JPH04269407A - Manufacture of ceramic superconductive conductor - Google Patents

Manufacture of ceramic superconductive conductor

Info

Publication number
JPH04269407A
JPH04269407A JP3053351A JP5335191A JPH04269407A JP H04269407 A JPH04269407 A JP H04269407A JP 3053351 A JP3053351 A JP 3053351A JP 5335191 A JP5335191 A JP 5335191A JP H04269407 A JPH04269407 A JP H04269407A
Authority
JP
Japan
Prior art keywords
ceramic
superconductor
tape
raw material
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3053351A
Other languages
Japanese (ja)
Other versions
JP2951423B2 (en
Inventor
Sukeyuki Kikuchi
菊地 祐行
Masanao Mimura
三村 正直
Kiyoshi Nemoto
清 根本
Naoki Uno
直樹 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3053351A priority Critical patent/JP2951423B2/en
Publication of JPH04269407A publication Critical patent/JPH04269407A/en
Application granted granted Critical
Publication of JP2951423B2 publication Critical patent/JP2951423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Wire Processing (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To provide manufacture of a ceramic superconductive conductor in a shape usable for a magnet and a cable and moreover excellent in superconductive characteristic. CONSTITUTION:A complex 3 consisting of a ceramics raw material 1 to servo as a superconductor and a metal 2 is subjected to press processing while its optional length is restrained to become a desired width, and this processing is progressively performed along the length direction of the complex 3 followed by performing heat treatment of the same complex 3 in order to make aforesaid ceramic raw material 1 a superconductor.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はケ−ブル、マグネット、
電流リ−ドなどに使用可能なセラミックス超電導導体の
製造方法に関するものである。
[Industrial Application Field] The present invention is applicable to cables, magnets,
The present invention relates to a method of manufacturing a ceramic superconducting conductor that can be used as a current lead or the like.

【0002】0002

【従来の技術】近年、Y−Ba−Cu−O系、Bi−S
r−Ca−Cu−O系、Tl−Ba−Ca−Cu系など
のように、液体窒素温度を越えるTcのセラミックス超
電導体が知られている。このようなセラミックス超電導
導体は各種分野での利用、応用を目指して、種々の形状
に成型することが検討されている。その一つとして例え
ば線状体に成型する方法がある。その場合、従来は一般
に金属シ−ス法が用いられている。これは超電導体とな
るセラミックス原料を金属のパイプ内に充填し、それを
所望形状、寸法に縮径加工して仕上げた後、所定の熱処
理を行って前記セラミックス原料をセラミックス超電導
体とするものである。線状体の形状としては断面が丸型
、楕円形、多角形のもの、或はこれらを複数本束ねた多
芯形状のもの、更には金属の内部にセラミックス超電導
体を同芯円筒状や渦巻状に設けた多層形状のもの等が試
作検討されている。前記縮径加工の方法としては、得ら
れる線状体の形状に応じて押し出し、圧延、スウェ−ジ
ング、引き抜き等の従来の塑性加工法がそのまま適用さ
れている。前記金属としては熱伝導性、電気伝導性に優
れた材料、例えばAg、Ag合金、Cu、Cu合金など
が使用できるが、酸素透過性の点でAg、Ag合金を用
いる例が多い。
[Prior Art] In recent years, Y-Ba-Cu-O system, Bi-S
Ceramic superconductors with Tc exceeding the liquid nitrogen temperature are known, such as r-Ca-Cu-O type and Tl-Ba-Ca-Cu type. Molding of such ceramic superconducting conductors into various shapes is being considered for use and application in various fields. One such method is, for example, a method of molding it into a linear body. In that case, a metal sheath method has conventionally been generally used. This involves filling a metal pipe with a ceramic raw material that will become a superconductor, reducing the diameter of the pipe to the desired shape and dimensions, and then subjecting it to a prescribed heat treatment to turn the ceramic raw material into a ceramic superconductor. be. The shape of the linear body may be round, oval, or polygonal in cross section, or a multi-core shape made by bundling multiple of these, and even a concentric cylindrical or spiral shape with ceramic superconductor inside the metal. Prototypes of multi-layered structures are being considered. As the diameter reduction method, conventional plastic working methods such as extrusion, rolling, swaging, and drawing are directly applied depending on the shape of the linear body to be obtained. As the metal, materials with excellent thermal conductivity and electrical conductivity, such as Ag, Ag alloy, Cu, and Cu alloy, can be used, but Ag and Ag alloy are often used because of their oxygen permeability.

