JPH04259203A - Manufacture of ceramic superconductor coil - Google Patents

Manufacture of ceramic superconductor coil

Info

Publication number
JPH04259203A
JPH04259203A JP3041254A JP4125491A JPH04259203A JP H04259203 A JPH04259203 A JP H04259203A JP 3041254 A JP3041254 A JP 3041254A JP 4125491 A JP4125491 A JP 4125491A JP H04259203 A JPH04259203 A JP H04259203A
Authority
JP
Japan
Prior art keywords
ceramic superconductor
composite
coil
ceramic
linear body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3041254A
Other languages
Japanese (ja)
Inventor
Masanao Mimura
三村 正直
Kiyoshi Nemoto
清 根本
Takashi Kinoshita
隆 木下
Sukeyuki Kikuchi
菊地 祐行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3041254A priority Critical patent/JPH04259203A/en
Publication of JPH04259203A publication Critical patent/JPH04259203A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To prevent defective insulation by a method wherein a composite linear body is formed by arranging a metal outside a ceramic superconductor, a layer composed of a metallic oxide is formed on the surface of the composite linear body, the composite linear body is molded to a desired-shape coil molded form, and the coil molded form is thermally treated. CONSTITUTION:The mixture of primary raw-material powder is calcinated, and the calcinated body is crushed to obtain the calcinated powder of a ceramic superconductor. The inside of a pipe made of Ag is filled with the calcinated powder, thus manufacturing a composite billet. The composite billet is swaging- worked, and rolling-worked, thus manufacturing a tape-shaped composite wire rod. The surface of the tape-shaped composite wire rod is coated with the paste of a metallic oxide, and the paste is dried and a binder in said paste is removed. The tape-shaped composite wire rod is wound on said Ag pipe spirally in thirty turns. Said spiral body is thermally treated, and said calcinated powder in said composite wire rod is changed into the ceramic superconductor.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、セラミックス超電導体
を使用したコイルの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a coil using a ceramic superconductor.

【0002】0002

【従来の技術】Y−Ba−Cu−O系、Bi−Sr−C
a−Cu−O系、Tl−Ba−Ca−Cu−O系等のセ
ラミックス超電導体は、Tc(臨界温度)が液体窒素温
度を超えるため高温である種々の用途への応用が期待さ
れいる。特に、このようなセラミックス超電導体を種々
の形状に成型することが検討されている。例えば、セラ
ミックス超電導体を磁場を発生させるコイルに適用する
場合、従来、金属シース法により作製されたセラミック
ス超電導線状体を用いている。
[Prior art] Y-Ba-Cu-O system, Bi-Sr-C
Ceramic superconductors such as a-Cu-O series and Tl-Ba-Ca-Cu-O series have Tc (critical temperature) exceeding liquid nitrogen temperature, and are therefore expected to be applied to various high-temperature applications. In particular, molding such ceramic superconductors into various shapes is being considered. For example, when a ceramic superconductor is applied to a coil that generates a magnetic field, a ceramic superconducting wire body produced by a metal sheath method is conventionally used.

【0003】これは、例えば、セラミックス超電導体の
原料をシース材である金属パイプ内に充填して複合ビレ
ットを作製し、次いで、この複合ビレットを塑性加工に
より所望形状、所望寸法に仕上げ、次いで、図1に示す
ようにセラミックス超電導線状体10をコイル状に巻き
付けて、その後、このコイル状体にセラミックス超電導
体原料をセラミックス超電導体に反応させるための熱処
理を施してセラミックス超電導体コイル1を得るもので
ある。
[0003] For example, a composite billet is prepared by filling a raw material for a ceramic superconductor into a metal pipe serving as a sheath material, and then this composite billet is finished into a desired shape and dimensions by plastic working, and then, As shown in FIG. 1, a ceramic superconducting wire body 10 is wound into a coil shape, and then this coiled body is subjected to heat treatment for reacting the ceramic superconductor raw material to the ceramic superconductor to obtain a ceramic superconductor coil 1. It is something.

【0004】金属シースに用いられる金属材料としては
、Ag、Ag合金、Cu、Cu合金等が用いられる。 なかでも酸素透過性に優れるAg、Ag合金が特に好ま
しい。
[0004] As the metal material used for the metal sheath, Ag, Ag alloy, Cu, Cu alloy, etc. are used. Among these, Ag and Ag alloys, which have excellent oxygen permeability, are particularly preferred.

【0005】塑性加工としては、押出、圧延、引き抜き
、スウェージング等の従来の手段が用いられる。この塑
性加工により、断面形状が円形、楕円形、矩形、または
テープ形状のものを容易に製造することができる。
Conventional means such as extrusion, rolling, drawing, and swaging are used for plastic working. By this plastic working, it is possible to easily manufacture a material having a circular, elliptical, rectangular, or tape-shaped cross section.

【0006】図1に示すような、いわゆるパンケーキ型
コイルでは、各層間において電気的に絶縁されているこ
とが必要である。このため、種々の方法が考えられるが
、一般に、セラミックス超電導体が作用する液体窒素ま
たは液体ヘリウム等の極低温冷媒中で使用することがで
きるAl2 O3 、エポキシ樹脂等からなる絶縁部材
と共にセラミックス超電導体をコイル状に成型している
In a so-called pancake-shaped coil as shown in FIG. 1, it is necessary that each layer be electrically insulated. Various methods can be considered for this purpose, but in general, the ceramic superconductor is used together with an insulating member made of Al2O3, epoxy resin, etc., which can be used in a cryogenic coolant such as liquid nitrogen or liquid helium in which the ceramic superconductor acts. is molded into a coil shape.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の方法では、各層間に絶縁部材が介在してい
るので、全体としてコイルが大型化する。また、絶縁部
材に例えばAl2 O3 の繊維や不織布を用いる場合
、セラミックス超電導体と共にコイル状に巻き付けると
Al2 O3 の繊維や不織布がずれてしまい絶縁不良
を引き起こす恐れがある。
However, in the conventional method as described above, since an insulating member is interposed between each layer, the overall size of the coil becomes large. Further, when using, for example, Al2 O3 fibers or non-woven fabric as an insulating member, if they are wound into a coil together with a ceramic superconductor, the Al2 O3 fibers or non-woven fabric may be displaced, resulting in poor insulation.

【0008】本発明はかかる点に鑑みてなされたもので
あり、優れた超電導体特性を発揮し、しかも絶縁不良を
防止することができるセラミックス超電導体コイルを容
易に得ることができるセラミックス超電導体コイルの製
造方法を提供することを目的とする。
The present invention has been made in view of the above points, and provides a ceramic superconductor coil that exhibits excellent superconductor properties and can easily obtain a ceramic superconductor coil that can prevent insulation defects. The purpose is to provide a manufacturing method for.

【0009】[0009]

【課題を解決するための手段】本発明は、セラミックス
超電導体の外側に金属を配置して複合線状体を形成し、
次いで、該複合線状体の表面に金属酸化物からなる層を
形成し、次いで、前記複合線状体を所望形状のコイル成
型体に成型し、その後、該コイル成型体にセラミックス
超電導体となすための熱処理を施すことを特徴とするセ
ラミックス超電導体コイルの製造方法を提供する。
[Means for Solving the Problems] The present invention forms a composite linear body by arranging metal on the outside of a ceramic superconductor,
Next, a layer made of a metal oxide is formed on the surface of the composite linear body, then the composite linear body is molded into a coil molded body of a desired shape, and then a ceramic superconductor is formed into the coil molded body. Provided is a method for manufacturing a ceramic superconductor coil, which is characterized by subjecting a ceramic superconductor coil to heat treatment.

【0010】ここで、使用するセラミックス超電導体と
しては、Bi系、Y系、Tl系等のいずれも使用するこ
とができる。
[0010] As the ceramic superconductor used here, any of Bi-based, Y-based, Tl-based, etc. can be used.

【0011】金属シースに用いられる金属材料としては
、Ag、Ag合金、Cu、Cu合金等が用いられる。 なかでも酸素透過性に優れるAg、Ag合金が特に好ま
しい。
[0011] As the metal material used for the metal sheath, Ag, Ag alloy, Cu, Cu alloy, etc. are used. Among these, Ag and Ag alloys, which have excellent oxygen permeability, are particularly preferred.

【0012】複合線状体を作製する方法は、従来使用さ
れている方法、例えば、まず、セラミックス超電導体の
構成元素の酸化物、炭酸塩等のような一次原料粉末を所
望のセラミックス超電導体組成となるように配合し、こ
れを充分に混合する。次いで、この混合粉末を仮焼成し
て仮焼成体を得る。次いで、得られた仮焼成体を粉砕し
てセラミックス超電導体原料とする。あるいは、混合粉
末を加熱溶融した後急冷して仮焼塊を得て、これを粉砕
してセラミックス超電導体原料としてもよい。このよう
にして得たセラミックス超電導体原料をそのまま、もし
くは圧粉成型後焼結して金属パイプ内に充填して複合ビ
レットとする。そして、この複合ビレットを塑性加工し
て所望形状、所望寸法に仕上げて複合線状体を作製する
[0012] The method for producing the composite linear body is a conventionally used method, for example, first, primary raw material powder such as oxides, carbonates, etc. of constituent elements of the ceramic superconductor is mixed with a desired composition of the ceramic superconductor. Mix thoroughly. Next, this mixed powder is calcined to obtain a calcined body. Next, the obtained calcined body is pulverized to obtain a ceramic superconductor raw material. Alternatively, the mixed powder may be heated and melted and then rapidly cooled to obtain a calcined mass, which may be crushed to be used as a ceramic superconductor raw material. The ceramic superconductor raw material obtained in this way is used as it is, or after being compacted and sintered, it is filled into a metal pipe to form a composite billet. Then, this composite billet is plastically worked into a desired shape and desired dimensions to produce a composite linear body.

【0013】塑性加工としては、線状体、テープ状体等
の形状に応じてそれぞれ押出、圧延、引抜、スウェージ
ング等の従来の加工手段が用いられる。したがって、塑
性加工により、セラミックス超電導導体の断面形状を円
形、楕円形、多角形、矩形、またはテープ形状等いずれ
の形状にもすることができる。
[0013] For plastic working, conventional processing means such as extrusion, rolling, drawing, swaging, etc. are used depending on the shape of the linear body, tape-like body, etc. Therefore, by plastic working, the cross-sectional shape of the ceramic superconducting conductor can be made into any shape such as circular, elliptical, polygonal, rectangular, or tape-shaped.

【0014】金属酸化物の金属としては、比較的低温で
酸化物が得られるAl、Cu、Mg、Zr、Ti、Y、
Caまたはそれらの合金を用いることができる。
[0014] The metals of the metal oxide include Al, Cu, Mg, Zr, Ti, Y, and
Ca or an alloy thereof can be used.

【0015】金属酸化物の層を複合線状体の表面に形成
する方法としては、例えば、金属酸化物をペースト状に
してこれを直接複合線状体の表面に塗布しその後乾燥す
る方法、複合線状体の表面上にメッキを施して金属を被
着させ、この金属を酸化する方法、およびあらかじめ金
属シースに二重管を用い、複合線状体を作製した後に、
外側の管のみを酸化する方法等が挙げられる。
Methods for forming a metal oxide layer on the surface of a composite linear body include, for example, a method in which a metal oxide is made into a paste and is applied directly to the surface of the composite linear body and then dried; A method of plating and depositing metal on the surface of a linear body and oxidizing this metal, and a method in which a double pipe is used as a metal sheath in advance to produce a composite linear body,
Examples include a method in which only the outer tube is oxidized.

【0016】金属酸化物の厚さは、特に制限はないが、
複合線状体をコイル状に成型し易くするために数μm〜
数百μm程度にできるだけ薄いほうが好ましい。
[0016] The thickness of the metal oxide is not particularly limited, but
In order to make it easier to mold the composite linear body into a coil shape,
It is preferable that it be as thin as possible, on the order of several hundred μm.

【0017】線状体をコイル状に成型するとき、図1に
示すように、電流を供給するための端子12をあらかじ
め複合線状体10の両端に取り付けておくとよい。
[0017] When forming the linear body into a coil shape, it is preferable to attach terminals 12 for supplying current to both ends of the composite linear body 10 in advance, as shown in FIG.

【0018】セラミックス超電導体原料をセラミックス
超電導体となすための熱処理の温度は、セラミックス超
電導体原料の種類に応じて選定する。
[0018] The temperature of the heat treatment for converting the ceramic superconductor raw material into a ceramic superconductor is selected depending on the type of the ceramic superconductor raw material.

【0019】[0019]

【作用】本発明のセラミックス超電導体コイルの製造方
法は、セラミックス超電導体の外側に金属を配置するこ
とにより複合線状体を形成し、その複合線状体の表面に
金属酸化物からなる層を形成し、その複合線状体を所望
形状のコイル成型体に成型し、このコイル成型体にセラ
ミックス超電導体となすための熱処理を施すことを特徴
としている。
[Operation] The method for manufacturing a ceramic superconductor coil of the present invention involves forming a composite linear body by placing metal on the outside of a ceramic superconductor, and forming a layer made of metal oxide on the surface of the composite linear body. The composite linear body is formed into a coil molded body of a desired shape, and the coil molded body is subjected to heat treatment to form a ceramic superconductor.

【0020】このため、複合線状体上に形成された金属
酸化物層が、セラミックス超電導体コイルの各層間を確
実に絶縁する。したがって、単にセラミックス超電導体
コイルの各層間に絶縁部材を介在させたセラミックス超
電導体コイルにおいて起こる絶縁部材のずれによる絶縁
不良を防止することができる。
Therefore, the metal oxide layer formed on the composite linear body reliably insulates each layer of the ceramic superconductor coil. Therefore, it is possible to prevent insulation failure due to displacement of the insulating member that occurs in a ceramic superconducting coil in which an insulating member is simply interposed between each layer of the ceramic superconducting coil.

【0021】また、金属酸化物層は、厚さが数μm〜数
百μm程度と非常に薄いため、セラミックス超電導体コ
イルの小型化に寄与する。
Furthermore, since the metal oxide layer is extremely thin, ranging from several μm to several hundred μm in thickness, it contributes to miniaturization of the ceramic superconductor coil.

【0022】[0022]

【実施例】以下、本発明の実施例について具体的に説明
する。
[Examples] Examples of the present invention will be explained in detail below.

【0023】実施例1〜7 Bi2 O3 、SrCO3 、CaCO3 、CuO
の一次原料粉末をモル比で2:2:1:2となるように
配合し、充分に混合した。この混合物を大気中において
800℃、20時間で仮焼成し、得られた仮焼成体を粉
砕してセラミックス超電導体の仮焼成粉を得た。
Examples 1 to 7 Bi2O3, SrCO3, CaCO3, CuO
The primary raw material powders were blended in a molar ratio of 2:2:1:2 and thoroughly mixed. This mixture was pre-sintered in the atmosphere at 800° C. for 20 hours, and the obtained pre-sintered body was pulverized to obtain a pre-sintered powder of a ceramic superconductor.

【0024】次いで、この仮焼成粉を7つの外径7mm
φ、内径4mmφのAg製パイプ内にそれぞれ充填して
7つの複合ビレットを作製した。この7つの複合ビレッ
トをそれぞれスウェージング加工し、引続きこれに圧延
加工を施して幅約5mm、厚さ0.15mmのテープ状
複合線材を作製した。
[0024] Next, this calcined powder was divided into seven pieces with an outer diameter of 7 mm.
Seven composite billets were prepared by filling each Ag pipe with a diameter of 4 mm and an inner diameter of 4 mm. These seven composite billets were each swaged and then rolled to produce a tape-shaped composite wire with a width of about 5 mm and a thickness of 0.15 mm.

【0025】この7本のテープ状複合線材のそれぞれの
表面に、あらかじめ調製した表1に示す金属酸化物のペ
ーストを厚さ0.05mm厚に塗布し、その後乾燥して
ペースト中のバインダーを除去した。
[0025] On the surface of each of these seven tape-shaped composite wires, a metal oxide paste prepared in advance as shown in Table 1 was applied to a thickness of 0.05 mm, and then dried to remove the binder in the paste. did.

【0026】この7本のテープ状複合線材をそれぞれ外
径5mmφ、内径4mmφのAgパイプ上に30ターン
でコイル状に巻き付けた。それぞれのテープ状複合線材
の両端には電流端子をあらかじめ取り付けておいた。そ
の後、それぞれのコイル状体に大気中で850℃、50
時間の熱処理を施して複合線材中の仮焼成粉をセラミッ
クス超電導体にすることにより本発明のセラミックス超
電導体コイル(実施例1〜7)を作製した。
Each of these seven tape-shaped composite wires was wound into a coil with 30 turns on an Ag pipe having an outer diameter of 5 mmφ and an inner diameter of 4 mmφ. Current terminals were attached in advance to both ends of each tape-shaped composite wire. After that, each coiled body was heated at 850°C and 50°C in the atmosphere.
Ceramic superconductor coils (Examples 1 to 7) of the present invention were produced by subjecting the pre-sintered powder in the composite wire to a ceramic superconductor by subjecting it to heat treatment for several hours.

【0027】実施例8 実施例1と同様にして得た複合ビレットを引抜加工して
外径0.5mmφの断面が丸型の線状体を作製した。こ
の丸型線状体の表面に電気メッキによりCuを厚さ0.
2mm厚に被着した。次いで、この丸型線状体を大気中
において600℃で酸化処理して表面のCuをCuOに
してCuO層を形成した。
Example 8 A composite billet obtained in the same manner as in Example 1 was drawn to produce a linear body having an outer diameter of 0.5 mmφ and a round cross section. The surface of this round linear body is electroplated with Cu to a thickness of 0.
It was coated to a thickness of 2 mm. Next, this round linear body was oxidized at 600° C. in the atmosphere to convert Cu on the surface to CuO to form a CuO layer.

【0028】次いで、これをセラミック製の治具に30
ターンで巻き付けた。なお、それぞれのテープ状複合線
材の両端にはあらかじめ電流端子を取り付けておいた。 その後、それぞれのコイル状体に大気中で850℃、5
0時間の熱処理を施して複合線材中の仮焼成粉をセラミ
ックス超電導体にすることにより本発明のセラミックス
超電導体コイル(実施例8)を作製した。
Next, this was placed in a ceramic jig for 30 minutes.
Wrapped with a turn. Note that current terminals were attached in advance to both ends of each tape-shaped composite wire. After that, each coiled body was heated at 850°C for 5 minutes in the atmosphere.
A ceramic superconductor coil (Example 8) of the present invention was produced by performing heat treatment for 0 hours to convert the pre-sintered powder in the composite wire into a ceramic superconductor.

【0029】実施例9 実施例1と同様にして得た複合ビレットを外径7.8m
mφ、内径7.2mmφのAlパイプに挿入した。この
複合ビレットをスウェージング加工し、引続きこれを圧
延加工して幅約5mm、厚さ0.15mmのテープ状複
合線材を作製した。このテープ状複合線材に600℃に
制御された電気炉内で熱処理を施してAlをAl2 O
3 にしてAl2 O3 層を形成した。
Example 9 A composite billet obtained in the same manner as in Example 1 was prepared with an outer diameter of 7.8 m.
mφ and inserted into an Al pipe with an inner diameter of 7.2 mmφ. This composite billet was swaged and then rolled to produce a tape-shaped composite wire with a width of about 5 mm and a thickness of 0.15 mm. This tape-shaped composite wire was heat-treated in an electric furnace controlled at 600°C to convert Al to Al2O.
3 to form an Al2O3 layer.

【0030】このテープ状複合線材を外径5mmφ、内
径4mmφのAgパイプ上に30ターンでコイル状に巻
き付けた。なお、それぞれのテープ状複合線材の両端に
はあらかじめ電流端子を取り付けておいた。その後、そ
れぞれのコイル状体に大気中で850℃、50時間の熱
処理を施して複合線材中の仮焼成粉をセラミックス超電
導体にすることにより本発明のセラミックス超電導体コ
イル(実施例9)を作製した。
[0030] This tape-shaped composite wire was wound into a coil shape with 30 turns on an Ag pipe having an outer diameter of 5 mmφ and an inner diameter of 4 mmφ. Note that current terminals were attached in advance to both ends of each tape-shaped composite wire. Thereafter, each coiled body was heat-treated at 850°C for 50 hours in the atmosphere to turn the pre-sintered powder in the composite wire into a ceramic superconductor, thereby producing a ceramic superconductor coil (Example 9) of the present invention. did.

【0031】比較例 実施例1と同様にして得たテープ状複合線材を、絶縁部
材としてAl2 O3 と共に外径5mmφ、内径4m
mφのAgパイプ上に30ターンでコイル状に巻き付け
た。なお、それぞれのテープ状複合線材の両端にはあら
かじめ電流端子を取り付けておいた。その後、それぞれ
のコイル状体に大気中で850℃、50時間の熱処理を
施して複合線材中の仮焼成粉をセラミックス超電導体に
することにより従来のセラミックス超電導体コイル(比
較)を作製した。
Comparative Example A tape-shaped composite wire material obtained in the same manner as in Example 1 was used together with Al2O3 as an insulating member, with an outer diameter of 5 mmφ and an inner diameter of 4 m.
It was wound into a coil with 30 turns on an mφ Ag pipe. Note that current terminals were attached in advance to both ends of each tape-shaped composite wire. Thereafter, a conventional ceramic superconductor coil (comparison) was fabricated by subjecting each coiled body to heat treatment at 850° C. for 50 hours in the atmosphere to turn the pre-sintered powder in the composite wire into a ceramic superconductor.

【0032】実施例1〜9、比較例のセラミックス超電
導体コイルについて液体窒素および液体ヘリウム中にお
けるIc(臨界電流)、並びにIcにおけるそれぞれの
発生磁場を調べた。その結果を下記表1に示す。なお、
Icは、セラミックス超電導体コイルを液体窒素または
液体ヘリウムに浸漬し、両端子に電流を流すことにより
測定した。
For the ceramic superconducting coils of Examples 1 to 9 and Comparative Example, Ic (critical current) in liquid nitrogen and liquid helium, and the respective generated magnetic fields in Ic were investigated. The results are shown in Table 1 below. In addition,
Ic was measured by immersing a ceramic superconductor coil in liquid nitrogen or liquid helium and passing a current through both terminals.

【0033】[0033]

【表1】 表1から明らかなように、本発明の方法により得られた
セラミックス超電導体コイル(実施例1〜9)は、いず
れも臨界電流値が高く、それぞれの発生磁場も大きいも
のであり、しかもコイル全層間において絶縁がなされて
いた。これに対して従来の方法により得られたセラミッ
クス超電導体コイル(比較例)は、臨界電流値が低く、
それぞれの発生磁場も小さく、実施例のほぼ半分程度で
あり、しかもコイル中心部の2箇所において絶縁不良が
認められた。
[Table 1] As is clear from Table 1, the ceramic superconductor coils (Examples 1 to 9) obtained by the method of the present invention all have high critical current values and each generate a large magnetic field. Moreover, insulation was provided between all layers of the coil. On the other hand, the ceramic superconductor coil obtained by the conventional method (comparative example) has a low critical current value.
The magnetic field generated in each case was also small, approximately half that of the example, and poor insulation was observed at two locations in the center of the coil.

【0034】[0034]

【発明の効果】以上説明した如く本発明のセラミックス
超電導体コイルの製造方法によれば、優れた超電導体特
性を発揮すると共に絶縁不良を防止することができるセ
ラミックス超電導体コイルを容易に得ることができ、し
かもセラミックス超電導体コイルの小型化に寄与するこ
とができる。
[Effects of the Invention] As explained above, according to the method of manufacturing a ceramic superconductor coil of the present invention, it is possible to easily obtain a ceramic superconductor coil that exhibits excellent superconducting properties and can prevent insulation defects. Moreover, it can contribute to miniaturization of ceramic superconductor coils.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】セラミックス超電導体コイルを示す概略説明図
FIG. 1 is a schematic explanatory diagram showing a ceramic superconductor coil.

【符号の説明】[Explanation of symbols]

1…セラミックス超電導体コイル、10…セラミックス
超電導線状体、12…端子。
DESCRIPTION OF SYMBOLS 1... Ceramic superconductor coil, 10... Ceramic superconducting wire body, 12... Terminal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  セラミックス超電導体の外側に金属を
配置して複合線状体を形成し、次いで、該複合線状体の
表面に金属酸化物からなる層を形成し、次いで、前記複
合線状体を所望形状の成型体に成型し、その後、該成型
体にセラミックス超電導体となすための熱処理を施すこ
とを特徴とするセラミックス超電導体コイルの製造方法
1. A composite linear body is formed by arranging a metal on the outside of a ceramic superconductor, a layer made of a metal oxide is formed on the surface of the composite linear body, and then a metal oxide layer is formed on the surface of the composite linear body. 1. A method for manufacturing a ceramic superconductor coil, comprising: molding a body into a molded body having a desired shape, and then subjecting the molded body to heat treatment to form a ceramic superconductor.
JP3041254A 1991-02-13 1991-02-13 Manufacture of ceramic superconductor coil Pending JPH04259203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3041254A JPH04259203A (en) 1991-02-13 1991-02-13 Manufacture of ceramic superconductor coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3041254A JPH04259203A (en) 1991-02-13 1991-02-13 Manufacture of ceramic superconductor coil

Publications (1)

Publication Number Publication Date
JPH04259203A true JPH04259203A (en) 1992-09-14

Family

ID=12603306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3041254A Pending JPH04259203A (en) 1991-02-13 1991-02-13 Manufacture of ceramic superconductor coil

Country Status (1)

Country Link
JP (1) JPH04259203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511145A (en) * 2004-08-23 2008-04-10 シーメンス アクチエンゲゼルシヤフト Rectangular coil made of strip superconductor having high TC superconductor material and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511145A (en) * 2004-08-23 2008-04-10 シーメンス アクチエンゲゼルシヤフト Rectangular coil made of strip superconductor having high TC superconductor material and use thereof

Similar Documents

Publication Publication Date Title
JP3386942B2 (en) Oxide superconducting coil and manufacturing method thereof
AU779553B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JPH04259203A (en) Manufacture of ceramic superconductor coil
JPH1092630A (en) Oxide superconducting coil
JP2727565B2 (en) Superconductor manufacturing method
JPH04262308A (en) Oxide superconductive wire rod
JPH0382105A (en) Manufacture of oxide superconducting coil
JP2509642B2 (en) Superconducting power lead manufacturing method
JP4709455B2 (en) Oxide high-temperature superconducting wire and manufacturing method
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JPH0554735A (en) Manufacture of ceramic superconductor
JPH0668729A (en) Manufacture of multilayer ceramic superconducting conductor
JPH0465034A (en) Manufacture of oxide superconducting wire
JPH0215514A (en) Manufacture of oxide superconductor and superconductive magnet
JPH01163913A (en) Manufacture of oxide superconductive wire
JPH01279507A (en) Manufacture of ceramic superconductor
JPH04269407A (en) Manufacture of ceramic superconductive conductor
JPS63252314A (en) Forming method for superconductive material
JPH01315907A (en) Oxide superconductive filament and manufacture thereof
JPH03110715A (en) Ceramics superconducting conductor
JPH01241717A (en) Manufacture of oxide superconductor wire
JPH01144517A (en) Oxide-based superconductive cable
JPH02189817A (en) Manufacture of wire rod of oxide superconductive tape state
JPH01170003A (en) Manufacture of oxide superconducting coil
JPH05182535A (en) Ceramics superconductor