JPH05101722A - Manufacture of multi-conductor ceramics superconductor - Google Patents

Manufacture of multi-conductor ceramics superconductor

Info

Publication number
JPH05101722A
JPH05101722A JP3262225A JP26222591A JPH05101722A JP H05101722 A JPH05101722 A JP H05101722A JP 3262225 A JP3262225 A JP 3262225A JP 26222591 A JP26222591 A JP 26222591A JP H05101722 A JPH05101722 A JP H05101722A
Authority
JP
Japan
Prior art keywords
wire
metal
superconductor
ceramics
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3262225A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
祐行 菊地
Masanao Mimura
正直 三村
Naoki Uno
直樹 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3262225A priority Critical patent/JPH05101722A/en
Publication of JPH05101722A publication Critical patent/JPH05101722A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a long size multi-conductor ceramics supirconductor, which can be applied to a magnet or the like, by winding multiple compound sheets made of the ceramics raw material and a metal member spirally, and covering it with metal, and performing reduction processing and heat treatment. CONSTITUTION:Ceramics raw material as the raw material of a superconductor is filled in a metal pipe, and reduction processing is performed, and finally, rolling is performed to form a compound tape. Next, this tape wire material 3 or 4 is wound around of a metal pipe or a round bar 5 spirally so that they are not overlapped with each other and that a clearance is not generated, and it is inserted into the metal pipe again to form a compound billet. Reduction processing such as extracting, swaging, rolling is performed to the billet to obtain a multi-conductor ceramics superconductor. Since the superconductor is arranged spirally inside thereof and covered with metal, a break of a conductor part and disconnection of the whole is eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主としてマグネット等
に適用が可能な多芯セラミックス超電導導体の製造方法
に係り、特に、金属の内部にセラミックス超電導体がフ
ィラメント状にかつ螺旋状に配置された構造を有する長
尺の多芯セラミックス超電導導体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multi-core ceramics superconducting conductor applicable mainly to magnets and the like, and in particular, ceramics superconducting conductors are arranged inside a metal in a filament shape and in a spiral shape. The present invention relates to a method for producing a long multicore ceramics superconducting conductor having a structure.

【0002】[0002]

【従来の技術】Y系、Bi系、Tl系等のように、Tc
が液体窒素温度を越えるセラミックス超電導体が知られ
ており、このようなセラミックス超電導体の応用・利用
を目的として、種々の形状に成型することが検討されて
いる。例えば、線材を作製する場合には、一般に金属シ
ース法が用いられている。これは、超電導体となるセラ
ミックス原料を金属のパイプ内に充填して複合ビレット
とし、これを断面減少加工して所望形状・寸法の複合線
材に仕上げ、しかる後、熱処理を行ってセラミックス超
電導導体とするものである。
2. Description of the Related Art Tc such as Y system, Bi system, Tl system, etc.
Is known to exceed the liquid nitrogen temperature, and molding into various shapes has been studied for the purpose of application and utilization of such ceramic superconductor. For example, when manufacturing a wire rod, a metal sheath method is generally used. This is to fill a metal pipe with a ceramic raw material to be a superconductor to form a composite billet, and then reduce the cross-section of the composite billet to finish it into a composite wire with a desired shape and size. To do.

【0003】この金属シ−ス法により得られる線材の形
状としては、断面が丸型、楕円形、四角形、テープ状
等、またはこれらを複数本束ねたような形状の多芯線
材、更には金属の内部にセラミックス超電導体が同芯円
筒状または渦巻状に配置された構造の多層線材等も種々
試作検討されている。断面減少加工としては、得られる
線材の形状に応じて、押し出し、圧延、引き抜き、スウ
ェージング等、従来の塑性加工法がそのまま適用されて
いる。
The wire rod obtained by the metal sheath method has a round cross section, an elliptical cross section, a square cross section, a tape-like cross section, or a multi-core wire rod formed by bundling a plurality of these, and further a metal. Various prototypes of multilayer wire rods and the like in which ceramics superconductors are arranged in a concentric cylindrical shape or in a spiral shape have been examined. As the cross-section reduction processing, conventional plastic working methods such as extrusion, rolling, drawing and swaging are applied as they are, depending on the shape of the wire to be obtained.

【0004】複合する金属の材質としては、熱伝導性、
電気伝導性に優れた材料、例えばAg、Ag合金、C
u、Cu合金等が適用できるが、酸素透過性、耐酸化性
の点でAg、Ag合金を用いる例が多い。
Materials of the metal to be composited include thermal conductivity,
Materials with excellent electrical conductivity, such as Ag, Ag alloys, C
Although u and Cu alloys can be applied, Ag and Ag alloys are often used in terms of oxygen permeability and oxidation resistance.

【0005】図4は多芯セラミックス超電導導体の一例
を示すものである。図4において、(a)は金属1の内
部にセラミックス超電導体2が同芯円筒状に多芯状に配
置された断面が丸型の多芯線材、(b)は同様に配置さ
れた角型線材をそれぞれ示したものである。一方、この
ような多芯セラミックス超電導導体を例えば交流線材と
して用いる場合、損失低減のため、超電導体がツイスト
された構造にする必要がある。
FIG. 4 shows an example of a multicore ceramic superconducting conductor. In FIG. 4, (a) is a multi-core wire having a round cross section in which a ceramics superconductor 2 is arranged in a concentric cylinder in a multi-core shape inside a metal 1, and (b) is a rectangular shape similarly arranged. Each of the wires is shown. On the other hand, when such a multicore ceramics superconducting conductor is used as an AC wire, for example, it is necessary to have a twisted structure for reducing the loss.

【0006】このようなツイストされた多芯線材を作製
する場合、従来、例えば図5に示したような複合線材を
あらかじめ作製しておき、これを複数本束ねて再度金属
パイプ内に挿入してビレットとし、このビレットに断面
減少加工を行った後、ねじり加工を加え、さらに熱処理
を行う方法が一般的であった。
In the case of producing such twisted multifilamentary wire, conventionally, for example, a composite wire as shown in FIG. 5 has been prepared in advance, and a plurality of these are bundled and reinserted in the metal pipe. A general method is to make a billet, subject this billet to a cross-section reduction process, then add a twisting process, and further heat-treat.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記したよう
な方法で多芯線材を作製する場合、複合線材の機械的強
度が小さいため、ねじり加工(ツイスト加工)で内部の
セラミックス超電導体部分が途切れたり、あるいは線材
全体が断線するという欠点があった。また、極めて長尺
な線材のツイスト加工は困難であるという問題点もあっ
た。
However, when a multifilamentary wire is manufactured by the method as described above, since the mechanical strength of the composite wire is small, the internal ceramic superconductor portion is discontinued by twisting (twisting). However, there is a defect that the entire wire is broken. In addition, there is a problem that it is difficult to twist an extremely long wire.

【0008】本発明の目的は、ツイストによる線材の断
線がなく、またセラミックス超電導体が途切れることが
ない、マグネット等に適用可能な長尺の多芯セラミック
ス超電導導体の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a long multicore ceramics superconducting conductor which can be applied to magnets and the like, in which there is no breakage of the wire due to twisting and the ceramics superconducting is not interrupted. ..

【0009】[0009]

【課題を解決するための手段】本発明は前記欠点を改善
するために種々実験検討した結果得られたもので、超電
導体となるセラミックス原料と金属部材との複合体から
なる単芯状又は多芯状の複合シートを、複数枚、相互に
重ならないように、かつ空隙部が生じないように、金属
製の棒またはパイプ上に螺旋状に巻き付け、必要に応じ
てその外側に金属を被覆した後、断面減少加工、及び熱
処理を行うことを特徴とする多芯セラミックス超電導導
体の製造方法を提供する。
The present invention was obtained as a result of various experiments for improving the above-mentioned drawbacks, and has a single-core shape or a multi-core shape composed of a composite of a ceramic raw material to be a superconductor and a metal member. A plurality of core-shaped composite sheets are spirally wound around a metal rod or pipe so that they do not overlap each other and no voids are formed, and the outside is coated with a metal as necessary. Then, there is provided a method for producing a multi-core ceramics superconducting conductor, which is characterized by performing cross-section reduction processing and heat treatment.

【0010】本発明の方法では、まず最初に超電導体と
なるセラミックス原料と金属との複合シートを作製す
る。その方法は、従来の金属シース法が適用できる。例
えば、超電導体となるセラミックス原料を金属のパイプ
内に充填した後、断面減少加工を行い、最終的に圧延加
工を行って複合テープとする。この場合、比較的幅が狭
いテープ線材を作製する場合には断面が丸型のビレッ
ト、幅が広いテープ線材を作製する場合には図1(a)
に示したような角型ビレットを用いることが出来る。ま
た図1(b)に示すように、多芯型ビレットとすること
も可能である。このような複合ビレットを断面減少加工
して図2に示したようなテープ状複合線材を作製する。
このテープ線材の幅、厚さは得られる多芯線材のサイズ
に応じて種々決定できる。
In the method of the present invention, first, a composite sheet of a ceramic raw material to be a superconductor and a metal is prepared. As the method, a conventional metal sheath method can be applied. For example, a ceramic raw material to be a superconductor is filled in a metal pipe, subjected to cross-section reduction processing, and finally subjected to rolling processing to obtain a composite tape. In this case, when a tape wire having a relatively narrow width is manufactured, a billet having a round cross section is formed, and when a tape wire having a wide width is manufactured, the billet shown in FIG.
A square billet as shown in can be used. Further, as shown in FIG. 1B, a multi-core type billet can be used. Such a composite billet is subjected to cross-section reduction processing to produce a tape-shaped composite wire as shown in FIG.
The width and thickness of the tape wire can be variously determined according to the size of the multifilament wire to be obtained.

【0011】なお、図2(a)に示すテープ状複合線材
3は、図1(a)に示す単芯型ビレットを用いて得た単
芯型であり、図2(b)に示すテープ状複合線材4は、
図1(b)に示す多芯型ビレットを用いて得た多芯型で
ある。
The tape-shaped composite wire 3 shown in FIG. 2 (a) is a single core type obtained by using the single core type billet shown in FIG. 1 (a), and the tape type composite wire shown in FIG. 2 (b). The composite wire 4 is
It is a multi-core type obtained by using the multi-core type billet shown in FIG.

【0012】次に、これらのテープ線材を図3に示した
ように、金属パイプあるいは丸棒5上に螺旋状に巻き付
ける。巻き付けは、テ−プ線材3又は4の相互がラップ
しないように、かつ空隙部が生じないように螺旋状に巻
き付けて行なう。これは、後の加工によってもセラミッ
クスの断面形状が悪化したり、あるいは途切れたりしな
いためである。このようにして螺旋状に巻き付けた後、
再度金属パイプ内に挿入して複合ビレットを構成する。
Next, as shown in FIG. 3, these tape wires are spirally wound around the metal pipe or the round bar 5. The winding is performed by spirally winding so that the tape wire rods 3 or 4 do not overlap each other and no void is formed. This is because the cross-sectional shape of the ceramic is not deteriorated or discontinued even by the subsequent processing. After wrapping in a spiral like this,
It is again inserted into the metal pipe to form a composite billet.

【0013】図3(a)は、図2(a)に示すテープ状
複合線材3を巻き付けた例、図3(b)は、図2(b)
に示すテープ状複合線材4を巻き付けた例をそれぞれ示
す。
FIG. 3 (a) is an example in which the tape-shaped composite wire 3 shown in FIG. 2 (a) is wound, and FIG. 3 (b) is shown in FIG. 2 (b).
Examples of winding the tape-shaped composite wire 4 shown in FIG.

【0014】巻き付けのピッチに制約はなく、適宜選定
出来る。また、図3に示す構成では重ねることなく1層
を巻き付けているが、これに限るものではなく、多層状
に構成すれば、より高Ic化を図ることが出来、セラミ
ック超電導体フィラメントのサイズを小さくすること、
及びその数を増大することが可能である。更に、巻き付
け方向も1方向のほか、相互に巻方向を変えて構成して
もよい。
The winding pitch is not limited and can be selected as appropriate. Further, in the configuration shown in FIG. 3, one layer is wound without being overlapped, but the present invention is not limited to this, and if it is configured in multiple layers, higher Ic can be achieved, and the size of the ceramic superconductor filament can be increased. To be small,
And it is possible to increase the number. Further, the winding direction is not limited to one direction, and the winding directions may be changed from each other.

【0015】巻き付けるテープ状複合線材3,4は、図
2に示した内の1種類のみを用いても、或いは複数種用
いて多層状に巻き付けることも可能である。金属パイプ
又は棒5の形状としては、丸型のほか、断面が四角形等
とすることもできる。
As the tape-shaped composite wire rods 3 and 4 to be wound, it is possible to use only one type shown in FIG. The shape of the metal pipe or the rod 5 may be a round shape or a square cross section.

【0016】以上のようにして得られた複合ビレットを
断面減少加工して、所望形状及び寸法の多芯、多層複合
線材に仕上げる。この場合、断面減少加工の方法として
は、押し出し、スウェージング、圧延等のように圧縮力
を主体とした加工が望ましい。ここでは金属パイプを用
いることなく断面減少加工を行うことも可能である。得
られる線材の断面形状も、丸型、四角形等いずれでも差
し支えない。
The composite billet obtained as described above is subjected to cross-section reduction processing to finish into a multi-core, multi-layer composite wire rod having a desired shape and size. In this case, as a method of cross-section reduction processing, it is desirable to use processing such as extrusion, swaging, rolling, etc., which mainly uses compressive force. Here, it is also possible to perform cross-section reduction processing without using a metal pipe. The cross-sectional shape of the obtained wire may be round, square, or the like.

【0017】最後に、このようにして得られた線材に熱
処理を施すことにより、多芯セラミックス超電導導体を
得ることが出来る。なお、この熱処理は、あらかじめ線
材を例えばコイル状に成型した後、熱処理を行うこと
も、あるいは熱処理後に線材をコイル状に成型すること
も可能である。
Finally, the wire rod thus obtained is heat-treated to obtain a multicore ceramics superconducting conductor. In this heat treatment, it is possible to form the wire into a coil shape in advance and then perform the heat treatment, or to form the wire into a coil shape after the heat treatment.

【0018】以上説明した本発明の方法の場合、得られ
る多芯セラミックス超電導導体は超電導体が内部で螺旋
状に配置されているため、結果的にねじり(ツイスト)
がされた構造になる。また金属で被覆された構造の複合
体を塑性加工するため、超電導体部分が途切れたり、あ
るいは全体が断線することなく長尺線材の作製が可能に
なる。
In the case of the method of the present invention described above, the multicore ceramics superconducting conductor obtained is twisted because the superconducting conductors are spirally arranged inside.
It becomes the structure that was removed. Further, since the composite body having a structure covered with metal is plastically processed, it is possible to manufacture a long wire rod without interruption of the superconductor portion or disconnection of the whole.

【0019】[0019]

【実施例】以下、本発明を実施例に基づいてさらに具体
的に説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0020】(実施例1)Bi2 3 、PbO、SrC
3 、CaCuO3 、CuOなどの一次原料粉をモル比
でBi:Pb:Sr:Ca:Cu=1.6:0.4:
2:2:3となるように配合・混合し、この混合物を大
気中800℃で100時間仮焼した後、更に粉砕して仮
焼粉を作製した。
(Example 1) Bi 2 O 3 , PbO, SrC
Bi: Pb: Sr: Ca: Cu = 1.6: 0.4: in molar ratios of primary raw material powders such as O 3 , CaCuO 3 , and CuO.
The mixture was mixed and mixed so as to be 2: 2: 3, and the mixture was calcined in the air at 800 ° C. for 100 hours, and then further pulverized to prepare a calcined powder.

【0021】この仮焼粉をCIP成型して、外径15m
m程度の大きさの円柱体に仕上げた。この成型体を外径
25mm、内径15mmのAgパイプ内に挿入し、複合
ビレットとした。この複合ビレットをスェ−ジング加工
及び圧延加工し、幅5mm,厚さ0.5mmの単芯状テ
−プ線材を得た。
This calcined powder is CIP molded to have an outer diameter of 15 m.
Finished into a cylindrical body with a size of about m. This molded body was inserted into an Ag pipe having an outer diameter of 25 mm and an inner diameter of 15 mm to obtain a composite billet. This composite billet was swaged and rolled to obtain a single core tape wire having a width of 5 mm and a thickness of 0.5 mm.

【0022】得られたテ−プ線材を外径30mm、内径
20mmのAgパイプ上に螺旋状に巻き付けた。この場
合、1層当りの枚数は18枚、その巻き付けピッチは3
0mmとし、テ−プ線材相互がラップしないように、か
つ空隙部が生じないように巻き付けた。層数は20層と
し、すべて同一方向に巻き付けた。
The tape wire thus obtained was spirally wound around an Ag pipe having an outer diameter of 30 mm and an inner diameter of 20 mm. In this case, the number of sheets per layer is 18, and the winding pitch is 3
It was 0 mm, and was wound so that the tape wire rods would not wrap each other and voids would not occur. The number of layers was 20, and they were all wound in the same direction.

【0023】これを更に外径60mm、内径51mmの
Agパイプ内に挿入して、再度複合ビレットとした。こ
の複合ビレットを外径3mmとなるまでスェ−ジング加
工し、丸形線材に仕上げた。この丸形線材を、大気中、
830℃で200時間熱処理し、多層セラミックス超電
導導体を得た。
This was further inserted into an Ag pipe having an outer diameter of 60 mm and an inner diameter of 51 mm to obtain a composite billet again. This composite billet was swaged to an outer diameter of 3 mm, and finished into a round wire rod. This round wire is
Heat treatment was performed at 830 ° C. for 200 hours to obtain a multilayer ceramic superconducting conductor.

【0024】得られた多層線材について、液体窒素温
度、0磁場におけるIcを測定したところ、59Aの高
いIcを得た。また、この多層線材の縦断面、横断面の
形状は、優れたものであった。
The Ic of the obtained multi-layer wire material at a liquid nitrogen temperature and 0 magnetic field was measured, and a high Ic of 59 A was obtained. Further, the shapes of the longitudinal section and the transverse section of this multilayer wire rod were excellent.

【0025】(実施例2)実施例1で得た仮焼粉を、図
1(b)に示すような角型ビレット内に充填した後、圧
延加工を行ない、幅3mm、厚さ0.5mmの多芯状テ
−プ線材とした。この多芯状テ−プ線材の内部のセラミ
ックスの寸法は、幅3mmであり、芯の数は6芯であ
る。
(Example 2) The calcined powder obtained in Example 1 was filled in a square billet as shown in Fig. 1 (b) and then rolled to obtain a width of 3 mm and a thickness of 0.5 mm. This is a multi-core tape wire rod. The dimension of the ceramic inside the multi-core tape wire is 3 mm in width, and the number of cores is 6.

【0026】得られた多芯状テ−プ線材を、外径30m
m、内径20mmのAg製パイプ上に螺旋状に巻き付け
た。巻き付けピッチは60mmとし、相互にラップしな
いように、かつ空隙部が生じないように巻き付けた。層
数は30とし、すべて同一方向に巻き付けた。
The multifilamentary tape wire thus obtained has an outer diameter of 30 m.
m and an inner diameter of 20 mm were spirally wound on a pipe made of Ag. The winding pitch was 60 mm, and the winding was performed so as not to wrap each other and voids. The number of layers was 30, and all layers were wound in the same direction.

【0027】これを更に外径70mm、内径63mmの
Agパイプ内に挿入して、再度複合ビレットとした。こ
の複合ビレットを外径5mmとなるまでスェ−ジング加
工した後、圧延加工を行ない、2mm×3mmの角形線
材に仕上げた。この角形線材を、大気中、830℃で2
00時間熱処理し、多層セラミックス超電導導体を得
た。
This was further inserted into an Ag pipe having an outer diameter of 70 mm and an inner diameter of 63 mm to obtain a composite billet again. This composite billet was swaged to an outer diameter of 5 mm and then rolled to form a square wire rod of 2 mm × 3 mm. This rectangular wire rod was heated in air at 830 ° C for 2
Heat treatment was performed for 00 hours to obtain a multilayer ceramic superconducting conductor.

【0028】得られた多層線材について、液体窒素温
度、0磁場におけるIcを測定したところ、79Aの高
いIcを得た。また、この多層線材の縦断面、横断面の
形状は、優れたものであった。
The Ic at a liquid nitrogen temperature and a 0 magnetic field of the obtained multilayer wire was measured, and a high Ic of 79 A was obtained. Further, the shapes of the longitudinal section and the transverse section of this multilayer wire rod were excellent.

【0029】(比較例)実施例1で得られた仮焼粉を用
い、外径5mmφ、内部のセラミックスの外径が3mmφの
丸型線材を作製した。これを50本束ねた後、外径50
mmφ、内径40mmφのAgパイプ内に挿入して複合ビレ
ットを得た。この複合ビレットを外径3mmφまでスウェ
ージング加工を行って丸型線材に仕上げた。この丸型線
材をピッチ30mmとなるようにツイスト加工した。得ら
れた線材を大気中830℃で200時間熱処理して、多
層セラミックス超電導導体を得た。
(Comparative Example) Using the calcined powder obtained in Example 1, a round wire having an outer diameter of 5 mmφ and an outer diameter of ceramics of 3 mmφ was produced. After bundling 50 of these, the outer diameter is 50
The composite billet was obtained by inserting it into an Ag pipe having an mmφ and an inner diameter of 40 mmφ. This composite billet was swaged to an outer diameter of 3 mmφ and finished into a round wire rod. This round wire rod was twisted to have a pitch of 30 mm. The obtained wire was heat-treated in air at 830 ° C. for 200 hours to obtain a multilayer ceramic superconducting conductor.

【0030】得られた多層線材について液体窒素温度、
0磁場におけるIcを測定した結果、14(A)であ
り、本発明の方法により得た多層線材に比較し、極めて
劣るものであった。また測定後、試料の縦断面を顕微鏡
観察した結果、一部セラミックス超電導体が途切れてい
ることがわかった。
The liquid nitrogen temperature of the obtained multilayer wire is
As a result of measuring Ic at 0 magnetic field, it was 14 (A), which was extremely inferior to the multilayer wire rod obtained by the method of the present invention. After the measurement, the vertical cross section of the sample was observed under a microscope, and it was found that the ceramic superconductor was partially discontinued.

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明の方
法によれば、優れた断面形状及び高Ic特性を有する多
芯セラミックス超電導導体を容易に得ることが可能であ
る。本発明の方法により得た多芯セラミックス超電導導
体は、主としてマグネット用セラミックス超電導導体と
して適用が可能である。
As described in detail above, according to the method of the present invention, it is possible to easily obtain a multicore ceramics superconducting conductor having an excellent cross-sectional shape and high Ic characteristics. The multi-core ceramics superconducting conductor obtained by the method of the present invention can be mainly applied as a ceramics superconducting conductor for magnets.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法にて用いる単芯及び多芯の角型
ビレットを示す図。
FIG. 1 is a view showing single-core and multi-core square billets used in the method of the present invention.

【図2】 本発明の方法の中間生成物であるテ−プ状複
合線材を示す図。
FIG. 2 is a view showing a tape-shaped composite wire which is an intermediate product of the method of the present invention.

【図3】 金属パイプ又は丸棒上に図2に示すテ−プ状
複合線材を螺旋状に巻いた図。
FIG. 3 is a view in which the tape-shaped composite wire rod shown in FIG. 2 is spirally wound on a metal pipe or a round bar.

【図4】 従来の多芯セラミックス超電導導体の一例を
示す図。
FIG. 4 is a diagram showing an example of a conventional multicore ceramics superconducting conductor.

【図5】 従来の多芯セラミックス超電導導体を得るた
めの複合線材を示す図。
FIG. 5 is a view showing a composite wire rod for obtaining a conventional multicore ceramics superconducting conductor.

【符号の説明】[Explanation of symbols]

3…単芯型テープ状複合線材、4…多芯型テープ状複合
線材。
3 ... Single-core tape-shaped composite wire rod, 4 ... Multi-core tape-shaped composite wire rod.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超電導体となるセラミックス原料と金属
部材との複合体からなる複合シートを、複数枚、相互に
重ならないように、かつ空隙部が生じないように、金属
製の棒またはパイプ上に螺旋状に巻き付け、必要に応じ
てその外側に金属を被覆した後、断面減少加工、及び熱
処理を行うことを特徴とする多芯セラミックス超電導導
体の製造方法。
1. A metal rod or pipe on which a plurality of composite sheets made of a composite of a ceramic raw material to be a superconductor and a metal member do not overlap with each other and do not form voids. A method for producing a multicore ceramics superconducting conductor, which comprises spirally winding a wire around the core, coating the outside with a metal as necessary, and then subjecting it to cross-section reduction processing and heat treatment.
JP3262225A 1991-10-09 1991-10-09 Manufacture of multi-conductor ceramics superconductor Pending JPH05101722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3262225A JPH05101722A (en) 1991-10-09 1991-10-09 Manufacture of multi-conductor ceramics superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3262225A JPH05101722A (en) 1991-10-09 1991-10-09 Manufacture of multi-conductor ceramics superconductor

Publications (1)

Publication Number Publication Date
JPH05101722A true JPH05101722A (en) 1993-04-23

Family

ID=17372820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3262225A Pending JPH05101722A (en) 1991-10-09 1991-10-09 Manufacture of multi-conductor ceramics superconductor

Country Status (1)

Country Link
JP (1) JPH05101722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6192573B1 (en) * 1996-03-26 2001-02-27 Sumitomo Electric Industries, Ltd. Method of preparing oxide superconducting wire
US6215072B1 (en) * 1993-10-21 2001-04-10 Sumitomo Electric Industries, Ltd. Method of preparing an oxide superconducting conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215072B1 (en) * 1993-10-21 2001-04-10 Sumitomo Electric Industries, Ltd. Method of preparing an oxide superconducting conductor
US6192573B1 (en) * 1996-03-26 2001-02-27 Sumitomo Electric Industries, Ltd. Method of preparing oxide superconducting wire

Similar Documents

Publication Publication Date Title
JPS62170111A (en) Manufacture of multicore fine wire super conductor
US7162287B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JPH06325634A (en) Multi-core oxide superconducting wire
JPH0773757A (en) Manufacture of oxide superconductor
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JP3042558B2 (en) Ceramic superconducting conductor
JPH05334921A (en) Ceramic superconductor
JP2547209B2 (en) Superconducting wire manufacturing method
JPH0644834A (en) Ceramics superconductive conductor
JPH05151837A (en) Ceramic superconductive conductor
JP4200663B2 (en) Manufacturing method of oxide superconducting wire
JPH05144332A (en) Ceramic superconductor
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JPH0541117A (en) Manufacture of ceramic superconductor
JP3568767B2 (en) Superconducting cable and manufacturing method thereof
JP2951423B2 (en) Manufacturing method of ceramic superconducting conductor
JP4096406B2 (en) Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method
JPH04116906A (en) Ceramic superconductive coil
JPH0745136A (en) Oxide superconductor
JPH04277410A (en) Tape-like multi-core ceramic superconductor and cable using it
JPH05250937A (en) Manufacture of multi-conductor oxide superconductive wire
JP2004227917A (en) Manufacturing method of oxide superconductive wire and oxide superconductive wire
JP2003173721A (en) Oxide superconductive cable for ac and its manufacturing method
JPH01321605A (en) Manufacture of oxide ceramic superconductor coil