【0003】近年、このようなテ−プ多芯状セラミック
ス超電導体を図5に示したようなケ−ブルに使用するこ
とが検討されている。図5に示すケ−ブルは金属製の棒
或はパイプAの周囲に、前記テ−プ多芯状セラミックス
超電導体Bを複数本配置したものである。この場合、高
いJcを持つテ−プ多芯状セラミックス超電導体Bが望
まれるが、高いJcを持つセラミックスの超電導体を得
るためにはセラミックス超電導体の結晶配向が必要であ
り、その達成には超電導体の厚さを極力薄くする必要が
ある。従来、圧延加工したテ−プ状導体で比較的高い超
電導特性が得られているが、Jc値が104 (A/c
m2 )程度が限界であった。その超電導特性の改善の
ため本件出願人は図8に示したようなセラミックス超電
導導体の製造方法を先に出願(特願昭64−1099)
した。しかし、図8に示したセラミックス超電導導体の
製造方法は、超電導体となるセラミックス原料と金属と
の棒状複合体Dを、その肉厚方向(図の上下方向)から
図8a〜cのように加圧型E、Fにより加圧し、以下、
図8dのように棒状複合体Dの長手方向に順次連続的に
加圧するようにした方法である。
Recently, the use of such a tape multicore ceramic superconductor in a cable as shown in FIG. 5 has been studied. The cable shown in FIG. 5 has a plurality of tape multicore ceramic superconductors B arranged around a metal rod or pipe A. In this case, a tape multicore ceramic superconductor B with a high Jc is desired, but in order to obtain a ceramic superconductor with a high Jc, crystal orientation of the ceramic superconductor is required, and to achieve this, It is necessary to make the thickness of the superconductor as thin as possible. Conventionally, relatively high superconducting properties have been obtained with rolled tape-shaped conductors, but the Jc value is 104 (A/c
m2) was the limit. In order to improve its superconducting properties, the applicant of the present application previously applied for a method for manufacturing a ceramic superconductor as shown in Figure 8 (Japanese Patent Application No. 1099-1982).
did. However, in the method for manufacturing the ceramic superconductor shown in FIG. 8, the rod-shaped composite D of ceramic raw material and metal that becomes the superconductor is processed from the thickness direction (vertical direction in the figure) as shown in FIGS. 8a to 8c. Pressure is applied using pressure molds E and F, and the following is done.
In this method, pressure is applied sequentially and continuously in the longitudinal direction of the rod-shaped composite D as shown in FIG. 8d.

【0004】0004

【発明が解決するための課題】しかし、図8に示したセ
ラミックス超電導導体の製造方法は、棒状複合体Dをそ
の肉厚方向に加圧型E、Fにより加圧するが、そのとき
、棒状複合体Dの幅方向両側面は開放されているため、
加圧された棒状複合体Dが図7に示すように局部的に幅
方向に拡がってしまい、得られたテ−プ状超電導導体G
の形状が図7に示すようにテ−プ幅が一定になりにくい
という課題があった。このテ−プ幅が不均一なテ−プ状
超電導導体Gを、例えば図5に示したようなケ−ブルH
のテ−プ多芯状セラミックス超電導体Bとして使用した
り、図6に示したように渦巻き状に巻いてマグネットI
に利用すると、整列巻きが困難になって形状が悪化する
とか、テ−プ状超電導導体G同士が重なってその応力に
より超電導特性が低下するという課題があった。
[Problems to be Solved by the Invention] However, in the method for manufacturing a ceramic superconducting conductor shown in FIG. Since both sides of D in the width direction are open,
The pressurized rod-shaped composite D expands locally in the width direction as shown in FIG. 7, and the resulting tape-shaped superconducting conductor G
As shown in FIG. 7, there was a problem in that it was difficult to keep the tape width constant. This tape-shaped superconducting conductor G with non-uniform tape width is, for example, connected to a cable H as shown in FIG.
The tape can be used as a multicore ceramic superconductor B, or it can be wound spirally to form a magnet I as shown in Figure 6.
When used for this purpose, there are problems in that it becomes difficult to wind in alignment and the shape deteriorates, and that the tape-shaped superconducting conductors G overlap each other and the superconducting properties deteriorate due to stress.

【0005】[0005]

【発明の目的】本発明の目的は、図5に示したようなケ
−ブルや図6に示したようなマグネットに使用可能な形
状で、しかも超電導特性に優れたセラミックス超電導導
体の製造方法を提供することにある。
[Object of the Invention] The object of the present invention is to provide a method for manufacturing a ceramic superconducting conductor that has a shape that can be used for cables as shown in Fig. 5 and magnets as shown in Fig. 6, and that has excellent superconducting properties. It is about providing.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を改善
するために種々実験を重ねた結果開発されたものである
。本発明のセラミックス超電導導体の製造方法は、図1
に示すように超電導体となるセラミックス原料1と金属
2との複合体3の任意長を、その幅方向側方を拘束しな
がら厚さ方向に加圧し、この加圧を同複合体3の長さ方
向に順次連続的に行なった後、同複合体3を熱処理して
前記セラミックス原料1を超電導体となすことを特徴と
するものである。
[Means for Solving the Problems] The present invention was developed as a result of various experiments in order to improve the above-mentioned problems. The method for manufacturing the ceramic superconducting conductor of the present invention is shown in FIG.
As shown in the figure, a given length of a composite 3 of a ceramic raw material 1 and a metal 2 that will become a superconductor is pressurized in the thickness direction while restraining the sides in the width direction, and this pressure is applied to the length of the composite 3. The present invention is characterized in that the composite body 3 is subjected to a heat treatment to convert the ceramic raw material 1 into a superconductor.

【0007】本発明のセラミックス超電導導体の製造方
法では、はじめに超電導体となるセラミックス原料1を
用意する。その原料1を得る方法は従来の手段がそのま
ま適用できる。例えば超電導体を構成する元素を含む酸
化物・炭酸塩などのような一次原料粉を所望組成となる
ように配合して混合した後、仮焼成し、更に粉砕して得
ることができる。或は前記したような原料粉を加熱・溶
融した後、急冷し、これを粉砕して得ることもできる。 このようにして得られた仮焼粉(超電導体となるセラミ
ックス原料)1を金属製のパイプ内に充填して複合ビレ
ット(複合体)3とする。この場合、前記仮焼粉をその
まま充填したり、或は圧粉成型、CIP成型等により所
望形状に成型してから挿入したり、これを焼結した後に
挿入して複合体3とすることも可能である。この場合、
前記原料1を多芯状となるように、或は多層状となるよ
うに構成することもできる。複合体3のサイズは適宜決
定できる。例えば複合体3のサイズが大きい場合は、そ
れを塑性加工して所定のサイズに仕上げてから、所望の
サイズとなるように加圧治具5を用いて成型を行なう。 次に、前記のようにして作製した複合体3を塑性加工す
る。例えば、図1に示したように例えばプレス型の加圧
治具5を用いて圧縮成型する。この場合、複合体3の任
意長について成型した後、複合体3の長さ方向に順次連
続的に加圧成型する。この圧縮成型の速度は適宜選定で
きる。
In the method for manufacturing a ceramic superconducting conductor of the present invention, a ceramic raw material 1 that will become a superconducting material is first prepared. As a method for obtaining the raw material 1, conventional means can be applied as is. For example, it can be obtained by blending and mixing primary raw material powders such as oxides, carbonates, etc. containing elements constituting the superconductor to a desired composition, calcining the mixture, and then pulverizing it. Alternatively, it can be obtained by heating and melting the raw material powder as described above, rapidly cooling it, and pulverizing it. The thus obtained calcined powder (ceramic raw material to become a superconductor) 1 is filled into a metal pipe to form a composite billet (composite) 3. In this case, the calcined powder may be filled as it is, or it may be molded into a desired shape by compaction molding, CIP molding, etc. and then inserted, or it may be sintered and then inserted to form the composite body 3. It is possible. in this case,
The raw material 1 can also be configured to have a multi-core shape or a multi-layered shape. The size of the complex 3 can be determined as appropriate. For example, if the composite body 3 is large in size, it is plastically worked to a predetermined size and then molded using a pressing jig 5 to obtain the desired size. Next, the composite body 3 produced as described above is subjected to plastic working. For example, as shown in FIG. 1, compression molding is performed using, for example, a pressing jig 5 of a press type. In this case, after the composite body 3 is molded to an arbitrary length, the composite body 3 is press-molded sequentially and continuously in the length direction. The speed of this compression molding can be selected as appropriate.

【0008】加圧治具5はその一部を凹陥させて加圧部
6を形成してある。この加圧部6の幅aは得られるテ−
プ状線材の幅とほぼ同一にする。加圧治具5の加圧部6
の深さbは得られるテ−プ状線材の厚さに応じて決定す
る。この加圧治具5により加圧すると、複合体3の幅方
向両側方が加圧部6の幅方向両側面7、8により拘束さ
れるので、複合体3がその肉厚方向に加圧されても複合
体3の幅方向には突出しない。図示した実施例は得られ
るセラミックス超電導体の形状がテ−プ状線状体の場合
の例であるが、本発明のセラミックス超電導導体の製造
方法で得られるセラミックス超電導導体の形状はこれに
限られるものではなく、例えば図2に示したような縦長
楕円形、図3に示したような横長楕円形、図4に示した
ような多角形などであってもよい。本発明では前記のよ
うにして得られたテ−プ状線状体を熱処理して、複合体
3におけるセラミックス原料1を超電導導体とする。以
上の説明は圧縮加工と熱処理を1回だけ行なう場合であ
るが、本発明では図1に示したような圧縮加工と熱処理
とを2回以上繰り返し行って所望形状、寸法のテ−プ状
線状体とした後、更に熱処理を行なうと一層超電導特性
が向上する。
[0008] The pressurizing jig 5 has a portion thereof recessed to form a pressurizing portion 6. The width a of this pressure part 6 is the width of the obtained tape.
The width should be approximately the same as the width of the loop-shaped wire. Pressure section 6 of pressurization jig 5
The depth b is determined depending on the thickness of the tape-shaped wire to be obtained. When pressurized by this pressurizing jig 5, both sides of the composite 3 in the width direction are restrained by both sides 7 and 8 in the width direction of the pressurizing part 6, so that the composite 3 is pressurized in its thickness direction. However, it does not protrude in the width direction of the composite body 3. The illustrated embodiment is an example in which the shape of the ceramic superconductor obtained is a tape-like linear body, but the shape of the ceramic superconductor obtained by the method of manufacturing a ceramic superconductor of the present invention is limited to this. For example, the shape may be a vertically long ellipse as shown in FIG. 2, a horizontally long ellipse as shown in FIG. 3, a polygon as shown in FIG. 4, or the like. In the present invention, the tape-like linear body obtained as described above is heat treated to make the ceramic raw material 1 in the composite body 3 into a superconducting conductor. The above explanation is for the case where compression processing and heat treatment are performed only once, but in the present invention, compression processing and heat treatment are repeated two or more times as shown in FIG. If the material is further heat-treated after being made into a shape, the superconducting properties will be further improved.

【0009】[0009]

【作用】本発明の製造方法で得られたテ−プ状のセラミ
ックス超電導導体は幅が均一になるため、図5に示した
ように金属製の丸棒やパイプ等(金属製芯材)Aに巻き
付ければ、整列巻きが可能になると共にセラミックス超
電導導体同士が重なることもなく、優れた形状及び超電
導導特性を持ったつケ−ブルやマグネットができる。ま
た、図6のように渦巻き状に巻く場合に、セラミックス
超電導体に加わる曲げ歪が小さくなるので超電導特性が
低下しない。
[Function] Since the tape-shaped ceramic superconducting conductor obtained by the manufacturing method of the present invention has a uniform width, it can be used as a metal round bar, pipe, etc. (metal core material) A as shown in FIG. By winding the ceramic superconducting conductors, it becomes possible to wind them in an aligned manner, and the ceramic superconducting conductors do not overlap with each other, resulting in a cable or magnet having an excellent shape and superconducting properties. Furthermore, when spirally wound as shown in FIG. 6, the bending strain applied to the ceramic superconductor becomes small, so that the superconducting properties do not deteriorate.

【0010】0010

【実施例1】Bi2 O3 、SrCO3 、CaCO
3 、CuOなどの一次原料粉をモル比で2212とな
るように配合・混合したのち、酸素気流中で820℃X
20h仮焼成し、さらに粉砕して平均粒径約5μの仮焼
粉(セラミックス超電導体となる原料)を作製した。こ
れをCIP成型して外径15mmφ程度の丸棒とし、あ
らかじめ機械加工してある外径25mmφ、内径15m
mφのAgパイプ内に挿入して複合ビレットとした。こ
の複合ビレットを外径3mmφまでスウエ−ジング加工
し、更に圧延加工して厚さ1.5mm、幅4mmのテ−
プ状の線材に仕上げた。このテ−プ状の線材を図1に示
したような加圧治具でその長手方向に順次連続的にプレ
ス加工し、厚さ0.2mm、幅約7mmのテ−プ状線材
に仕上げた。得られたテ−プ状の線材を酸素気流中、8
50℃X50h熱処理してセラミックス超電導導体とし
た。このセラミックス超電導導体について液体窒素中、
O磁場におけるJcを測定した結果、14500(A/
cm2 )の優れた特性が得られた。得られたテ−プ状
のセラミックス超電導導体を図5に示したように外径5
mmφの金属製芯材Aに25タ−ン巻つけてコイルを構
成した。このコイルの液体ヘリウム温度における発生磁
場を測定したところ、1980(G)の優れた特性が得
られた。
[Example 1] Bi2 O3, SrCO3, CaCO
3. After blending and mixing primary raw material powders such as CuO to a molar ratio of 2212, heat at 820°C in an oxygen stream.
It was calcined for 20 hours and further crushed to produce calcined powder (raw material for ceramic superconductor) with an average particle size of about 5 μm. This is CIP molded into a round bar with an outer diameter of about 15 mmφ, which is pre-machined to an outer diameter of 25 mmφ and an inner diameter of 15 m.
It was inserted into a mφ Ag pipe to form a composite billet. This composite billet was swaged to an outer diameter of 3 mm, and then rolled to a tape with a thickness of 1.5 mm and a width of 4 mm.
Finished in a loop-shaped wire rod. This tape-shaped wire rod was sequentially and continuously pressed in the longitudinal direction using a pressure jig as shown in Figure 1, and finished into a tape-shaped wire rod with a thickness of 0.2 mm and a width of about 7 mm. . The obtained tape-shaped wire was heated in an oxygen stream for 8
A ceramic superconducting conductor was obtained by heat treatment at 50°C for 50 hours. About this ceramic superconductor In liquid nitrogen,
As a result of measuring Jc in the O magnetic field, it was 14500 (A/
cm2) excellent properties were obtained. The obtained tape-shaped ceramic superconductor has an outer diameter of 5 as shown in FIG.
A coil was constructed by winding 25 turns around a metal core material A having a diameter of mm. When the magnetic field generated by this coil at liquid helium temperature was measured, excellent characteristics of 1980 (G) were obtained.

【0011】[0011]

【実施例2】Bi2 O3 、PbO、SrCO3 、
CaCo3 、CuOの一次原料粉をモル比で1.6:
0.4:2:2:3となるように配合し、混合した後、
酸素気流中で800℃X20h仮焼成し、さらに粉砕し
て平均粒径約5μの仮焼粒を作製した。これをCIP成
型して外径15mmφ程度の丸棒とし、あらかじめ機械
加工してある外径25mmφ、内径15mmφのAgパ
イプ内に挿入して複合ビレットとした。これを外径3m
mφまでスウエ−ジング加工し、さらに圧延加工して厚
さ1.5mm、幅約4mmのテ−プ状の線材に仕上げた
。このテ−プ状の線材を図1に示した加圧治具で長手方
向に所望長づつ順次連続的にプレス加工し、厚さ0.5
mm、幅約5mmのテ−プ状に仕上げた。得られたテ−
プ状の線材を酸素気流中、840℃X50h熱処理して
セラミックス超電導導体とした。このセラミックス超電
導導体を後からの説明の便宜上、サンプルAとする。こ
れを再度、図1に示した加圧治具で長手方向に所望長づ
つ順次連続的にプレス加工し、厚さ0.3mm、幅約5
.5mmのテ−プ状の線材に仕上げた。得られたテ−プ
状の線材を酸素気流中、840℃X50h熱処理してセ
ラミックス超電導導体とした。このセラミックス超電導
導体を後からの説明の便宜上、サンプルBとする。更に
図1に示した加圧治具で前回と同様に加圧し、厚さ0.
2mm、幅約6mmのテ−プ状の線材に仕上げた。得ら
れたテ−プ状の線材を酸素気流中、840℃X50h熱
処理してセラミックス超電導導体とした。このセラミッ
クス超電導導体を後からの説明の便宜上、サンプルCと
する。これを更に図1に示した示した加圧治具で前回と
同様に加圧し、厚さ0.1mm、幅約6.5mmのテ−
プ状の線材に仕上げた。得られたのテ−プ状の線材を酸
素気流中、840℃X50h熱処理してセラミックス超
電導導体とした。このセラミックス超電導導体を後から
の説明の便宜上、サンプルDとする。このようにして得
られたサンプルA〜Dのテ−プ状線材について液体窒素
中、O磁場におけるJcを測定した。その結果は次表に
示す通りである。   上記表より明らかなように、前記プレス加工と熱処
理とを繰り返し行なうことにより、特性がより一層向上
することが認められた。
[Example 2] Bi2 O3, PbO, SrCO3,
The molar ratio of primary raw material powder of CaCo3 and CuO is 1.6:
After blending and mixing in a ratio of 0.4:2:2:3,
The mixture was calcined at 800° C. for 20 hours in an oxygen stream and further crushed to produce calcined grains with an average particle size of about 5 μm. This was CIP-molded into a round bar with an outer diameter of about 15 mmφ, and inserted into a previously machined Ag pipe with an outer diameter of 25 mmφ and an inner diameter of 15 mmφ to form a composite billet. This has an outer diameter of 3m
It was swaged to mφ and further rolled to a tape-shaped wire with a thickness of 1.5 mm and a width of about 4 mm. This tape-shaped wire rod was press-worked sequentially and continuously in desired lengths in the longitudinal direction using the pressing jig shown in Fig. 1, and the thickness was 0.5 mm.
It was finished into a tape shape with a width of about 5 mm. The obtained tea
The wire rod was heat-treated at 840° C. for 50 hours in an oxygen stream to obtain a ceramic superconducting conductor. This ceramic superconducting conductor will be referred to as sample A for convenience of explanation later. This was again successively pressed in the desired length in the longitudinal direction using the pressing jig shown in Figure 1, and the thickness was 0.3 mm and the width was approximately 5 mm.
.. It was finished into a 5mm tape-shaped wire. The obtained tape-shaped wire was heat-treated at 840° C. for 50 hours in an oxygen stream to obtain a ceramic superconducting conductor. This ceramic superconducting conductor will be referred to as sample B for convenience of explanation later. Further, pressure was applied in the same manner as before using the pressure jig shown in Fig. 1 until the thickness was 0.
It was finished into a tape-shaped wire with a diameter of 2 mm and a width of about 6 mm. The obtained tape-shaped wire was heat-treated at 840° C. for 50 hours in an oxygen stream to obtain a ceramic superconducting conductor. This ceramic superconducting conductor will be referred to as sample C for convenience of explanation later. This was further pressurized using the pressure jig shown in Figure 1 in the same manner as before, and a tape with a thickness of 0.1 mm and a width of about 6.5 mm was obtained.
Finished in a loop-shaped wire rod. The obtained tape-shaped wire rod was heat-treated at 840° C. for 50 hours in an oxygen stream to obtain a ceramic superconducting conductor. This ceramic superconductor will be referred to as sample D for convenience of explanation later. Jc in the O magnetic field was measured for the tape-shaped wire rods of Samples A to D thus obtained in liquid nitrogen. The results are shown in the table below. As is clear from the table above, it was found that the properties were further improved by repeatedly performing the press working and heat treatment.

【0012】0012

【実施例3】実施例2で得られたサンプルCを用いて図
5に示したような外径35mmφのケ−ブルを試作した
。このケ−ブルの液体窒素温度における超電導特性を測
定した結果、Ic=120(A)、Jc=12400(
A/cm2 )の優れた特性が得られた。
[Example 3] Using Sample C obtained in Example 2, a cable having an outer diameter of 35 mm as shown in FIG. 5 was fabricated. As a result of measuring the superconducting properties of this cable at liquid nitrogen temperature, Ic = 120 (A), Jc = 12400 (
Excellent characteristics of A/cm2) were obtained.

【0013】[0013]

【比較例1】実施例1で得られた圧延加工後の厚さ1.
5mm、幅約4mmのテ−プ状の線材を図1に示した方
法で加圧し、厚さ0.2mm、幅約7mmに仕上げた。 得られたテ−プ状の線材を酸素気流中、850℃X50
h熱処理してセラミックス超電導導体とした。このセラ
ミックス超電導導体について液体窒素中、O磁場におけ
るJcを測定した結果、14000(A/cm2 )で
あったが、幅が図2に示したように6.5〜7.3mm
と波を打った形状であった。
[Comparative Example 1] Thickness after rolling obtained in Example 1: 1.
A tape-shaped wire rod of 5 mm in diameter and about 4 mm in width was pressed by the method shown in FIG. 1 to have a thickness of 0.2 mm and a width of about 7 mm. The obtained tape-shaped wire rod was heated at 850°C x 50°C in an oxygen stream.
h heat treatment to obtain a ceramic superconducting conductor. The Jc of this ceramic superconductor was measured in liquid nitrogen in an O magnetic field and was found to be 14,000 (A/cm2), but the width was 6.5 to 7.3 mm as shown in Figure 2.
It had a wavy shape.

【0014】[0014]

【比較例2】実施例2の圧延加工にて得られた厚さ1.
5mm、幅約4mmのテ−プ状の線材を図1に示した方
法で加圧し、厚さ0.2mm、幅約7mmに仕上げた。 得られた線材を酸素気流中、850℃X50h熱処理し
てセラミックス超電導導体とした。このセラミックス超
電導導体について液体窒素中、O磁場におけるJcを測
定した結果、12000(A/cm2 )であったが、
幅が図2に示したように6.4〜7.4mmと波を打っ
た形状であった。また、これを用いて図5に示したよう
なケ−ブルを試作し、その特性を評価したところIc=
85(A)、Jc=8500(A/cm2 )であり、
本発明の製造方法によるものと比較して劣るものであっ
た。 これはテ−プ状のセラミックス超電導導体同士が若干重
なった結果である。
[Comparative Example 2] Thickness obtained by rolling in Example 2: 1.
A tape-shaped wire rod of 5 mm in diameter and about 4 mm in width was pressed by the method shown in FIG. 1 to have a thickness of 0.2 mm and a width of about 7 mm. The obtained wire rod was heat-treated at 850° C. for 50 hours in an oxygen stream to obtain a ceramic superconducting conductor. The Jc of this ceramic superconducting conductor in an O magnetic field in liquid nitrogen was measured to be 12000 (A/cm2).
As shown in FIG. 2, it had a wavy shape with a width of 6.4 to 7.4 mm. In addition, we made a prototype cable as shown in Fig. 5 using this, and evaluated its characteristics, and found that Ic=
85 (A), Jc=8500 (A/cm2),
It was inferior to that produced by the production method of the present invention. This is the result of the tape-shaped ceramic superconducting conductors slightly overlapping each other.

【0015】[0015]

【発明の効果】本発明の製造方法によれば形状、超電導
特性に優れ、ケ−ブル、マグネット等に適用できるセラ
ミックス超電導導体が得られる。
According to the manufacturing method of the present invention, a ceramic superconducting conductor can be obtained which has excellent shape and superconducting properties and can be applied to cables, magnets, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のセラミックス超電導体の製造方法の説
明図。
FIG. 1 is an explanatory diagram of the method for manufacturing a ceramic superconductor of the present invention.

【図2】本発明の製造方法に使用される加圧治具の第2
例を示す正面図。
[Fig. 2] A second pressurizing jig used in the manufacturing method of the present invention.
FIG. 3 is a front view showing an example.

【図3】本発明の製造方法に使用される加圧治具の第3
の例を示す正面図。
FIG. 3: The third pressurizing jig used in the manufacturing method of the present invention.
FIG.

【図4】本発明の製造方法に使用される加圧治具の第4
の例を示す正面図。
FIG. 4 A fourth pressurizing jig used in the manufacturing method of the present invention.
FIG.

【図5】本発明の製造方法で製造されたセラミックス超
電導導体を用いたケ−ブルの斜視図。
FIG. 5 is a perspective view of a cable using a ceramic superconductor manufactured by the manufacturing method of the present invention.

【図6】本発明の製造方法で製造されたセラミックス超
電導導体を用いた渦巻き状マグネットの斜視図。
FIG. 6 is a perspective view of a spiral magnet using a ceramic superconductor manufactured by the manufacturing method of the present invention.

【図7】図8に示す従来の製造方法で製造されたテ−プ
状のセラミックス超電導導体の平面図。
7 is a plan view of a tape-shaped ceramic superconductor manufactured by the conventional manufacturing method shown in FIG. 8. FIG.

【図8】a,b,c、dは従来のセラミックス超電導導
体製造方法の説明図である。
FIGS. 8a, b, c, and d are explanatory diagrams of a conventional method for manufacturing a ceramic superconducting conductor.

【符号の説明】[Explanation of symbols]

1  セラミックス原料 2  金属 3  複合体 1 Ceramic raw materials 2 Metal 3 Complex

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  超電導体となるセラミックス原料1と
金属2との複合体3を所望形状まで縮径加工した後、同
複合体3を熱処理して前記セラミックス原料1をセラミ
ックス超電導体となすセラミックス超電導導体の製造方
法において、前記複合体3の任意長を所望の幅となるよ
うに拘束しながら厚さ方向に加圧加工し、この加工を同
複合体3の長さ方向に順次行なった後、同複合体3を熱
処理して前記セラミックス原料1を超電導体とすること
を特徴とするセラミックス超電導導体の製造方法。
1. A ceramic superconductor in which a composite body 3 of a ceramic raw material 1 and a metal 2 to be a superconductor is reduced in diameter to a desired shape, and then the composite body 3 is heat treated to make the ceramic raw material 1 a ceramic superconductor. In the method for manufacturing a conductor, an arbitrary length of the composite body 3 is compressed in the thickness direction while being constrained to a desired width, and after this process is sequentially performed in the length direction of the composite body 3, A method for producing a ceramic superconductor, characterized in that the composite 3 is heat-treated to make the ceramic raw material 1 a superconductor.
JP3053351A 1991-02-25 1991-02-25 Manufacturing method of ceramic superconducting conductor Expired - Fee Related JP2951423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053351A JP2951423B2 (en) 1991-02-25 1991-02-25 Manufacturing method of ceramic superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053351A JP2951423B2 (en) 1991-02-25 1991-02-25 Manufacturing method of ceramic superconducting conductor

Publications (2)

Publication Number Publication Date
JPH04269407A true JPH04269407A (en) 1992-09-25
JP2951423B2 JP2951423B2 (en) 1999-09-20

Family

ID=12940363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053351A Expired - Fee Related JP2951423B2 (en) 1991-02-25 1991-02-25 Manufacturing method of ceramic superconducting conductor

Country Status (1)

Country Link
JP (1) JP2951423B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056319A1 (en) * 2001-01-15 2002-07-18 Sumitomo Electric Industries, Ltd. Method for producing oxide superconducting wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056319A1 (en) * 2001-01-15 2002-07-18 Sumitomo Electric Industries, Ltd. Method for producing oxide superconducting wire
JP2002216556A (en) * 2001-01-15 2002-08-02 Sumitomo Electric Ind Ltd Manufacturing method for oxide superconductive wire material
US6821929B2 (en) 2001-01-15 2004-11-23 Sumitomo Electric Industries, Ltd. Method for producing oxide superconducting wire
JP4660928B2 (en) * 2001-01-15 2011-03-30 住友電気工業株式会社 Manufacturing method of oxide superconducting wire

Also Published As

Publication number Publication date
JP2951423B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
JPS62170111A (en) Manufacture of multicore fine wire super conductor
JPH04269407A (en) Manufacture of ceramic superconductive conductor
JP2583538B2 (en) Method for producing oxide-based superconducting wire
JPH06325634A (en) Multi-core oxide superconducting wire
JPH02207420A (en) Manufacture of superconducting wire rod
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH0773757A (en) Manufacture of oxide superconductor
JPH04277410A (en) Tape-like multi-core ceramic superconductor and cable using it
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP2547209B2 (en) Superconducting wire manufacturing method
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH05144332A (en) Ceramic superconductor
JP3042558B2 (en) Ceramic superconducting conductor
JPH01194213A (en) Manufacture of complex oxide superconductive multi-core wire material
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JPH04329218A (en) Superconductive wire material
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JP3033606B2 (en) Manufacturing method of oxide superconducting wire
JPH0541117A (en) Manufacture of ceramic superconductor
JPH06325633A (en) Multi-core oxide superconducting wire
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JPH05274933A (en) Manufacture of oxide superconducting wire material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees