JP2567967B2 - Manufacturing method of oxide superconducting wire - Google Patents

Manufacturing method of oxide superconducting wire

Info

Publication number
JP2567967B2
JP2567967B2 JP2046676A JP4667690A JP2567967B2 JP 2567967 B2 JP2567967 B2 JP 2567967B2 JP 2046676 A JP2046676 A JP 2046676A JP 4667690 A JP4667690 A JP 4667690A JP 2567967 B2 JP2567967 B2 JP 2567967B2
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
hours
superconducting wire
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2046676A
Other languages
Japanese (ja)
Other versions
JPH03250509A (en
Inventor
久 関根
廉 井上
弘 前田
幸一 沼田
博一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Mitsubishi Heavy Industries Ltd
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO, Mitsubishi Heavy Industries Ltd filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP2046676A priority Critical patent/JP2567967B2/en
Publication of JPH03250509A publication Critical patent/JPH03250509A/en
Application granted granted Critical
Publication of JP2567967B2 publication Critical patent/JP2567967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、酸化物超電導線材の製造法に関するもの
である。さらに詳しくは、この発明は、各種超電導マグ
ネット、送電ケーブル、発電機等に有用な、実用に供す
ることのできる臨界電流特性を有するBi系酸化物超電導
線材の製造法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing an oxide superconducting wire. More specifically, the present invention relates to a method for producing a Bi-based oxide superconducting wire having critical current characteristics that can be put to practical use and is useful for various superconducting magnets, power transmission cables, generators, and the like.

(従来の技術とその課題) 酸化物高温超電導体としてBi系酸化物が注目されてお
り、このBi系酸化物超電導体の薄膜化とともに、その線
材化、テープ状体への加工方法が精力的に検討されてい
る。
(Prior art and its problems) Bi-based oxides have been attracting attention as high-temperature oxide superconductors. With the thinning of this Bi-based oxide superconductor, the method of making it into a wire and processing into a tape-like body is vigorous. Is being considered.

すでにこれまでにも、Bi系酸化物超電導体の粉末を銀
シースに充填し、これを線材あるいはテープ状体に加工
した後に、焼結、圧延、焼結等の配向処理を施して超電
導線材、または超電導テープ状体を製造する方法が提案
されてもいる。
Already so far, the powder of the Bi-based oxide superconductor is filled in the silver sheath, and after being processed into a wire rod or a tape-shaped body, the superconducting wire rod is subjected to orientation treatment such as sintering, rolling, or sintering. Alternatively, a method of manufacturing a superconducting tape-shaped body has been proposed.

しかしながら、これまでに知られている方法では、Bi
系酸化物超電導体の場合には実用に供することのできる
臨界電流密度(Jc)を有する線材、あるいはテープ状体
が得られないのが実情である。
However, in the methods known so far, Bi
In the case of oxide-based superconductors, it is the actual situation that a wire or tape having a critical current density (Jc) that can be put to practical use cannot be obtained.

Bi系酸化物超電導体は異方性が大きく、ab面内で電流
が流れやすい。そこで高い臨界電流密度(Jc)を得るた
めには、その組織を緻密化するとともに、ab面の高配向
化を図ることが必要となる。また、加工後の熱処理にお
いて、特に多芯線材では酸化物超電導体とシース金属と
の反応が起きて特性が劣化しやすいという問題があるた
め、この面での対策も必要となっている。
Bi-based oxide superconductors have large anisotropy, and current easily flows in the ab plane. Therefore, in order to obtain a high critical current density (Jc), it is necessary to densify the structure and increase the orientation of the ab plane. Further, in the heat treatment after processing, there is a problem that the characteristics are likely to deteriorate due to the reaction between the oxide superconductor and the sheath metal, especially in the multi-core wire, and therefore a measure in this respect is also necessary.

この発明は、以上の通りの事情に鑑みてなされたもの
であり、従来の線材化方法の欠点を克服し、組織の緻密
化とともに高配向化を図り、高い臨界電流密度を有し、
シース金属との反応をも抑えた高特性のBi系酸化物超電
導体線材を製造する方法を提供することを目的としてい
る。
The present invention has been made in view of the circumstances as described above, overcoming the drawbacks of the conventional wire rod forming method, aiming for high orientation with densification of the structure, having a high critical current density,
An object of the present invention is to provide a method for producing a high-performance Bi-based oxide superconductor wire rod that suppresses reaction with a sheath metal.

(課題を解決するための手段) この発明は、上記の課題を解決するものとして、Bi系
酸化物超電導体の粉末を金属シースに詰めて冷間加工を
行い、875℃以下の温度で一次熱処理した後に冷間加工
し、次いで870℃を超える半溶融温度で二次熱処理した
後に、875℃以下の温度で三次熱処理を施すことを特徴
とする酸化物超電導線材の製造法を提供する。
(Means for Solving the Problems) As a means for solving the above problems, the present invention stuffs a powder of a Bi-based oxide superconductor into a metal sheath, performs cold working, and performs a primary heat treatment at a temperature of 875 ° C. or lower. The present invention provides a method for producing an oxide superconducting wire, which comprises performing cold working, then performing secondary heat treatment at a semi-melting temperature of higher than 870 ° C, and then performing third heat treatment at a temperature of 875 ° C or lower.

この発明の方法において対象となるBi系酸化物超電導
体は、Bi-Sr-Ca-Cu-O系をその組成の基本とするもので
あり、特性を損うことのない成分を任意に添加したもの
も含み得る。特にこれらの組成のうち、この発明におい
ては、低Tc相として知られている Bi2Sr2CaCu2の系の組成のものから高い電流密度特性(J
c)を得ることを可能とする点で注目される。
The Bi-based oxide superconductor targeted in the method of the present invention is based on the composition of Bi-Sr-Ca-Cu-O system, and a component that does not impair the characteristics is arbitrarily added. It may also include things. In particular, among these compositions, in the present invention, from those having a composition of Bi 2 Sr 2 CaCu 2 system known as a low Tc phase, high current density characteristics (J
It is noted that it makes it possible to obtain c).

また、目的とする線材としては、種々の形状、構造の
ものがこの発明に含まれる。たとえばテープ状体、多芯
線材も含まれる。これらの線材を製造するこの発明の方
法を、その工程順に説明すると次のように要約すること
ができる。
In addition, the target wire includes various shapes and structures in the present invention. For example, a tape-shaped body and a multifilamentary wire are also included. The method of the present invention for producing these wire rods can be summarized as follows in the order of steps thereof.

(1)金属シースの充填と冷間加工 Bi系酸化物超電導体の所定の組成からなる原料粉末
を、銀等の金属シースに充填し、初期冷間加工を行う。
この加工は、ロールプレス等の適宜な手段で行うことが
できる。
(1) Filling of metal sheath and cold working A raw material powder having a predetermined composition of a Bi-based oxide superconductor is filled in a metal sheath of silver or the like, and an initial cold working is performed.
This processing can be performed by an appropriate means such as a roll press.

この工程においては、あらかじめ、Bi系の酸化物超電
導体粉末に、700〜875℃程度の温度において仮焼もしく
は前焼結としての熱処理を施し、次いで常温附近まで急
冷した粉末を用いることが有利でもある。この粉末を使
用することにより、臨界温度(Tc)が高い酸化物超電導
線材が得られる。たとえば低Tc相としての超電導体でも
約90K程度のレベルの線材が得られる。
In this step, it is advantageous to use a powder of Bi-based oxide superconductor powder that has been preliminarily heat-treated as calcination or pre-sintering at a temperature of about 700 to 875 ° C. and then rapidly cooled to around room temperature. is there. By using this powder, an oxide superconducting wire having a high critical temperature (Tc) can be obtained. For example, even with a superconductor as a low Tc phase, a wire rod of about 90K level can be obtained.

この時の常温前後程度までの急冷は、300℃/時以上
の速度で行うのが好ましい。これより遅いと臨界温度の
低下が認められる場合ある。この原因としては、酸素含
有量の変化が影響しているものと推察される。
The rapid cooling to about room temperature at this time is preferably performed at a rate of 300 ° C./hour or more. If it is slower than this, the critical temperature may decrease. It is speculated that the cause of this is the change in oxygen content.

