxide superconducting wire
JP2517597B2 (en) Manufacturing method of oxide superconducting wire
JPH0554735A (en) Manufacture of ceramic superconductor
JP3048404B2 (en) Method for producing Bi-based oxide superconducting wire
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JP3109076B2 (en) Manufacturing method of oxide superconducting wire
JP2595309B2 (en) Manufacturing method of oxide superconducting wire
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JP3062557B2 (en) Method for producing bismuth-based oxide superconductor
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
JPH03122918A (en) Manufacture of ceramics superconductive conductor
JPH04292816A (en) Manufacture of bismuth-based oxide superconductive wire
JPH0644841A (en) Manufacture of oxide superconducting wire rod
JP2004296253A (en) Manufacturing method of bismuth based oxide superconducting wire rod
JPH02263606A (en) Manufacture of oxide superconductor
JPH02229753A (en) Preparation of ductile composite containing superconductive ceramic oxide
JPH04317415A (en) Production of bi-based oxide superconductor
JPS63225410A (en) Compound superconductive wire and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees