JPH03122918A - Manufacture of ceramics superconductive conductor - Google Patents

Manufacture of ceramics superconductive conductor

Info

Publication number
JPH03122918A
JPH03122918A JP1261090A JP26109089A JPH03122918A JP H03122918 A JPH03122918 A JP H03122918A JP 1261090 A JP1261090 A JP 1261090A JP 26109089 A JP26109089 A JP 26109089A JP H03122918 A JPH03122918 A JP H03122918A
Authority
JP
Japan
Prior art keywords
ceramic superconductor
ceramic
superconductor
temperature
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1261090A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Naoki Uno
直樹 宇野
Kenji Enomoto
憲嗣 榎本
Shoji Shiga
志賀 章二
Chikuyuki Hara
原 築志
Hideo Ishii
英雄 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1261090A priority Critical patent/JPH03122918A/en
Publication of JPH03122918A publication Critical patent/JPH03122918A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve density, crystallization orientation and Jc by performing intermediate annealing treatment above a temperature where a ceramics superconductor or its precursor at least partly melts and at a temperature under a melting point of a composite material, and performing rolling process once or more. CONSTITUTION:After a composite material of a ceramics superconductor 2 or its precursor and a metal material 1 is given extending processing into a wire rod of a desired shape, this wire rod is given with heat treatment to manufacture a ceramics superconductive conductor. At this time, intermediate annealing treatment is performed at above a temperature where the ceramics superconductor 2 or its precursor at least partly melts and at a temperature under a melting point of the composite material, followed by performing once or more of rolling process. A ceramics superconductive conductor having no void 3 but dense and rich in c-axis orientation as well as excellent in a superconductive characteristic such as critical current density (Jc) can be therefore obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、送配電線、電カケープル、機器リード線、マ
グネットワイヤ、磁気シールド体等に適用されるセラミ
ックス超電導々体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic superconductor that is applied to power transmission and distribution lines, power cables, equipment lead wires, magnet wires, magnetic shields, and the like.

〔従来の技術とその課題〕[Conventional technology and its issues]

近年液体窒素温度で超電導を示すLnBa、Cuxo?
−x  (Lnは希土類元素x<1)、Bi、Sr、C
aCutOm、(B jl−xPb、)xsrtcal
Cusp、、、(x<1)、Tj!2BalCaCuz
Oe、TlzBazCatCu20+o等のセラミック
ス超電導体が見出され、マグネットコイル等への応用が
盛んに検討されている。
In recent years, LnBa and Cuxo? exhibit superconductivity at liquid nitrogen temperatures.
-x (Ln is a rare earth element x<1), Bi, Sr, C
aCutOm, (B jl-xPb,)xsrtcal
Cusp, , (x<1), Tj! 2BalCaCuz
Ceramic superconductors such as Oe and TlzBazCatCu20+o have been discovered, and their application to magnet coils and the like is being actively studied.

ところで上記のセラミックス超電導体は脆い為、これを
線材等に加工するにはセラミックス超電導粉体を金属製
チューブに入れて伸延加工する方法によりなされており
、得られた線材は加熱処理して、上記粉体を固相反応せ
しめてセラミックス超電導々体に製造される。
By the way, since the ceramic superconductor mentioned above is brittle, it can be processed into a wire etc. by putting ceramic superconducting powder into a metal tube and stretching it. Ceramic superconductors are produced by subjecting powder to a solid phase reaction.

しかしながら前記の如きセラミックス超電導々体は金属
層を介して加工がなされる為、内部のセラミックス超電
導体の密度が低く、又結晶の配向性もランダムで、従っ
て高い臨界電流密度(J、)をもつものが得られないと
いう問題があった。
However, since the ceramic superconductor described above is processed through a metal layer, the density of the internal ceramic superconductor is low, and the crystal orientation is random, so it has a high critical current density (J,). There was a problem of not being able to get things.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる状況に鑑みなされたもので、その目的と
するところは密度並びに結晶配向性が高く、Jcに優れ
たセラミックス超電導々体を製造し得る方法を提供する
ことにある。
The present invention was made in view of this situation, and its purpose is to provide a method for producing a ceramic superconductor having high density and crystal orientation, and excellent Jc.

即ち本発明は、セラミックス超電導体又はその前駆物質
と金属材料との複合体を伸延加工して所望形状の線材に
加工したのち、当該線材を加熱処理してセラミックス超
電導々体を製造する方法においてセラミックス超電導体
又はその前駆物質が少なくとも部分溶融する温度以上で
複合材料の融点以下の温度で中間焼鈍処理し、次いで圧
延加工を施す工程を1回以上繰返し施すことを特徴とす
るものである。
That is, the present invention provides a method for producing a ceramic superconductor by stretching a composite of a ceramic superconductor or its precursor and a metal material into a wire rod of a desired shape, and then heat-treating the wire rod. It is characterized by performing an intermediate annealing treatment at a temperature higher than the temperature at which the superconductor or its precursor is at least partially melted and lower than the melting point of the composite material, and then subjected to rolling processing, which is repeated one or more times.

本発明方法において、セラミックス超電導体に前記した
ような種々系のセラミックス超電導体が広く適用される
に加えて上記セラミックス超電導体の前駆物質であるセ
ラミックス超電導体となし得る原料物質からセラミック
ス超電導体に合成されるまでの中間体、例えばセラミッ
クス超電導体構成元素の混合体又は共沈混合物又は酸素
欠損型複合酸化物又は上記構成元素の合金等が使用可能
で、これらの前駆物質は酸素含有雰囲気中で加熱処理す
ることにより固相反応によりセラミックス超電導体に反
応するものである。
In the method of the present invention, various types of ceramic superconductors as described above are widely applied to the ceramic superconductor, and in addition, the ceramic superconductor is synthesized from a raw material that can be used as a ceramic superconductor, which is a precursor of the ceramic superconductor. Intermediates such as mixtures or co-precipitated mixtures of ceramic superconductor constituent elements, oxygen-deficient composite oxides, or alloys of the above constituent elements can be used, and these precursors are heated in an oxygen-containing atmosphere. When treated, it reacts with the ceramic superconductor through a solid phase reaction.

又上記セラミックス超電導体及びその前駆物質(以下セ
ラミックス超電導体物質と略記)と複合する金属材料に
はセラミックス超電導体物質と非反応性の金属であれば
任意の金属が用いられるが、特にはAgを用いるのが好
ましく、その理由はAgは酸素透過性が良好なので加熱
処理工程においてセラミックス超電導体層への酸素の供
給が十分になされて高いJ、が得られる為であり、又A
gは熱伝導性が高いので耐クエンチ性に優れ使用時の通
電量を高めることができる為である。又Agの他に酸素
透過性及び熱伝導性に優れるものであれば、Ag−1r
、Ag−Pd、Ag−Au等のAg合金も好適である。
Further, as the metal material to be composited with the ceramic superconductor and its precursor (hereinafter abbreviated as ceramic superconductor material), any metal can be used as long as it is non-reactive with the ceramic superconductor material, but in particular, Ag can be used. It is preferable to use Ag, because Ag has good oxygen permeability, so oxygen can be sufficiently supplied to the ceramic superconductor layer in the heat treatment process, and a high J can be obtained.
This is because g has high thermal conductivity, so it has excellent quench resistance and can increase the amount of current applied during use. In addition to Ag, if it has excellent oxygen permeability and thermal conductivity, Ag-1r
, Ag alloys such as Ag-Pd and Ag-Au are also suitable.

本発明方法において、セラミックス超電導体物質と金属
材料とを複合する方法としては金属製容器にセラミック
ス超電導体物質の粉体又は溶融体を充填又は注入凝固す
る方法、又はセラミックス超電導体物質及び金属材料の
それぞれの板状体を積層する方法等任意の方法が適用さ
れる。
In the method of the present invention, the method of combining the ceramic superconductor material and the metal material includes a method of filling or injecting and solidifying a powder or melt of the ceramic superconductor material into a metal container, or a method of combining the ceramic superconductor material and the metal material. Any method can be applied, such as a method of laminating the respective plate-like bodies.

又上記複合体を伸延加工する方法には、圧延加工法を適
用するが、これは圧延加工法は、電流の流れ易い結晶の
す、c軸を含む面が通電方向に平行に、つまりC軸が通
電方向と垂直となる結晶配向(以下C軸配向と称す)が
得易い為である。
In addition, a rolling method is applied to the method of elongating the above-mentioned composite, and this rolling method is performed so that the plane containing the c-axis is parallel to the direction of current flow, that is, the C-axis This is because it is easy to obtain a crystal orientation (hereinafter referred to as C-axis orientation) in which C-axis is perpendicular to the current direction.

尚、セラミックス超電導体と金属材料とからなる複合体
のサイズが大きい場合等は、圧延加工に先立って押出し
、スェージング、引抜き等の加工を施しても差支えない
In addition, when the size of the composite consisting of a ceramic superconductor and a metal material is large, there is no problem in performing processes such as extrusion, swaging, and drawing prior to rolling.

本発明方法において圧延加工材の加熱処理は、上記圧延
加工材を酸素含有雰囲気中にてセラミックス超電導体物
質が少なくとも部分溶融する温度以上の温度、即ちBi
系超超電導体は870°C程度以上、Y系では、980
℃程度以上の温度に加熱してなされるもので、セラミッ
クス超電導体物質は、セラミックス超電導体に反応する
とともに、部分溶融してボイド等の欠陥が消滅し密度が
向上し、更に酸素の補給、結晶構造の調整がなされる。
In the method of the present invention, the heat treatment of the rolled material is carried out at a temperature higher than the temperature at which the ceramic superconductor material at least partially melts in an oxygen-containing atmosphere, that is, Bi
For Y-based superconductors, the temperature is about 870°C or higher, and for Y-based superconductors, the temperature is 980°C.
Ceramic superconductor material reacts with the ceramic superconductor and partially melts, eliminating defects such as voids and improving density, as well as oxygen replenishment and crystallization. Structural adjustments are made.

尚、上記加熱処理はセラミックス超電導体物質に複合す
る金属材料の融点未満の温度にて施すことは言うまでも
ない。
It goes without saying that the above heat treatment is performed at a temperature below the melting point of the metal material to be composited with the ceramic superconductor substance.

而して得られるセラミックス超電導々体は、第1図にそ
の断面図を例示した如(、金属マトリックス1中にセラ
ミックス超電導体層2を1本配置した単芯セラミックス
超電44体であるが、本発明方法は、第2図に示したよ
うな上記単芯セラミックス超電44体を更に複数本束ね
て金属製チューブに装入し、これを圧延加工した金属マ
トリックス1中に複数のセラミックス超電導体層2を配
置した多芯セラミックス超電44体の製造にも適用され
るものである。
The ceramic superconductor thus obtained is as shown in the cross-sectional view in FIG. In the method of the present invention, a plurality of 44 single-core ceramic superconductors as shown in FIG. The present invention is also applied to the production of 44 multi-core ceramic superelectric bodies in which the layer 2 is arranged.

以下に本発明方法の中間焼鈍、圧延加工、加熱処理の各
々の工程におけるセラミックス超電導体物質層の結晶t
II織の変化過程を図を参照して具体的に説明する。
The crystal t of the ceramic superconductor material layer in each step of intermediate annealing, rolling, and heat treatment of the method of the present invention will be explained below.
The change process of the II weave will be specifically explained with reference to the drawings.

第3図イ〜ハは、圧延加工材の中間焼鈍後の組織、同図
口は上記中間焼鈍材を再度圧延加工した組織、同図ハは
上記圧延加工材を加熱処理した組織を示すそれぞれ側断
面図である。
Figures 3A to 3C show the structure after intermediate annealing of the rolled material, the opening in the figure shows the structure obtained by rolling the intermediately annealed material again, and C shows the structure after heat treatment of the rolled material. FIG.

圧延加工材の中間焼鈍後の組織では、セラミックス超T
l導体層2が部分溶融した為にボイド3は、低減し、粒
界に散在する程度存在する(図イ)、この中間焼鈍材を
圧延加工すると結晶のC軸配向が進み、又ボイド3は、
長手方向に伸びる結晶粒界に微細に分散する(図口)、
次に上記圧延加工材を加熱処理すると結晶粒界の再配列
に伴ってボイドは粒界内に吸収されて消滅し、又結晶の
C軸配向は部分溶融により更に進む(図ハ)。
In the structure of the rolled material after intermediate annealing, the ceramic super T
1 Because the conductor layer 2 is partially melted, the voids 3 are reduced and exist to the extent that they are scattered at the grain boundaries (Figure A). When this intermediate annealing material is rolled, the C-axis orientation of the crystals progresses, and the voids 3 are ,
Finely dispersed in grain boundaries extending in the longitudinal direction (Figure mouth),
Next, when the above-mentioned rolled material is heat-treated, the voids are absorbed into the grain boundaries and disappear as the grain boundaries rearrange, and the C-axis orientation of the crystals further advances due to partial melting (Figure C).

〔作用〕[Effect]

本発明方法においては、セラミックス超電導体物質と金
属材料との複合体を所定形状の線材に伸延加工するにあ
たって、伸延加工を結晶がC軸配向し易い圧延加工によ
り施し、ついで上記セラミックス超電導体物質が少なく
とも部分溶融する温度以上の温度にて中間焼鈍処理する
工程を1回以上繰返し施すので、セラミックス超電導体
物質はセラミックス超電導体への反応が進むとともにボ
イドが大幅に低減し又C軸配向性が向上する。
In the method of the present invention, when drawing a composite of a ceramic superconductor material and a metal material into a wire rod of a predetermined shape, the drawing process is performed by a rolling process that facilitates C-axis orientation of the crystals, and then the ceramic superconductor material is Since the step of intermediate annealing is repeated at least once at a temperature higher than the temperature at which it partially melts, the ceramic superconductor material progresses in its reaction to become a ceramic superconductor, significantly reduces voids, and improves C-axis orientation. do.

更に圧延加工後の線材は、再び超電導体物質が少なくと
も部分溶融する温度以上の温度にて加熱処理されるので
、ボイドがなく、C軸配向性に富むセラミックス超電導
々体が得られる。
Further, the wire after rolling is heat-treated again at a temperature higher than the temperature at which the superconductor material is at least partially melted, so that a ceramic superconductor with no voids and rich in C-axis orientation can be obtained.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例1 原料粉体にB i is r tc a Cu zox
の仮焼成粉体を用い、この粉体を外径25鴎、内径20
鵬のAg製パイプに充填した0次にこれをスェージング
加工して5mφの線材となし、次いで、この線材を途中
で中間焼鈍を入れつつ圧延加工して0.1am’の板材
となし、この板材を加熱処理してセラミックス超電導々
体となした。
Example 1 Adding B i is r tc a Cu zox to raw material powder
Using pre-fired powder, this powder has an outer diameter of 25 mm and an inner diameter of 20
This was filled into a Peng Ag pipe and swaged to make a 5mφ wire rod.Then, this wire rod was rolled with intermediate annealing in the middle to make a 0.1am' plate material, and this plate material was heat-treated to form a ceramic superconductor.

上記の中間焼鈍及び加熱処理は第4図に示した温度プロ
ファイルに従って施した。
The above intermediate annealing and heat treatment were performed according to the temperature profile shown in FIG.

実施例2 原料粉体にY B a z Cu 30 mの仮焼成粉
体を用い、中間焼鈍及び加熱処理を第5図に示した温度
プロファイルに従って施した他は実施例1と同じ方法に
よりセラミックス超電導々体を製造した。
Example 2 Ceramic superconductors were produced in the same manner as in Example 1, except that a pre-fired powder of YB az Cu 30 m was used as the raw material powder, and intermediate annealing and heat treatment were performed according to the temperature profile shown in Figure 5. We manufactured several bodies.

比較例1 実施例1及び2において、中間焼鈍を施さなかった他は
それぞれ実施例1及び2と同じ方法によりセラミックス
超電導々体を製造した。
Comparative Example 1 Ceramic superconductors were manufactured in the same manner as in Examples 1 and 2, respectively, except that intermediate annealing was not performed.

比較例2 実施例1及び2において、中間焼鈍を施さす又加熱処理
をセラミックス超電導体の溶融温度未満の温度にて施し
た他はそれぞれ実施例1及び2と同じ方法によりセラミ
ックス超電導々体を製造した。
Comparative Example 2 Ceramic superconductors were produced in the same manner as in Examples 1 and 2, except that intermediate annealing and heat treatment were performed at a temperature lower than the melting temperature of the ceramic superconductor. did.

斯くの如(して得られた各々のセラミックス超電導々体
について液体窒素(77K)中にてJcを測定した。結
果は主な製造条件を併記して第1表に示した。
The Jc of each of the ceramic superconductors thus obtained was measured in liquid nitrogen (77K). The results are shown in Table 1 along with the main manufacturing conditions.

第1表 ■ 第4図に示した温度プロファイル ■第5図 第1表より明らかなように本発明方法品(実施例1,2
)はJeが高く、中でも中間焼鈍、圧延加工回数の多い
ものは特に高い値を示した。
Table 1 ■ Temperature profile shown in FIG. 4 ■ As is clear from Table 1 in FIG.
) had a high Je value, and among them, those subjected to intermediate annealing and rolling processes showed particularly high values.

これに対し比較例1は中間焼鈍、圧延加工を入れなかっ
た為に、又比較例2は中間焼鈍、圧延加工を入れず又加
熱処理をセラミックス超電導体が溶融しない低い温度に
て施した為にいずれもJcが低い値のものとなった。
On the other hand, Comparative Example 1 did not include intermediate annealing and rolling, and Comparative Example 2 did not include intermediate annealing and rolling, and heat treatment was performed at a low temperature at which the ceramic superconductor did not melt. All had low Jc values.

比較例1,2品について組織観察及びX線回折を行った
結果、セラミックス超電導体層はボイドを含み又C軸配
向性に劣るものであることが確認された。
As a result of microstructure observation and X-ray diffraction performed on Comparative Examples 1 and 2, it was confirmed that the ceramic superconductor layer contained voids and had poor C-axis orientation.

〔効果] 以上述べたように、本発明方法によればボイドがなく緻
密で、C軸配向性に冨み、依ってJ6等の超電導特性に
優れたセラミックス超電44体が得られ、工業上顕著な
効果を奏する。
[Effects] As described above, according to the method of the present invention, 44 ceramic superconductors that are void-free, dense, rich in C-axis orientation, and have excellent superconducting properties such as J6 can be obtained, and are suitable for industrial use. It has a remarkable effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は、本発明方法により製造されるセラミック
ス超電44体の実施例を示す断面図、第3図イ〜ハは、
本発明方法におけるセラミックス超電導体組織の変化を
示す説明図、第4.5図は本発明方法における中間焼鈍
、圧延加工又は加熱処理工程にて用いられる温度プロフ
ァイルの例を示す説明図である。 l・・・金属マトリックス、  2・・・セラミックス
超電導体層、 3・・・ボイド。
1 and 2 are cross-sectional views showing examples of 44 ceramic superelectric bodies manufactured by the method of the present invention, and FIGS. 3A to 3C are
FIG. 4.5 is an explanatory diagram showing changes in the structure of a ceramic superconductor in the method of the present invention. FIG. 4.5 is an explanatory diagram showing an example of a temperature profile used in the intermediate annealing, rolling or heat treatment step in the method of the present invention. l...metal matrix, 2...ceramic superconductor layer, 3...void.

Claims (1)

【特許請求の範囲】[Claims] セラミックス超電導体又はその前駆物質と金属材料との
複合体を伸延加工して所望形状の線材に加工したのち、
当該線材を加熱処理してセラミックス超電導々体を製造
する方法においてセラミックス超電導体又はその前駆物
質が少なくとも部分溶融する温度以上で複合材料の融点
以下の温度で中間焼鈍処理し、次いで圧延加工を施す工
程を1回以上繰返し施すことを特徴とするセラミックス
超電導々体の製造方法。
After stretching a composite of a ceramic superconductor or its precursor and a metal material into a wire rod of a desired shape,
In the method of manufacturing a ceramic superconductor by heat treating the wire, a step of performing an intermediate annealing treatment at a temperature higher than the temperature at which the ceramic superconductor or its precursor at least partially melts and lower than the melting point of the composite material, followed by rolling. A method for producing a ceramic superconductor, characterized in that the method is repeatedly applied one or more times.
JP1261090A 1989-10-05 1989-10-05 Manufacture of ceramics superconductive conductor Pending JPH03122918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1261090A JPH03122918A (en) 1989-10-05 1989-10-05 Manufacture of ceramics superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1261090A JPH03122918A (en) 1989-10-05 1989-10-05 Manufacture of ceramics superconductive conductor

Publications (1)

Publication Number Publication Date
JPH03122918A true JPH03122918A (en) 1991-05-24

Family

ID=17356945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1261090A Pending JPH03122918A (en) 1989-10-05 1989-10-05 Manufacture of ceramics superconductive conductor

Country Status (1)

Country Link
JP (1) JPH03122918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276774A (en) * 1990-03-27 1991-12-06 Mitsubishi Materials Corp Bi-based superconducting oxide magnetic shield material
JPH05342931A (en) * 1991-08-28 1993-12-24 Ind Technol Res Inst Manufacture of flexible superconducting tape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276774A (en) * 1990-03-27 1991-12-06 Mitsubishi Materials Corp Bi-based superconducting oxide magnetic shield material
JPH05342931A (en) * 1991-08-28 1993-12-24 Ind Technol Res Inst Manufacture of flexible superconducting tape

Similar Documents

Publication Publication Date Title
JP2567505B2 (en) Method for producing bismuth oxide superconductor
WO1996019417A1 (en) Process for producing an elongate superconductor with a bismuth phase having a high transition temperature and superconductor produced according to this process
JPH03122918A (en) Manufacture of ceramics superconductive conductor
CA2024806C (en) Method of producing ceramics-type superconductor wire
JPH04121912A (en) Manufacture of oxide high temperature superconductive conductor
KR910009198B1 (en) Method of manufacturing superconductive products
JP3721392B2 (en) Manufacturing method of high-temperature superconducting wire
JPH06275146A (en) Composite superconducting wire
JP3053411B2 (en) Manufacturing method of oxide superconducting wire
JP2667972B2 (en) Bi-based oxide composite superconducting wire
JPH02278616A (en) Manufacture of multicore-type oxide superconductor
RU2097860C1 (en) Method for producing silver sheathed, high-temperature superconducting ceramic base composite conductors
JP2567967B2 (en) Manufacturing method of oxide superconducting wire
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JPH03134917A (en) Manufacture of ceramic superconductor
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JPH01163913A (en) Manufacture of oxide superconductive wire
JPH04338171A (en) Production of ceramic superconductor
JP2004241301A (en) Method of manufacturing oxide superconductive wire rod, and raw material powder of oxide superconductive wire rod
JPH02252210A (en) Manufacture of oxide superconducting coil
JPH04255615A (en) Manufacture of oxide superconducting wire rod
JPH02158012A (en) Manufacture of oxide superconductive liner body
JPH09295813A (en) Oxide superconducting material, production of superconducting material and superconducting wire rod
JPH02189817A (en) Manufacture of wire rod of oxide superconductive tape state
JPH04118816A (en) Manufacture of ceramic superconductor