(2)一次熱処理と冷間加工 次いで、875℃以下の温度で一次熱処理し、冷間加工
する。この一次熱処理の工程は、酸化物相を溶融させず
に結晶成長させ、圧延または線引き等の冷間加工によっ
て長さ方向に強く優先配向させることを目的としてい
る。
(2) Primary heat treatment and cold working Next, primary heat treatment is performed at a temperature of 875 ° C or lower, and cold working is performed. The purpose of this primary heat treatment step is to grow crystals without melting the oxide phase and to strongly preferentially orient them in the length direction by cold working such as rolling or drawing.

熱処理温度を875℃を超えるものとする場合には、強
い優先配向が形状されないうちに半溶融状態となり、ラ
ンダムな方向に結晶が成長し、超電導特性を低下させる
ことになる。
When the heat treatment temperature is higher than 875 ° C., a semi-molten state occurs before a strong preferential orientation is formed, and crystals grow in random directions, deteriorating superconducting properties.

また、この一次熱処理においては、徐々に、または段
階的に所定の処理温度まで昇温させるのが好ましい。こ
のことは、金属シースと酸化物超電導体との反応を抑
え、多芯線材等において良好な特性を得る上で特に有効
である。急激に昇温させる場合は、相生成および均一化
がなされないうちに、しかも比較的低い温度で部分溶融
が生じ、金属シースとの反応が生じて特性が劣化しやす
い。
Further, in this primary heat treatment, it is preferable to raise the temperature to a predetermined treatment temperature gradually or stepwise. This is particularly effective in suppressing the reaction between the metal sheath and the oxide superconductor and obtaining good characteristics in a multi-core wire or the like. When the temperature is rapidly raised, partial melting occurs at a relatively low temperature before phase formation and homogenization are performed, and a reaction with the metal sheath occurs to easily deteriorate the characteristics.

所定温度までの、徐々に、または段階的に行う昇温は
少なくとも10時間以上かけて行うのが好ましい。これ以
下の場合には、金属シースとの反応抑制の作用は充分と
はならない。
It is preferable that the temperature increase to the predetermined temperature is performed gradually or stepwise over at least 10 hours. If it is less than this, the effect of suppressing the reaction with the metal sheath is not sufficient.

(3)二次熱処理 優先方位をつける冷間加工を終了した後に、870℃を
超える半溶融温度で二次熱処理を行う。この二次熱処理
は、酸化物相を半溶融状態とし、優先方位に沿って結晶
成長させることを目的としている。
(3) Secondary heat treatment After finishing the cold working for giving a preferential orientation, the secondary heat treatment is performed at a semi-melting temperature exceeding 870 ° C. The purpose of this secondary heat treatment is to bring the oxide phase into a semi-molten state and grow crystals along the preferred orientation.

870℃の温度以下では溶融が生じないため、あるいは
全く不充分であるため、高密度化と高配向化のための結
晶成長は生じない。
No melting occurs at a temperature of 870 ° C. or less, or no melting occurs at all, so crystal growth for high density and high orientation does not occur.

この二次熱処理においても、上記(2)と同様の理由
から、所定の温度までの昇温を徐々に、または段階的に
10時間以上かけて行うのが好ましい。
Also in this secondary heat treatment, for the same reason as the above (2), the temperature rise to a predetermined temperature is gradually or stepwise.
It is preferable to perform it for 10 hours or more.

たとえば多芯線材の製造においては、 850℃×20時間 870℃×20時間 880℃×15時間 のように段階的に昇温させることができ、このプロセス
は、金属シースと超電導体との反応抑制にとって極めて
有利である。
For example, in the production of multifilamentary wire, the temperature can be raised stepwise such as 850 ° C × 20 hours 870 ° C × 20 hours 880 ° C × 15 hours. This process suppresses the reaction between the metal sheath and the superconductor. Is extremely advantageous to

(4)三次熱処理 最後に、875℃以下の温度において結晶の秩序度を高
めるための三次熱処理を行う。
(4) Tertiary Heat Treatment Finally, a tertiary heat treatment is performed at a temperature of 875 ° C. or lower to increase the crystal order.

これは、二次熱処理までの操作による結晶粒の歪みを
是正し、結晶の秩序度を回復することを目的としてい
る。
This aims to correct the distortion of crystal grains due to the operations up to the secondary heat treatment and restore the crystal order.

もちろん、以上のようなこの発明の方法においては、
加熱や冷間加工等の手段について特にそのための装置等
に限定はない。また工程の細部についても様々な態様が
可能である。以下、実施例を示し、さらにこの発明の製
造法について詳しく説明する。
Of course, in the method of the present invention as described above,
There is no particular limitation on the device for heating or cold working and the like. Further, various aspects are possible in the details of the process. Examples will be shown below, and the production method of the present invention will be described in detail.

実施例1 Bi:Sr:Ca:Cu=2:2:1:2の組成となるように原料粉末を
混合し、800℃×15時間の仮焼および850℃×10時間の前
熱処理を行い、100℃/時の速度で常温まで冷却した後
に、銀シースに詰めてテープ状に加工した。これに850
℃×15時間の熱処理を施した後に、冷間圧延してその厚
さを半分に減少させ、さらに880℃×15時間の半溶融熱
処理および850℃×50時間の秩序回復三次熱処理を行っ
た。
Example 1 The raw material powders were mixed so as to have a composition of Bi: Sr: Ca: Cu = 2: 2: 1: 2, subjected to calcination at 800 ° C. × 15 hours and preheat treatment at 850 ° C. × 10 hours, After cooling to room temperature at a rate of 100 ° C./hour, it was packed in a silver sheath and processed into a tape shape. To this 850
After heat treatment at ℃ × 15 hours, cold rolling was performed to reduce the thickness by half, and further, 880 ℃ × 15 hours of semi-melting heat treatment and 850 ℃ × 50 hours of tertiary heat treatment for order recovery were performed.

得られた線材の臨界温度:Tcは86Kであり、4.2Kおよび
30Tの磁界での臨界電流密度:Jcは70,000A/cm2であっ
た。また77KおよびOTでのJcは5,000A/cm2であった。
The critical temperature of the obtained wire: Tc is 86K, 4.2K and
The critical current density: Jc in a magnetic field of 30 T was 70,000 A / cm 2 . The Jc at 77K and OT was 5,000A / cm 2 .

実施例2 実施例1と同様の組成の粉末を800℃×15時間および8
50℃×10時間の前熱処理を施した後に、5000℃/時の速
さで冷却し、実施例1と全く同様な工程でテープ状体を
作成した。この線材のTcは90Kであり、4.2Kおよび30Tの
磁界でのJcは85,000A/cm2であった。また、77KおよびOT
でのJcは35,000A/cm2であった。
Example 2 A powder having the same composition as in Example 1 was added at 800 ° C. for 15 hours and 8 hours.
After pre-heat treatment at 50 ° C. for 10 hours, it was cooled at a rate of 5000 ° C./hour, and a tape-shaped body was prepared by the same steps as in Example 1. The Tc of this wire was 90K, and the Jc at magnetic fields of 4.2K and 30T was 85,000A / cm 2 . Also 77K and OT
Jc was 35,000 A / cm 2 .

実施例3 実施例1と同様の組成で、同様の前熱処理を施した粉
末を銀シースに詰めて細線に加工後、銀パイプ中に束ね
て挿入し、再び冷間加工して330芯を含むBi系酸化物の
多芯テープを作成した。これに800℃×20時間および830
℃×20時間、さらに850℃×15時間の熱処理を施した
(試料A)。またこれとは別に、単に850℃×15時間の
熱処理だけを施した後に圧延加工を加え、さらに880℃
×10時間および850℃×50時間の熱処理を施して線材を
作成した(試料B)。試料AおよびBのTcはそれぞれ86
Kおよび78Kであり、4.2Kおよび30TでのJcはそれぞれ26,
000A/cm2および10,000A/cm2であった。
Example 3 Powder having the same composition as in Example 1 and subjected to the same pre-heat treatment was packed in a silver sheath, processed into a thin wire, bundled and inserted into a silver pipe, and cold-worked again to contain 330 cores. A multi-core tape of Bi-based oxide was prepared. 800 ° C x 20 hours and 830
Heat treatment was performed at 20 ° C. for 20 hours and at 850 ° C. for 15 hours (Sample A). Separately from this, after only heat treatment at 850 ° C × 15 hours, rolling processing is performed, and further 880 ° C
Heat treatment was performed for 10 hours and 850 ° C. for 50 hours to prepare a wire (Sample B). Samples A and B have Tc of 86 each
K and 78K, Jc at 4.2K and 30T is 26,
It was 000 A / cm 2 and 10,000 A / cm 2 .

実施例4 実施例3と同様の原料で、同様の工程により330芯の
多芯テープを加工後、800℃×20時間および830℃×20時
間、さらに850℃×15時間の熱処理を加えた後、圧延加
工をし、850℃×20時間および870℃×20時間、さらに88
0℃×10時間の熱処理と、850℃×50時間の秩序回復熱処
理を行った。Tcは89Kであり、 4.2Kおよび30TでのJcは37,000A/cm2であった。また、77
KおよびOTでのJcは 31,000A/cm2であった。
Example 4 The same raw material as in Example 3 was used to process a 330-core multifilament tape in the same process, and after heat treatment at 800 ° C. × 20 hours, 830 ° C. × 20 hours, and 850 ° C. × 15 hours was added. Rolled, 850 ℃ × 20 hours and 870 ℃ × 20 hours, 88 more
Heat treatment was performed at 0 ℃ for 10 hours and order recovery heat treatment at 850 ℃ for 50 hours. The Tc was 89K and the Jc at 4.2K and 30T was 37,000 A / cm 2 . Also, 77
The Jc at K and OT was 31,000 A / cm 2 .

(発明の効果) 以上詳しく説明した通り、この発明の製造法により、
緻密化、高配向化が図られ、高い臨界電流密度を有する
Bi系酸化物超電導線材が得られる。
(Effect of the Invention) As described in detail above, according to the manufacturing method of the present invention,
High densification, high orientation, and high critical current density
A Bi-based oxide superconducting wire can be obtained.

また、この方法により金属シースと超電導体との反応
が得られるため、特製の劣化も抑止される。
Further, since the reaction between the metal sheath and the superconductor can be obtained by this method, the special deterioration can be suppressed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 弘 茨城県つくば市千現1丁目2番1号 科 学技術庁金属材料技術研究所筑波支所内 (72)発明者 沼田 幸一 神奈川県横浜市金沢区幸浦1丁目8番1 号 三菱重工業株式会社基盤技術研究所 内 (72)発明者 山本 博一 神奈川県横浜市金沢区幸浦1丁目8番1 号 三菱重工業株式会社基盤技術研究所 内 (56)参考文献 特開 平2−192620(JP,A) 特開 平2−207420(JP,A) 特開 平3−138820(JP,A) ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hiroshi Maeda 1-2-1 Sengen, Tsukuba-shi, Ibaraki Tsukuba Branch, Research Institute for Metals, Science and Technology Agency (72) Koichi Numata Kanazawa-ku, Yokohama, Kanagawa Kochiura 1-8-1 Mitsubishi Heavy Industries, Ltd. Fundamental Technology Research Laboratory (72) Inventor Hirokazu Yamamoto 1-8-1, Sachiura, Kanazawa-ku, Yokohama, Kanagawa Pref. Mitsubishi Heavy Industries, Ltd. Fundamental Technology Research Laboratory (56) Reference Documents JP-A-2-192620 (JP, A) JP-A-2-207420 (JP, A) JP-A-3-138820 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Bi系酸化物超電導体の粉末を金属シースに
詰めて冷間加工を行い、875℃以下の温度で一次熱処理
した後に冷間加工し、次いで870℃を超える半溶融温度
で二次熱処理した後に、875℃以下の温度で三次熱処理
を施すことを特徴とする酸化物超電導線材の製造法。
1. A Bi-based oxide superconductor powder is packed in a metal sheath, cold-worked, subjected to a primary heat treatment at a temperature of 875 ° C. or lower, then cold-worked, and then subjected to a semi-melting temperature exceeding 870 ° C. A method for producing an oxide superconducting wire, characterized by performing a third heat treatment at a temperature of 875 ° C or lower after the second heat treatment.
【請求項2】原料粉末を700〜875℃の温度で熱処理した
後に、300℃/時以上の速度で常温附近にまで急冷した
粉末を金属シースに詰める請求項(1)記載の酸化物超
電導線材の製造法。
2. The oxide superconducting wire according to claim 1, wherein the raw material powder is heat-treated at a temperature of 700 to 875 ° C., and then rapidly cooled to a temperature close to room temperature at a rate of 300 ° C./hour or more to fill the metal sheath. Manufacturing method.
【請求項3】請求項(1)または(2)記載の製造法に
おいて、一次熱処理の工程を、少なくとも10時間以上か
けて徐々に、または段階的に昇温させてから行う酸化物
超電導線材の製造法。
3. The method for producing an oxide superconducting wire according to claim 1, wherein the step of the primary heat treatment is carried out after gradually or stepwise heating over at least 10 hours. Manufacturing method.
【請求項4】請求項(1)、(2)または(3)記載の
製造法において、二次熱処理の工程を、少なくとも10時
間以上かけて徐々に、または段階的に昇温させてから行
う酸化物超電導線材の製造法。
4. The manufacturing method according to claim 1, wherein the step of the secondary heat treatment is performed after gradually or stepwise raising the temperature for at least 10 hours or more. Manufacturing method of oxide superconducting wire.
JP2046676A 1990-02-26 1990-02-26 Manufacturing method of oxide superconducting wire Expired - Fee Related JP2567967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2046676A JP2567967B2 (en) 1990-02-26 1990-02-26 Manufacturing method of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2046676A JP2567967B2 (en) 1990-02-26 1990-02-26 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH03250509A JPH03250509A (en) 1991-11-08
JP2567967B2 true JP2567967B2 (en) 1996-12-25

Family

ID=12753978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2046676A Expired - Fee Related JP2567967B2 (en) 1990-02-26 1990-02-26 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP2567967B2 (en)

Also Published As

Publication number Publication date
JPH03250509A (en) 1991-11-08

Similar Documents

Publication Publication Date Title
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JPH04292819A (en) Manufacture of oxide superconductive wire
JPH06196031A (en) Manufacture of oxide superconductive wire
JP2567967B2 (en) Manufacturing method of oxide superconducting wire
EP0676817B2 (en) Method of preparing high-temperature superconducting wire
Tachikawa et al. Potential methods for the fabrication of high-T/sub c/superconductors for wires and cables
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
JP3109077B2 (en) Manufacturing method of oxide superconducting wire
JP2667972B2 (en) Bi-based oxide composite superconducting wire
JP3149429B2 (en) Superconductor manufacturing method
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JP3257569B2 (en) Method for producing Tl-based oxide superconductor
JP2997808B2 (en) Manufacturing method of oxide superconducting wire
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JP3050572B2 (en) Manufacturing method of oxide superconducting conductor
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JPH03122918A (en) Manufacture of ceramics superconductive conductor
TOGANO et al. GRAIN ALIGNMENT AND ITS EFFECT ON CRITICAL CURRENT PROPERTIES OF Bi 2 Sr 2 Ca 1 Cu 2 O x/Ag SUPERCONDUCTING TAPE
Hu et al. Continuous processing of AgMg-sheathed Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8/tapes
JPH03265523A (en) Bismuth-containing oxide superconductor and production thereof
JPH06203669A (en) Manufacture of bi oxide superconductor
JPH03187902A (en) Manufacture of high temperature, superconducting substance
JPH0554735A (en) Manufacture of ceramic superconductor
Chen et al. Cold‐worked, annealed alignment of AG CLAD BI‐2212 tapes
TOGANO et al. GRAIN ALIGNMENT AND ITS EFFECT ON CRITICAL CURRENT PROPERTIES GRAIN ALIGNMENT AND ITS EFFECT ON CRITICAL CURRENT PROPERTIES OF Bi2Sr2Ca1Cu2Ox/Ag SUPERCONDUCTING TAPE OF Bi2Sr2Ca1Cu2Ox/Ag SUPERCONDUCTING TAPE

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees