JPH0554735A - Manufacture of ceramic superconductor - Google Patents

Manufacture of ceramic superconductor

Info

Publication number
JPH0554735A
JPH0554735A JP3213850A JP21385091A JPH0554735A JP H0554735 A JPH0554735 A JP H0554735A JP 3213850 A JP3213850 A JP 3213850A JP 21385091 A JP21385091 A JP 21385091A JP H0554735 A JPH0554735 A JP H0554735A
Authority
JP
Japan
Prior art keywords
raw material
heat treatment
superconductor
ceramic
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3213850A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
祐行 菊地
Masanao Mimura
正直 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3213850A priority Critical patent/JPH0554735A/en
Publication of JPH0554735A publication Critical patent/JPH0554735A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide the manufacture of ceramic superconductors capable of obtaining Bi-Sr-Ca-Cu-O ceramic superconductor adaptable to magnets and cables, etc., and demonstrable of an excellent Jc characteristic. CONSTITUTION:A complex is formed by compounding a member composed of a Bi2-Sr2-Ca2-Cu3-Ox superconductor raw material and a member consisting of metal, and degressive processing and heat treatments are repeatedly made plural times to the complex, obtaining a ceramic superconductor. In heat treatments except the final one of the heat treatments, one time is made a heat treatment for retaining the partial fusion temperature of the superconductor raw material, and the rest is made heat treatments made at temperature below the partial fusion temperature of the superconductor raw material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マグネット、ケーブル
等に適用可能なセラミックス超電導導体の製造方法に関
し、特にJc(臨界電流密度)特性に優れたBi2 −S
2 −Ca2 −Cu3 −Ox系セラミックス超電導導体
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramics superconducting conductor applicable to magnets, cables, etc., and particularly to Bi 2 -S excellent in Jc (critical current density) characteristics.
The method for producing a r 2 -Ca 2 -Cu 3 -Ox based ceramic superconductors.

【0002】[0002]

【従来の技術】近年、Y−Ba−Cu−O系、(Bi,
Pb)−Sr−Ca−Cu−O系、Tl−Ba−Ca−
Cu−O系等のように液体窒素温度を超えるTc(臨界
温度)を有するセラミックス超電導体が知られている。
このようなセラミックス超電導体を例えば、マグネッ
ト、ケーブル等に適用するべく種々の形状に成型するこ
とが検討されている。
2. Description of the Related Art In recent years, Y-Ba-Cu-O system, (Bi,
Pb) -Sr-Ca-Cu-O system, Tl-Ba-Ca-
Ceramic superconductors having a Tc (critical temperature) exceeding the temperature of liquid nitrogen such as Cu-O system are known.
For example, molding of such a ceramics superconductor into various shapes has been studied for application to magnets, cables, and the like.

【0003】例えば、上記セラミックス超電導体を線材
に作製する方法としては、金属シース法が用いられてい
る。この方法は、超電導体となるセラミックス原料を金
属パイプ内に充填してビレットを形成し、これに減面加
工を施して所望形状・所望寸法の複合線材とし、その後
この複合線材に熱処理を施してセラミックス超電導導体
とするものである。
For example, a metal sheath method is used as a method for producing the above ceramic superconductor into a wire. This method is to fill a metal pipe with a ceramic raw material to be a superconductor to form a billet, reduce the surface of the billet to form a composite wire with a desired shape and size, and then subject the composite wire to heat treatment. A ceramic superconducting conductor is used.

【0004】得られる線材の形状としては、断面が円
形、楕円形、多角形等のもの、テープ状、あるいは線材
を複数本束ねてなる多芯線材、さらに金属シース内部に
セラミックス超電導体が同心円状、または渦巻状に多層
配置された多層線材等が挙げられる。
The shape of the wire obtained is circular, elliptical, polygonal, etc., tape-shaped, or a multi-core wire made by bundling a plurality of wires, and a ceramic superconductor in a concentric circle inside the metal sheath. Alternatively, a multilayer wire rod or the like arranged in a spiral multilayer may be used.

【0005】減面加工としては、押し出し、圧延、スウ
ェージング、引き抜き等従来の塑性加工法がそのまま適
用され、得られる線材の形状に応じて適宜選択される。
As the surface-reducing work, the conventional plastic working methods such as extrusion, rolling, swaging and drawing are applied as they are, and are appropriately selected according to the shape of the wire to be obtained.

【0006】金属シースの材質としては、熱伝導性、電
気伝導性に優れた材料、例えばAg、Ag合金、Cu、
Cu合金等が適用できる。この中で、酸素透過性が優れ
るAg、Ag合金を用いることが好ましい。
As a material of the metal sheath, a material having excellent thermal conductivity and electrical conductivity, such as Ag, Ag alloy, Cu,
Cu alloy or the like can be applied. Among these, it is preferable to use Ag or Ag alloy, which has excellent oxygen permeability.

【0007】Bi2 −Sr2 −Ca2 −Cu3 −Ox系
(以下、Bi−2223系と省略する)超電導体をAg
シース内に充填したAgシース線材に塑性加工と熱処理
とを繰り返して施してなるセラミックス超電導導体は、
より高いJc特性を発揮することが明らかになってい
る。また、この場合、圧延加工、プレス加工等のように
圧縮を主体とした塑性加工を行うことにより、結晶方位
を所望方向に配向させることができ、Jcをさらに向上
できることが明らかになっている。
[0007] Bi 2 -Sr 2 -Ca 2 -Cu 3 -Ox system (hereinafter, abbreviated as Bi-2223-based) superconductors Ag
A ceramics superconducting conductor obtained by repeatedly performing plastic working and heat treatment on an Ag sheath wire filled in the sheath is
It has been clarified that it exhibits higher Jc characteristics. Further, in this case, it has been clarified that the crystal orientation can be oriented in a desired direction and the Jc can be further improved by performing plastic working mainly on compression such as rolling and pressing.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
セラミックス超電導導体の製造方法によれば、熱処理は
セラミックス原料の融点以下の温度で行なうため、その
Jc値が10000A/cm2 程度が限界であり、例えば
マグネット、ケーブル等への適用が阻害されてしまう。
However, according to the above-mentioned method for manufacturing a ceramic superconducting conductor, the heat treatment is performed at a temperature below the melting point of the ceramic raw material, so that the Jc value is limited to about 10,000 A / cm 2 . For example, application to magnets, cables, etc. will be hindered.

【0009】本発明はかかる点に鑑みてなされており、
マグネット、ケーブル等に適用することができ、優れた
Jc特性を発揮できるBi2223系セラミックス超電
導導体を得ることができるセラミックス超電導導体の製
造方法を提供することを目的とする。
The present invention has been made in view of the above points,
An object of the present invention is to provide a method for manufacturing a ceramics superconducting conductor, which can be applied to magnets, cables, etc. and can obtain a Bi2223 series ceramics superconducting conductor that can exhibit excellent Jc characteristics.

【0010】[0010]

【課題を解決するための手段】本発明は、Bi2 −Sr
2 −Ca2 −Cu3 −Ox系セラミックス超電導体原料
からなる部材と金属からなる部材とを複合化して複合体
を形成し、該複合体に減面加工および熱処理を複数回繰
り返して行いセラミックス超電導導体を得るセラミック
ス超電導導体の製造方法において、前記熱処理のうち最
終に行う熱処理を除く熱処理が、1回が前記超電導体原
料の部分溶融温度に保持する工程を含む熱処理、その他
が前記超電導体原料の部分溶融温度以下の温度で行う熱
処理であることを特徴とするセラミックス超電導導体の
製造方法を提供する。
The present invention is directed to Bi 2 -Sr.
2 -Ca 2 -Cu 3 and members consisting -Ox system member and a metal consisting of ceramic superconductor material to form a composite to composite, ceramic superconductor was repeated several times reduction process and heat treatment complex In the method for producing a ceramic superconducting conductor for obtaining a conductor, the heat treatments other than the final heat treatment among the heat treatments include a step of holding once at a partial melting temperature of the superconductor raw material, and the other heat treatment of the superconductor raw material. Provided is a method for manufacturing a ceramics superconducting conductor, characterized in that the heat treatment is performed at a temperature not higher than a partial melting temperature.

【0011】[0011]

【作用】本発明のセラミックス超電導導体の製造方法
は、熱処理のうち最終に行う熱処理を除く熱処理を1回
がセラミックス超電導体原料の部分溶融温度に保持する
熱処理、その他がセラミックス超電導体原料の部分溶融
温度以下の温度で行う熱処理としている。
The method for producing a ceramics superconducting conductor according to the present invention comprises a heat treatment, which is one of the heat treatments except the final heat treatment, which is held at the partial melting temperature of the ceramics superconductor raw material, and the other is partial melting of the ceramics superconductor raw material. The heat treatment is performed at a temperature below the temperature.

【0012】セラミックス超電導体原料の部分溶融温度
に保持する熱処理を施すことにより、セラミックス超電
導体の密度が向上する。また、異相の発生が抑えられ、
セラミックス超電導体の結晶方位が所望方向に配向さ
れ、これによりJc特性の向上したセラミックス超電導
導体が得られる。
The density of the ceramic superconductor is improved by performing the heat treatment for maintaining the partial melting temperature of the ceramic superconductor raw material. Also, the occurrence of out-of-phase is suppressed,
The crystallographic orientation of the ceramic superconductor is oriented in a desired direction, whereby a ceramic superconductor with improved Jc characteristics can be obtained.

【0013】[0013]

【実施例】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0014】まず、超電導体となしうるBi−2223
系原料および金属からなる複合ビレットを作製する。そ
の方法は、従来の方法がそのまま適用できる。例えば、
酸化物、炭酸塩等のような一次原料粉をBi−2223
系原料の組成となるように配合し充分に混合して混合粉
を得て、この混合粉を仮焼成して仮焼成体を形成し、こ
の仮焼成体を粉砕してBi−2223系原料粉を得る。
あるいは、一次原料粉を加熱・溶融して融液とし、これ
を凝固させ塊状体を得て、この塊状体を粉砕してBi−
2223系原料粉を得る。このようにして得られたBi
−2223系原料粉を金属パイプ内に充填する。その充
填方法としては、タップ充填方法、原料粉を圧粉成型、
CIP成型して金属パイプ内に挿入する方法、あるい
は、原料粉を圧粉成型、CIP成型して得られた成型体
を焼結し、この焼結体を金属パイプ内に挿入する方法等
が挙げられる。また、一次原料粉を加熱・溶融して融液
とし、この融液を直接金属パイプ内に鋳込んで複合ビレ
ットを作製してもよい。
First, Bi-2223 which can be used as a superconductor.
A composite billet composed of a raw material and a metal is produced. As the method, a conventional method can be applied as it is. For example,
Primary raw material powders such as oxides, carbonates, etc. are Bi-2223.
A raw material powder of Bi-2223 system is prepared by blending and mixing sufficiently to obtain a composition of a system raw material to obtain a mixed powder, calcining the mixed powder to form a calcined body, and pulverizing the calcined body. To get
Alternatively, the primary raw material powder is heated and melted to form a melt, which is solidified to obtain a lump, and the lump is crushed to obtain a Bi-
2223 series raw material powder is obtained. Bi thus obtained
The metal pipe is filled with −2223 series raw material powder. As the filling method, tap filling method, raw material powder compaction molding,
Examples include a method of CIP molding and inserting into a metal pipe, or a method of compacting raw material powder, sintering a molded body obtained by CIP molding, and inserting this sintered body into a metal pipe. Be done. Alternatively, the primary raw material powder may be heated and melted to form a melt, and the melt may be directly cast into a metal pipe to produce a composite billet.

【0015】このようにして作製された複合ビレットを
所望形状、所望寸法に塑性加工する。ここで、塑性加工
としては、通常行われるスウェージング、押出、引抜、
圧延、プレス等の減面加工が挙げられる。特に、テープ
状のセラミックス超電導導体を得る場合は圧延加工また
はプレス加工が好ましい。この場合、複合ビレットに直
接圧延加工またはプレス加工を施してもよいが、圧延加
工またはプレス加工の前に例えばスウェージング加工、
押出加工等を施してもよい。
The composite billet thus produced is plastically worked into a desired shape and a desired dimension. Here, as the plastic working, swaging, extrusion, drawing, which are usually performed,
Surface-reduction processing such as rolling and pressing can be mentioned. In particular, rolling or pressing is preferable when obtaining a tape-shaped ceramic superconducting conductor. In this case, the composite billet may be directly subjected to rolling or pressing, but before the rolling or pressing, for example, swaging,
You may give extrusion processing.

【0016】次いで、減面加工された複合ビレットに第
1の中間熱処理(H1)を施す。次に、これに再度圧延
加工またはプレス加工を行い、さらに第2の中間熱処理
(H2)を施す。このようにして複合ビレットに順次減
面加工と熱処理とを繰り返し施し、最終熱処理を施して
セラミックス超電導導体を作製する。ここで、中間熱処
理の条件としては、中間熱処理(H1)、(H2)、
(H3)、…(Hx)のうち、いずれかの熱処理を前記
セラミックス超電導体原料の部分溶融温度に保持する工
程を含む熱処理とする。この熱処理は、セラミックス超
電導体原料がBi2223系である場合、850〜88
0℃程度の温度で行う。また、その温度における保持時
間には特に制約はないが、保持時間があまり長いと得ら
れるセラミックス超電導体に異相が多く発生するため約
2〜10分程度であることが好ましい。また、この熱処
理は、部分溶融温度に所定の時間保持した後に、連続し
てそのセラミックス超電導体原料の凝固温度で保持して
もよい。また、セラミックス超電導体原料の部分溶融温
度に保持する熱処理を1回としたのは、この熱処理を2
回以上行うと得られるセラミックス超電導体に異相が発
生し、Jc特性を悪化させるからである。なお、中間熱
処理のうち、セラミックス超電導体原料の部分溶融温度
に保持する熱処理以外の熱処理は、セラミックス超電導
体原料の部分溶融温度以下の温度で行う。
Next, the surface-reduced composite billet is subjected to a first intermediate heat treatment (H1). Next, this is again subjected to rolling or pressing, and then subjected to a second intermediate heat treatment (H2). In this way, the composite billet is successively subjected to surface-reduction processing and heat treatment, and finally heat-treated to produce a ceramics superconducting conductor. Here, the conditions of the intermediate heat treatment include intermediate heat treatments (H1), (H2),
Any of the heat treatments (H3), ... (Hx) is a heat treatment including a step of maintaining the partial melting temperature of the ceramic superconductor raw material. This heat treatment is performed at 850 to 88 when the ceramic superconductor raw material is Bi2223 system.
The temperature is about 0 ° C. The holding time at that temperature is not particularly limited, but if the holding time is too long, many different phases will occur in the obtained ceramic superconductor, so that it is preferably about 2 to 10 minutes. Further, this heat treatment may be continued at the solidification temperature of the ceramic superconductor raw material after being kept at the partial melting temperature for a predetermined time. Further, the reason why the heat treatment for maintaining the partial melting temperature of the ceramic superconductor raw material once is that this heat treatment is
This is because if it is performed more than once, a different phase is generated in the obtained ceramic superconductor, and the Jc characteristic is deteriorated. The intermediate heat treatments other than the heat treatment for maintaining the ceramic superconductor raw material at the partial melting temperature are performed at a temperature equal to or lower than the ceramic superconductor raw material partial melting temperature.

【0017】本発明において得られるセラミックス超電
導導体の形状としては、単芯線材のほか、多芯線材ある
いは多層線材でもよい。
The shape of the ceramic superconducting conductor obtained in the present invention may be a single-core wire, a multi-core wire or a multi-layer wire.

【0018】実施例1 Bi2 3 、PbO、SrO3 、CaCO3 、CuOの
それぞれの一次原料粉をモル比でBi:Pb:Sr:C
a:Cu=1.6:0.4:2:2:3となるように配
合し充分に混合し、大気中で800℃×50時間仮焼成
し、得られた仮焼成体を粉砕して平均粒径が約5μmで
ある仮焼粉を作製した。
Example 1 Bi 2 O 3 , PbO, SrO 3 , CaCO 3 and CuO primary raw material powders in a molar ratio of Bi: Pb: Sr: C.
a: Cu = 1.6: 0.4: 2: 2: 3, and mixed sufficiently, and calcinated in the air at 800 ° C. for 50 hours, and the calcinated body obtained is crushed. A calcined powder having an average particle size of about 5 μm was produced.

【0019】この仮焼粉をCIPにより外径約15mmφ
の円柱状体に成型した後、あらかじめ機械加工された外
径25mmφ、内径15mmφAgパイプ内に挿入して複合
ビレットを作製した。
The calcined powder is CIP and the outer diameter is about 15 mmφ.
After being molded into a cylindrical body, the composite billet was prepared by inserting it into a machined machine having an outer diameter of 25 mmφ and an inner diameter of 15 mmφAg pipe.

【0020】この複合ビレットにスウェージング加工を
施して外径を5mmφとした後、圧延加工を施して厚さ
0.7mmのテープ線材とした。これに第1の中間熱処理
を施した。さらにこれに圧延加工を施して厚さ0.4mm
とした後、第2の中間熱処理を施した。次いで、これに
圧延加工を施して厚さ0.3mmとした後、第3の中間熱
処理を施した。最後に圧延加工を施して厚さ0.2mmに
仕上げ、最終熱処理を施してテープ状のセラミックス超
電導導体を作製した。
This composite billet was swaged to an outer diameter of 5 mmφ and then rolled to obtain a tape wire having a thickness of 0.7 mm. This was subjected to a first intermediate heat treatment. Furthermore, this is rolled to give a thickness of 0.4 mm.
After that, a second intermediate heat treatment was performed. Next, this was rolled to a thickness of 0.3 mm and then subjected to a third intermediate heat treatment. Finally, rolling was applied to finish the thickness to 0.2 mm, and final heat treatment was applied to produce a tape-shaped ceramic superconducting conductor.

【0021】得られたテープ状のセラミックス超電導導
体について液体窒素温度、0磁場におけるJcおよびセ
ラミックス超電導体の密度(真密度に対する比)、並び
にセラミックス超電導体内部の異相の発生状況を調べ
た。その結果を下記表1に示す。ここで、第1〜第3の
中間熱処理、および最終熱処理のうち表1中Aと記載し
たものは大気中、830℃×50時間の熱処理であり、
Bと記載したものは上記セラミックス超電導体原料の部
分溶融温度である850〜880℃で2〜10分保持し
た後、830℃に降温し、その温度で50時間保持する
熱処理を表わす。
With respect to the obtained tape-shaped ceramics superconducting conductor, liquid nitrogen temperature, Jc at zero magnetic field, density of ceramics superconducting conductor (ratio to true density), and occurrence of different phases inside the ceramics superconductor were examined. The results are shown in Table 1 below. Here, among the first to third intermediate heat treatments, and the final heat treatment, those described as A in Table 1 are heat treatments in air at 830 ° C. for 50 hours.
What is described as B represents a heat treatment in which the ceramic superconductor raw material is held at a partial melting temperature of 850 to 880 ° C. for 2 to 10 minutes, then cooled to 830 ° C., and held at that temperature for 50 hours.

【0022】また、第1〜第3の中間熱処理の回数、セ
ラミックス超電導体原料の部分溶融温度に保持する工程
を含む熱処理を行う順序を変えて得られた他の本発明例
1〜8および比較例1〜4についての結果も下記表1に
併記する。
Further, other examples 1 to 8 of the present invention obtained by changing the number of times of the first to third intermediate heat treatments and the order of performing the heat treatments including the step of maintaining the ceramics superconductor raw material at the partial melting temperature, and comparative examples The results for Examples 1 to 4 are also shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例2 中間熱処理後に複合ビレットに施す減面加工を20Ton/
cm2 の圧力によるプレス加工とすること以外は実施例1
と同様にして本発明例9〜16および比較例5〜8のテ
ープ状セラミックス超電導導体を作製した。
Example 2 The surface reduction processing applied to the composite billet after the intermediate heat treatment is 20 Ton /
Example 1 except that press working was performed with a pressure of cm 2.
In the same manner as above, tape-shaped ceramic superconducting conductors of Inventive Examples 9 to 16 and Comparative Examples 5 to 8 were produced.

【0025】得られたテープ状のセラミックス超電導導
体について実施例1と同様にして液体窒素温度、0磁場
におけるJcおよびセラミックス超電導体の密度、並び
にセラミックス超電導体内部の異相の発生状況を調べ
た。その結果を下記表2に示す。
With respect to the obtained tape-shaped ceramics superconducting conductor, in the same manner as in Example 1, the liquid nitrogen temperature, Jc at 0 magnetic field, the density of the ceramics superconducting substance, and the state of occurrence of different phases inside the ceramics superconducting substance were examined. The results are shown in Table 2 below.

【0026】[0026]

【表2】 [Table 2]

【0027】表1および表2から明らかなように、本発
明の方法により得られたセラミックス超電導導体(本発
明例1〜14)は、密度が高く、異相の発生が充分抑え
られ、しかもJcが高いものであった。これに対して、
セラミックス超電導体原料の部分溶融温度に保持する工
程を含む熱処理を最終の熱処理としたもの(比較例1,
3,5,7)、セラミックス超電導体原料の部分溶融温
度に保持する工程を含む熱処理を施さなかったもの(比
較例2,6)、セラミックス超電導体原料の部分溶融温
度に保持する工程を含む熱処理を2回施したもの(比較
例3,7)、セラミックス超電導体原料の部分溶融温度
を超える温度に保持したもの(比較例4,8)は、密
度、異相の発生、またはJcのいずれかに問題があっ
た。
As is clear from Tables 1 and 2, the ceramic superconducting conductors (Examples 1 to 14 of the present invention) obtained by the method of the present invention have a high density, the occurrence of different phases is sufficiently suppressed, and Jc is small. It was expensive. On the contrary,
A heat treatment including a step of maintaining the partial melting temperature of the ceramic superconductor raw material as the final heat treatment (Comparative Example 1,
3, 5, 7), which is not subjected to the heat treatment including the step of maintaining the partial melting temperature of the ceramics superconductor raw material (Comparative Examples 2 and 6), and heat treatment including the step of maintaining the partial melting temperature of the ceramics superconductor raw material. Those subjected to 2 times (Comparative Examples 3 and 7) and those maintained at a temperature higher than the partial melting temperature of the ceramic superconductor raw material (Comparative Examples 4 and 8) are either density, occurrence of different phases, or Jc. There was a problem.

【0028】[0028]

【発明の効果】以上説明した如く本発明のセラミックス
超電導導体の製造方法は、優れたJc特性を発揮できる
Bi−2223系セラミックス超電導導体を得ることが
できる。
As described above, according to the method for producing a ceramics superconducting conductor of the present invention, it is possible to obtain a Bi-2223 series ceramics superconducting conductor which can exhibit excellent Jc characteristics.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Bi2 −Sr2 −Ca2 −Cu3 −Ox
系セラミックス超電導体原料からなる部材と金属からな
る部材とを複合化して複合体を形成し、該複合体に減面
加工および熱処理を複数回繰り返して行いセラミックス
超電導導体を得るセラミックス超電導導体の製造方法に
おいて、前記熱処理のうち最終に行う熱処理を除く熱処
理が、1回が前記超電導体原料の部分溶融温度に保持す
る工程を含む熱処理、その他が前記超電導体原料の部分
溶融温度以下の温度で行う熱処理であることを特徴とす
るセラミックス超電導導体の製造方法。
1. Bi 2 —Sr 2 —Ca 2 —Cu 3 —Ox
For manufacturing a ceramics superconducting conductor by compounding a member made of a ceramic-based ceramics superconductor raw material and a member made of a metal to form a composite, and subjecting the composite to repeated surface reduction processing and heat treatment a plurality of times to obtain a ceramics superconducting conductor In the above heat treatment, the heat treatments other than the heat treatment finally performed include a heat treatment including a step of maintaining the partial melting temperature of the superconductor raw material once, and the other heat treatments performed at a temperature equal to or lower than the partial melting temperature of the superconductor raw material. And a method for manufacturing a ceramics superconducting conductor.
JP3213850A 1991-08-26 1991-08-26 Manufacture of ceramic superconductor Pending JPH0554735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213850A JPH0554735A (en) 1991-08-26 1991-08-26 Manufacture of ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213850A JPH0554735A (en) 1991-08-26 1991-08-26 Manufacture of ceramic superconductor

Publications (1)

Publication Number Publication Date
JPH0554735A true JPH0554735A (en) 1993-03-05

Family

ID=16646056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213850A Pending JPH0554735A (en) 1991-08-26 1991-08-26 Manufacture of ceramic superconductor

Country Status (1)

Country Link
JP (1) JPH0554735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022563A1 (en) * 2003-08-28 2005-03-10 Sumitomo Electric Industries, Ltd. Method for producing oxide superconducting wire material, method for modifying oxide superconducting wire material, and oxide superconducting wire material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022563A1 (en) * 2003-08-28 2005-03-10 Sumitomo Electric Industries, Ltd. Method for producing oxide superconducting wire material, method for modifying oxide superconducting wire material, and oxide superconducting wire material

Similar Documents

Publication Publication Date Title
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
US6246007B1 (en) Oxide superconductive wire and process for manufacturing the same
JPH04292819A (en) Manufacture of oxide superconductive wire
JPH0554735A (en) Manufacture of ceramic superconductor
EP0676817B1 (en) Method of preparing high-temperature superconducting wire
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JPH06275146A (en) Composite superconducting wire
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
US5429791A (en) Silver-high temperature superconductor composite material manufactured based on powder method, and manufacturing method therefor
JP2803819B2 (en) Manufacturing method of oxide superconductor
JP3612856B2 (en) Manufacturing method of oxide superconductor
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JP3109076B2 (en) Manufacturing method of oxide superconducting wire
JP3109077B2 (en) Manufacturing method of oxide superconducting wire
JPH0864044A (en) Manufacture of high temperature superconductive wire material
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JP3257569B2 (en) Method for producing Tl-based oxide superconductor
JP3033606B2 (en) Manufacturing method of oxide superconducting wire
JP3086237B2 (en) Manufacturing method of oxide superconducting wire
JPH04259203A (en) Manufacture of ceramic superconductor coil
JPH04317415A (en) Production of bi-based oxide superconductor
JPH0717366B2 (en) Method for producing oxide-based superconducting material
JP2004296253A (en) Manufacturing method of bismuth based oxide superconducting wire rod