JP4096406B2 - Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method - Google Patents

Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method Download PDF

Info

Publication number
JP4096406B2
JP4096406B2 JP16163998A JP16163998A JP4096406B2 JP 4096406 B2 JP4096406 B2 JP 4096406B2 JP 16163998 A JP16163998 A JP 16163998A JP 16163998 A JP16163998 A JP 16163998A JP 4096406 B2 JP4096406 B2 JP 4096406B2
Authority
JP
Japan
Prior art keywords
oxide superconducting
conductor
stranded wire
cable
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16163998A
Other languages
Japanese (ja)
Other versions
JPH11353956A (en
Inventor
純 藤上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16163998A priority Critical patent/JP4096406B2/en
Publication of JPH11353956A publication Critical patent/JPH11353956A/en
Application granted granted Critical
Publication of JP4096406B2 publication Critical patent/JP4096406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、酸化物超電導体または前駆体とそれを覆う金属からなる素線を用いた酸化物超電導撚線および酸化物超電導ケーブル用導体ならびにそれらを製造するための技術に関し、特に、高い臨界電流密度を有する酸化物超電導撚線および酸化物超電導ケーブル用導体を提供するための技術に関する。
【0002】
【従来の技術】
酸化物超電導線材は、液体窒素温度で超電導状態を示すことから、超電導マグネット、超電導ケーブルなどへの応用が期待され、その開発が進められている。特に、金属被覆したビスマス系酸化物超電導線材は高い臨界電流密度を得るため、研究開発が行われている。
【0003】
酸化物超電導ケーブル用導体に関しては、テープ状の銀被覆したビスマス系超電導線を芯材上に多層で螺旋巻した構造が知られている。しかし、この構造では導体の内層と外層のインピーダンスの違いによって、偏流が生じるため通電時の交流損失が大きい問題点があった。また、大きな交流損失は、臨界電流を低下させる要因になる。
交流損失の小さな酸化物超電導ケーブル用導体としては、撚線構造のサブケーブルから構成される酸化物超電導ケーブル用導体が提案されている。サブケーブル中の素線数を多くし、多次撚線構造にすることにより交流損失を低減できるが、サブケーブルのサイズが大きくなる。この場合、歪みが加わると酸化物超電導線の臨界電流特性の劣化が生じやすく、このサブケーブルを集合して作製する超電導ケーブル用導体の臨界電流特性は低下し、酸化物超電導ケーブル用導体全体での臨界電流密度特性は低くなる。
【0004】
【発明が解決しようとする課題】
本願発明の目的は、酸化物超電導線材を用いて臨界電流特性の優れた酸化物超電導撚線および酸化物超電導ケーブル用導体を製造するための技術を提供することにある。
【0005】
【課題を解決するための手段】
本願発明により、酸化物超電導材料または前駆体とそれを覆う銀または銀合金からなる素線を用いて、酸化物超電導撚線、酸化物超電導ケーブル用導体を製造する方法が提供される。この方法は、酸化物超電導材料または前駆体とそれを覆い銀または銀合金からなる素線を作製する工程と、素線に電気絶縁層を設ける工程と、素線を撚り合わせることにより、素線に転位を施す工程と、酸化物超電導材料の生成に必要な温度まで、この撚線を加熱し、熱処理する工程とを備える。
【0006】
本願発明の製造方法における素線の電気絶縁層としては、ケイ素系有機金属ポリマーを主成分とする塗料、リン酸アルミニウムなどを主成分とする塗料などを電気絶縁層として用いることができる。また、本願発明による製造方法において、素線を撚り合せた後、得られた撚線を、例えばその断面が平角または扇形になるよう成形することができる。次いで、成形された撚線を酸化物超電導材料の生成に必要な温度まで加熱し、熱処理を行なう。このように撚線を成形した後に、熱処理を行なうことで撚線成形時における影響を低減し、高い臨界電流および臨界電流密度を示す超電導撚線が得られる。成形された超電導撚線は、コンパクトなケーブル用導体を構成するために有用である。
【0007】
本願発明は、上述した製造方法によって得られた複数本の撚線を円筒形の芯材に巻き付ける工程を備える酸化物超電導ケーブル用導体の製造方法を提供する。
【0008】
本願発明により、上述した複数本の撚線を円筒形の芯材に巻き付け、その後、酸化物超電導材料の生成に必要な温度まで加熱し、熱処理して得られた酸化物超電導撚線を、熱処理に使用した芯材と同一の外径を有する可撓性のある芯材上に、熱処理前の前記撚線を円筒形の芯材上に巻き付けた同一のピッチで集合することにより、複数本の酸化物超電導撚線を円筒形の芯材に巻き付けてなる酸化物超電導ケーブル用導体を提供することができる。
【0009】
【発明の実施の形態】
酸化物超電導体、例えばビスマス系2223相酸化物超電導体を銀または銀合金などの金属で被覆された酸化物超電導線材の製造の製造において、酸化物超電導材料を生成するため、例えば約850℃の高温において熱処理が行われる。熱処理により生成した酸化物超電導材料は、相対的に曲げに弱く、例えば0.3%を越えるような曲げ歪みにおいて臨界電流の劣化を生じやすい。したがって、熱処理工程を経て得られた複数本の酸化物超電導線材を撚り合わせると、曲げ歪みにより酸化物超電導材料の破壊が起こり、酸化物超電導線材において臨界電流等の特性が劣化する。本願発明者は素線を作製し、その素線を撚り合せる撚線工程の後に、酸化物超電導体生成のための熱処理を行なうことで、優れた超電導特性を示す酸化物超電導撚線および酸化物超電導ケーブ用導体が得られることを見出した。
【0010】
酸化物超電導材料の原料を所定量、秤量し、仮焼して作製した酸化物超電導材料の前駆体の粉末1を銀または銀合金の金属管2に充填することにより、図1に示すような複合材が得られる。
【0011】
この酸化物超電導体の前駆体の粉末と金属の複合材を圧延加工することにより図2のようなテープ状複合材が得られる。
【0012】
銀または銀合金の芯線3の周囲に図2のテープ状複合材を配置し、これを銀または銀合金の金属管5に挿入し、伸線加工のような縮径加工を行なうことにより、図3に示すような、酸化物超電導体の前駆体の粉末からなる多層部4を設けた複合材6が得られる。テープ状複合材の巻き付ける量により、酸化物超電導体の前駆体の量を調整することができる。
【0013】
図4に示すように、複数本の図3の複合材6を銀または銀合金の金属管7に挿入し、次に伸線加工のような縮径加工を行なうことにより、図5に示すような、複数本の図3の複合材6を銀または銀合金の母材8に多芯に埋め込んだ素線9が得られる。図3の複合材6の本数により、酸化物超電導体の前駆体の量を調整することができる。また、銀または銀合金の金属管5の厚さを調整することで、芯材間の間隔を調整することにより、熱処理により生成する酸化物超電導体の間隔を調整することができ、高い臨界電流値および低交流損失な酸化物超電導線材を得ることができる。
【0014】
図5に示すように素線9の外周には電気絶縁層10を形成する。この電気絶縁層として、熱処理に耐え、素線に対する密着性および強度という点から、ケイ素系有機金属ポリマー等の有機金属ポリマー、リン酸アルミニウム等の化合物、または窒化ホウ素が優れていることを見出した。これらの材料を用いれば、撚線時に剥離しにくく、かつ強度の優れたコーティング層を形成することができる。素線表面に電気絶縁層を施すことにより、素線間の結合電流を低減することができ、交流損失を低減することができる。
【0015】
上述したように電気絶縁層10が形成された複数の素線9は、撚線を形成するため撚り合わされる。撚り合わせの際、素線9に転位を施すことにより、素線内の酸化物超電導体間の偏流を低減することができる。
【0016】
撚線工程を繰返すことにより2次以上の高次撚線を得ることができる。図6は銀または銀合金の芯線11に6本の素線9を1次撚線し、さらに、この1次撚線を4本撚線した2次撚線の例である。撚線の本数、撚り次数により、電流容量の大きな撚線を得ることができる。また、撚り本数が増えるほど、転位の効果が大きくなり、撚線の外層および内層のインピーダンスを均一化することができ、撚線間の偏流を低減することができ、交流損失を少なくすることができる。
【0017】
また、得られた撚線を平角、扇形などの形状に成形することで、パッキングファクタを大きくすることができ、よりコンパクトな撚線が得られ、電流密度を向上させることができる。図7は、図6を平角成形した例で、素線間および撚線間の空間の小さなコンパクトな成形撚線が得られる。
【0018】
図8に示すように、このようにして作製した撚線をサブケーブル13として、円筒形の焼結用芯材12に所定のピッチで巻き付け、図9および図10に示すように、複数本のサブケーブル13を集合し、超電導ケーブル用導体を作製することができる。焼結用芯材12は酸化物超電導材料の熱処理に必要な温度に耐える金属管を用いる。
【0019】
酸化物超電導体生成のための熱処理は、例えば、800〜900℃の温度、好ましくは、840〜850℃の温度で行われる。このように円筒形の焼結用芯材に所定のピッチで巻き付け、撚線を集合した後、熱処理を行なうことで撚線時の歪みによる影響を低減し、高い臨界電流および臨界電流密度特性を示す撚線が得られる。
【0020】
複数本の撚線からなるサブケーブルを円筒形の焼結用芯材12上に所定のピッチで巻き付け、熱処理した後、サブケーブルの撚りを緩めるなどして巻き付け径を拡大して焼結用芯材12を外す。この後、焼結用芯材12と同一の外径を有する可撓性のある芯材と差し替え、熱処理前に円筒形の芯材に巻き付けた同一のピッチで集合することにより酸化物超電導ケーブル用導体を得ることができる。超電導ケーブル用導体の可撓性芯材としては、例えば、銅、アルミニウム、FRP(繊維強化プラスチック)等から形成でき、強度および可撓性の点からは銅製芯材を用いることが好ましい。
【0021】
また、複数本の撚線からなるサブケーブルを円筒形の焼結用芯材12上に所定のピッチで巻き付け、熱処理した後、導体の解体を行なう。この場合、サブケーブルは導体解体の後も、巻き付けられた形状を保つように解体し、導体解体後のサブケーブルを焼結用芯材と同径の可撓性のある芯材銅管に組み直し、この芯材上に集合することで、酸化物超電導ケーブル用導体を得ることができる。
この場合も、焼結用芯材と可撓性芯材の材料をそれぞれの耐熱性あるいは可撓性などの点から適した、芯材の材料を選択することができる。
【0022】
このように撚線からなるサブケーブルを集合することにより、酸化物超電導ケーブル用導体を作製する際の歪みによる影響を低減することができ、単に素線を熱処理後、撚線を作製し、この撚線を巻き付けながら集合することにより作製した酸化物超電導ケーブル用導体、あるいは熱処理した撚線を巻き付けながら集合することにより作製した酸化物超電導ケーブル用導体に比べ、高い臨界電流特性を得ることができる。
以下、実施例により本願発明をより詳細に説明する。
【0023】
【実施例】
実施例1
Bi23、PbO、SrCO3、CaCO3およびCuOの粉末を用いて、Bi:Pb:Sr:Ca:Cu=1.8:0.4:2:2:3の組成比の粉末を混合した。この粉末を700℃で12時間および8時間800℃で8時間の仮焼を行なった後、さらに850℃で8時間の仮焼を行なった。
この仮焼した粉末をボールミルで粉砕した。この粉末を800℃、15分の加熱で脱気した後、銀パイプに図1のように充填した。この銀パイプを1.15mmφまで伸線した後、厚さ0.2mmまで図2のように圧延した。図3に示すように、複数の圧延したテープ線材を銀棒を軸として同心円状に配置した酸化物超電導材料前駆体と銀の複合材を7本用い、銀パイプに図4のように嵌合し、その後、0.9mmφまで伸線加工を行ない、図5のような丸形状の素線を作製した。この素線に850℃、50時間の熱処理を行ない、さらにSiO2ベースの無機絶縁材料を用いて電気絶縁層10を設けた後、撚線加工を行なった。1次撚線加工は、0.9mmφの銀線5を中心線として、6本の素線を撚りピッチ40mmで撚り合せた。2次撚線加工はこの1次撚線4本を撚りピッチ80mmで図6のように撚り合わせ、幅8mm、厚さ3mmに成形し、図7に示すような2次撚線のサブケーブルを作製した。
【0024】
このサブケーブルを図8に示すように、外径19mmφ、内径17mmφのステンレス管の芯材に巻き付けピッチPを200mmとして巻き付け、ガラステープでバインドした後、850℃、100時間の熱処理を施した。熱処理後に巻き付けたままの状態で液体窒素中でIcを測定したところ、Icは40Aであった。
【0025】
比較例1
実施例1で得られた熱処理前の直状の2次撚線に850℃、100時間の熱処理を施した。熱処理後にサブケーブルの一部を切り出し、液体窒素中で臨界電流Icを測定したところ、Icは40Aであった。
一方、直状で熱処理した後のサブケーブルを、図8に示すように、外径19mmφ、内径17mmφのステンレス管の芯材12を用い、巻き付けピッチPを200mmとして巻き付け、巻き付けたままの状態で液体窒素中でIcを測定したところ、Icは12Aに低下した。
【0026】
このことから、実施例1の本願発明の酸化物超電導撚線において、直状で熱処理した酸化物超電導撚線と同様なIcを得ることができ、熱処理後の撚線を芯材に巻き付けた酸化物超電導撚線に比べ、高い臨界電流特性を得ることができることが確認できた。
【0027】
比較例2
図9および図10に示すように、銅製直管を芯材とし、実施例1で得られたサブケーブル13を熱処理し、この7本のサブケーブルを使用し、長さ5mの1層導体を作製した。このサブケーブルの芯材への巻き付けピッチは200mmとし、導体表面にはマイラーテープを巻き付けた。この導体を作製後、導体を胴径1.6mφのドラムに巻き付けた。
ドラムから導体を巻き戻し、この導体を解体して外観調査を行なったところ、芯材およびサブケーブルに座屈ならびに断裂は認められなかった。本試験により、銅製直管は導体用芯材として可撓性の点では問題ないことが確認できた。
一方、導体解体後のサブケーブルの一部を切り出して、Ic測定を行なったところ、Icは10AにIcが低下した。これは、熱処理後のサブケーブル集合時の機械的歪みに加えて、ドラムに巻き付ける際の曲げによる機械的歪みがサブケーブルに新たに加わったことによる。
【0028】
比較例3
また、ステンレス直管を芯材とし、実施例1で作製した熱処理前のサブケーブルを7本使用し、長さ5mの1層導体を製作した。このサブケーブルの芯材への巻き付けピッチは200mmとした。本導体に850℃、100時間の2次熱処理を施した後に、導体を胴径1.6mφのドラムに巻き付けた。
その後、ドラムから巻き戻し、この導体を解体した。導体解体後のサブケーブルの一部を切り出して、Ic測定を行なったところ、Icは30Aと比較例2の場合よりも、Icが3倍高いことがわかった。
しかしながら、解体後、外観調査を行なったところ、ステンレス直管に座屈ならびに断裂が生じていることが分かり、使用したステンレス製直管は、導体用芯材として可撓性の点では不十分であることがわかった。
【0029】
実施例2
ステンレス直管を芯材とし、実施例1で作製した熱処理前のサブケーブルを7本用い、長さ5mのを1層巻き導体を作製した。このサブケーブルの芯材への巻き付けピッチは200mmとした。本導体に850℃、100時間の熱処理を施した後に、ステンレス直管を抜くと同時に銅パイプを挿入して、芯材が銅パイプの1層導体とした。導体表面には保護ならびに固定の目的でマイラーテープを巻き付けた。
さらに、導体を胴径1.6mφのドラムに巻き付けた後、導体を巻き戻し、解体後のサブケーブルの一部を切り出してIc測定を行なったところ、Icは30Aと、比較例2の場合よりもIcが3倍高いことがわかった。
また、導体を解体して外観調査を行なったところ、芯材、ならびにサブケーブルの外観に座屈ならびに断裂は見られず、本導体が可撓性の点で問題ないことがわかった。
以上のように本手法で作製した導体は、可撓性と高臨界電流特性を有することがわかった。
【0030】
実施例3
別な実施例として、ステンレス直管を芯材とし、実施例1で作製した熱処理前のサブケーブルを7本使用し、長さ1mの1層巻き導体を作製した。このサブケーブルの芯材への巻き付けピッチは200mmとした。本導体に850℃、100時間の熱処理を施した後に、導体の解体を行なった。サブケーブルは導体解体の後も捻じられた形状を保っていた。
導体解体後のサブケーブル7本をステンレス管と同径(19mmφ)の銅管を芯材として組み直し、巻き付けピッチ200mmの1層巻き導体とした。導体表面には保護ならびに固定の目的でマイラーテープを巻き付けた。
この導体を胴径1.6mφのドラムに巻き付け、その後、ドラムから巻き戻した。解体後のサブケーブルの一部を切り出してIc測定を行なったところ、Icは28Aと、比較例2の場合よりIcが約3倍高いことがわかった。
また、導体を解体して外観調査を行なったところ、芯材ならびにサブケーブルに座屈ならびに断裂は見られず、本導体が可撓性の点で問題ないことがわかった。
以上のように、熱処理後のサブケーブルを一旦、解体し、サブケーブルの形状を維持したまま、熱処理に用いた芯材を可撓性のある芯材に取り替えることが可能であり、この手法で作製した導体が可撓性と高臨界電流特性を有することがわかった。
【0031】
比較例4
さらに、テープ状銀シース酸化物超電導線材(幅3.5mm、厚さ0.2mm)を用いて、酸化物超電導ケーブル用導体を作製した。
14本のテープ状酸化物超電導線を用い、巻き付けピッチ200mmでステンレス直管上に巻き付け、長さは1mの導体を2本作製した。この導体に850℃、100時間の2次熱処理を施した後、1本の導体を解体した。テープ状酸化物超電導線は変形しやすく、導体解体後の線材は芯材に巻き付けた形状を保つのが困難であった。
また、残りの1本の導体を用い、ステンレス管の抜き取りと銅管の挿入を同時に行なったところ、作業時時に酸化物超電導線の巻き乱れが生じた。以上のように、芯材を置き換える手法は、テープ状酸化物超電導線による導体には適用できず、本願発明のようにサブケーブルを用いる超電導酸化物ケーブル用導体の作製の場合に有効あることがわかった。
【0032】
【発明の効果】
以上のように本願発明において、酸化物超電導材料または前駆体とそれを覆う銀又は銀合金からなる素線を用いて、撚線することにより素線に転位を施し、複数本の前記撚線を円筒形の芯材上に集合し、熱処理して酸化物超電導撚線を作製した後、円筒形の芯材上に所定のピッチで巻き付けられた形状を保持している前記酸化物超電導撚線を、酸化物超電導ケーブル用導体を構成するサブケーブルとすることにより、臨界電流特性の優れた酸化物超電導撚線および酸化物超電導ケーブル用導体を製造することができる。
【図面の簡単な説明】
【図1】本願発明に用いる酸化物超電導体の前駆体粉末と金属からなる複合材の断面構造を示す模式図である。
【図2】本願発明に用いる酸化物超電導体の前駆体粉末と金属からなるテープ状複合材の断面構造を示す模式図である。
【図3】本願発明に用いる酸化物超電導体の前駆体からなる多層部を設けた複合材の断面構造を示す模式図である。
【図4】本願発明に用いる図3の複数本の複合材を金属管に挿入した複合材の断面を示す模式図である。
【図5】複数本の図3の複合材を銀または銀合金の母材中に埋め込んだ素線の断面構造の模式図である。
【図6】本願発明に用いる2次撚線の断面構造を示す模式図である。
【図7】本願発明に用いる成形された2次撚線の断面構造を示す模式図である。
【図8】巻き付けピッチPで焼結用芯材に巻き付けられたサブケーブルの様子を示す斜視図である。
【図9】酸化物超電導ケーブルの作製において、芯材にサブケーブルを巻き付ける様子を示す斜視図である。
【図10】本願発明に用いる酸化物超電導ケーブル用導体の断面構造を示す模式図である。
【符号の説明】
1 酸化物超電導体の前駆体の粉末
2 銀または銀合金の金属管
3 銀または銀合金の芯線
4 酸化物超電導体の前駆体粉末からなる多層部
5 銀または銀合金の金属管
6 複合材
7 銀または銀合金の金属管
8 銀または銀合金による母材
9 素線
10 電気絶縁層
11 芯材
12 芯材
13 サブケーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductor for an oxide superconducting stranded wire and an oxide superconducting cable using an oxide superconductor or a precursor and a wire covering the metal, and a technique for producing them, in particular, a high critical current. The present invention relates to a technique for providing an oxide superconducting stranded wire having a density and a conductor for an oxide superconducting cable.
[0002]
[Prior art]
Since the oxide superconducting wire exhibits a superconducting state at a liquid nitrogen temperature, it is expected to be applied to a superconducting magnet, a superconducting cable, and the like, and its development is being promoted. In particular, research and development have been conducted on metal-coated bismuth-based oxide superconducting wires in order to obtain a high critical current density.
[0003]
As for the oxide superconducting cable conductor, a structure in which a tape-like silver-coated bismuth-based superconducting wire is spirally wound in multiple layers on a core material is known. However, this structure has a problem in that the AC loss during energization is large because of the occurrence of drift due to the difference in impedance between the inner and outer layers of the conductor. Also, a large AC loss becomes a factor that reduces the critical current.
As a conductor for an oxide superconducting cable having a small AC loss, an oxide superconducting cable conductor composed of a sub cable having a stranded wire structure has been proposed. Although the AC loss can be reduced by increasing the number of strands in the sub-cable and using a multi-stranded structure, the size of the sub-cable increases. In this case, if the strain is applied, the critical current characteristics of the oxide superconducting wire are likely to deteriorate, and the critical current characteristics of the superconducting cable conductor produced by assembling the sub-cables are reduced. The critical current density characteristic of becomes low.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a technique for producing an oxide superconducting stranded wire and an oxide superconducting cable conductor having excellent critical current characteristics using an oxide superconducting wire.
[0005]
[Means for Solving the Problems]
The present invention provides a method for producing an oxide superconducting stranded wire and a conductor for an oxide superconducting cable using an oxide superconducting material or precursor and a strand made of silver or a silver alloy covering the material. In this method, an oxide superconducting material or precursor and a wire made of silver or a silver alloy covering the material, a step of providing an electric insulating layer on the wire, and twisting the wires And a step of heating the stranded wire to a temperature necessary for generating the oxide superconducting material and heat-treating it.
[0006]
As the electrical insulating layer of the wire in the production method of the present invention, a paint mainly composed of a silicon-based organometallic polymer, a paint mainly composed of aluminum phosphate, or the like can be used as the electrical insulating layer. Moreover, in the manufacturing method by this invention, after stranding a strand, the obtained twisted wire can be shape | molded, for example so that the cross section may become a flat or a fan shape. Next, the formed stranded wire is heated to a temperature necessary for the production of the oxide superconducting material and subjected to heat treatment. Thus, after forming a stranded wire, the influence at the time of stranded wire formation is reduced by performing heat treatment, and a superconducting stranded wire exhibiting high critical current and critical current density is obtained. The formed superconducting stranded wire is useful for forming a compact cable conductor.
[0007]
This invention provides the manufacturing method of the conductor for oxide superconducting cables provided with the process of winding the some strand wire obtained by the manufacturing method mentioned above around a cylindrical core material.
[0008]
According to the present invention, a plurality of the above-described stranded wires are wound around a cylindrical core material, and then heated to a temperature necessary for the production of the oxide superconducting material, and the oxide superconducting stranded wire obtained by heat treatment is subjected to heat treatment. By assembling the stranded wire before the heat treatment on the flexible core material having the same outer diameter as the core material used in the above, with the same pitch wound around the cylindrical core material, a plurality of A conductor for an oxide superconducting cable obtained by winding an oxide superconducting stranded wire around a cylindrical core material can be provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the production of an oxide superconductor, for example, a bismuth-based 2223 phase oxide superconductor coated with a metal such as silver or silver alloy, in order to produce an oxide superconductor material, for example, about 850 ° C. Heat treatment is performed at a high temperature. The oxide superconducting material produced by the heat treatment is relatively weak to bending, and is liable to cause deterioration of the critical current at a bending strain exceeding 0.3%, for example. Therefore, when a plurality of oxide superconducting wires obtained through the heat treatment step are twisted together, the oxide superconducting material is destroyed by bending strain, and characteristics such as critical current deteriorate in the oxide superconducting wire. The inventor of the present application prepares a strand, and after the twisting step of twisting the strands, an oxide superconducting strand and oxide exhibiting excellent superconducting properties by performing a heat treatment for generating an oxide superconductor It has been found that a conductor for a superconducting cable can be obtained.
[0010]
A predetermined amount of raw material of the oxide superconducting material is weighed and calcined, and the oxide superconducting material precursor powder 1 prepared by calcination is filled in a metal tube 2 made of silver or a silver alloy, as shown in FIG. A composite material is obtained.
[0011]
A tape-like composite material as shown in FIG. 2 is obtained by rolling the composite material of the oxide superconductor precursor powder and the metal.
[0012]
The tape-like composite material of FIG. 2 is arranged around the core wire 3 made of silver or silver alloy, inserted into a metal tube 5 made of silver or silver alloy, and subjected to diameter reduction processing such as wire drawing. As shown in FIG. 3, a composite material 6 provided with a multilayer portion 4 made of a powder of an oxide superconductor precursor is obtained. The amount of the oxide superconductor precursor can be adjusted by adjusting the amount of the tape-shaped composite material to be wound.
[0013]
As shown in FIG. 4, a plurality of composites 6 of FIG. 3 are inserted into a silver or silver alloy metal tube 7 and then subjected to diameter reduction processing such as wire drawing, as shown in FIG. Further, a strand 9 in which a plurality of composite materials 6 of FIG. 3 are embedded in a silver or silver alloy base material 8 in multiple cores is obtained. The amount of the oxide superconductor precursor can be adjusted by the number of the composite materials 6 shown in FIG. Further, by adjusting the thickness of the metal tube 5 made of silver or silver alloy, the distance between the oxide superconductors generated by the heat treatment can be adjusted by adjusting the distance between the cores, and the high critical current. An oxide superconducting wire having a low value and low AC loss can be obtained.
[0014]
As shown in FIG. 5, an electrical insulating layer 10 is formed on the outer periphery of the wire 9. As this electrical insulating layer, it has been found that organometallic polymers such as silicon-based organometallic polymers, compounds such as aluminum phosphate, or boron nitride are excellent from the viewpoint of heat resistance, adhesion to strands and strength. . When these materials are used, it is possible to form a coating layer that is difficult to peel off at the time of stranded wire and has excellent strength. By applying an electrical insulating layer to the surface of the strands, the coupling current between the strands can be reduced and the AC loss can be reduced.
[0015]
As described above, the plurality of strands 9 on which the electrical insulating layer 10 is formed are twisted together to form a stranded wire. When twisting together, dislocation is applied to the strand 9 to reduce the drift between the oxide superconductors in the strand.
[0016]
By repeating the stranded wire process, a secondary or higher order stranded wire can be obtained. FIG. 6 shows an example of a secondary stranded wire in which six strands 9 are primary twisted on a silver or silver alloy core wire 11 and four primary twisted wires are further twisted. A stranded wire having a large current capacity can be obtained depending on the number of stranded wires and the twist order. In addition, as the number of twists increases, the effect of dislocation increases, the impedance of the outer and inner layers of the stranded wire can be made uniform, drift between the stranded wires can be reduced, and AC loss can be reduced. it can.
[0017]
In addition, by forming the obtained stranded wire into a shape such as a flat or fan shape, the packing factor can be increased, a more compact stranded wire can be obtained, and the current density can be improved. FIG. 7 is an example in which FIG. 6 is flat-shaped, and a compact formed stranded wire with a small space between the strands and between the stranded wires can be obtained.
[0018]
As shown in FIG. 8, the stranded wire thus produced is wound as a sub-cable 13 around a cylindrical sintering core material 12 at a predetermined pitch. As shown in FIGS. Sub conductors 13 can be assembled to produce a superconducting cable conductor. The sintering core 12 uses a metal tube that can withstand the temperature required for heat treatment of the oxide superconducting material.
[0019]
The heat treatment for producing the oxide superconductor is performed, for example, at a temperature of 800 to 900 ° C., preferably 840 to 850 ° C. In this way, the cylindrical core material for sintering is wound at a predetermined pitch, and after twisted wires are assembled, heat treatment is performed to reduce the influence of distortion during twisting, and high critical current and critical current density characteristics are achieved. The stranded wire shown is obtained.
[0020]
A plurality of stranded wires are wound around a cylindrical sintering core 12 at a predetermined pitch, heat-treated, and then the winding diameter is increased by loosening the twisting of the sub-cable, etc. Remove material 12. Thereafter, a flexible core material having the same outer diameter as that of the sintering core material 12 is replaced and assembled at the same pitch wound around the cylindrical core material before the heat treatment. A conductor can be obtained. As a flexible core material of a conductor for a superconducting cable, for example, it can be formed from copper, aluminum, FRP (fiber reinforced plastic) or the like, and it is preferable to use a copper core material from the viewpoint of strength and flexibility.
[0021]
In addition, the sub-cable composed of a plurality of stranded wires is wound around the cylindrical sintering core member 12 at a predetermined pitch, heat-treated, and then the conductor is disassembled. In this case, after the conductor is disassembled, the sub-cable is disassembled so as to maintain the wound shape, and the sub-cable after the conductor is disassembled is reassembled into a flexible core copper tube having the same diameter as the sintering core material. By gathering on this core material, an oxide superconducting cable conductor can be obtained.
Also in this case, it is possible to select a core material suitable for the sintering core material and the flexible core material from the viewpoints of heat resistance and flexibility.
[0022]
By assembling the sub cables made of stranded wires in this way, it is possible to reduce the influence of distortion when producing a conductor for an oxide superconducting cable. Higher critical current characteristics can be obtained than oxide superconducting cable conductors produced by assembling while winding stranded wires or oxide superconducting cable conductors produced by assembling while winding stranded wires that have been heat-treated. .
Hereinafter, the present invention will be described in more detail by way of examples.
[0023]
【Example】
Example 1
Using powders of Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO, powders having a composition ratio of Bi: Pb: Sr: Ca: Cu = 1.8: 0.4: 2: 2: 3 are mixed. did. This powder was calcined at 700 ° C. for 12 hours and 8 hours at 800 ° C. for 8 hours, and further calcined at 850 ° C. for 8 hours.
The calcined powder was pulverized with a ball mill. This powder was deaerated by heating at 800 ° C. for 15 minutes, and then filled into a silver pipe as shown in FIG. The silver pipe was drawn to 1.15 mmφ and then rolled to a thickness of 0.2 mm as shown in FIG. As shown in FIG. 3, seven oxide superconducting material precursors and silver composite materials in which a plurality of rolled tape wires are arranged concentrically with a silver bar as an axis are used and fitted to a silver pipe as shown in FIG. Thereafter, the wire was drawn to 0.9 mmφ to produce a round wire as shown in FIG. The element wire was subjected to heat treatment at 850 ° C. for 50 hours, and after the electrical insulating layer 10 was provided using a SiO 2 -based inorganic insulating material, stranded wire processing was performed. In the primary stranded wire processing, six strands were twisted at a twist pitch of 40 mm with a silver wire 5 of 0.9 mmφ as the center line. In the secondary stranded wire processing, the four primary stranded wires are twisted together at a twist pitch of 80 mm as shown in FIG. 6 and formed into a width of 8 mm and a thickness of 3 mm. A secondary stranded wire sub-cable as shown in FIG. Produced.
[0024]
As shown in FIG. 8, the sub-cable was wound around a stainless steel tube core having an outer diameter of 19 mmφ and an inner diameter of 17 mmφ with a winding pitch P of 200 mm, bound with glass tape, and then subjected to heat treatment at 850 ° C. for 100 hours. When Ic was measured in liquid nitrogen while being wound after the heat treatment, Ic was 40A.
[0025]
Comparative Example 1
The straight secondary stranded wire before heat treatment obtained in Example 1 was subjected to heat treatment at 850 ° C. for 100 hours. A part of the sub-cable was cut out after the heat treatment, and the critical current Ic was measured in liquid nitrogen. As a result, Ic was 40A.
On the other hand, as shown in FIG. 8, the sub-cable after the heat treatment in a straight shape is wound with a winding pipe P of 200 mm using a stainless steel core material 12 having an outer diameter of 19 mmφ and an inner diameter of 17 mmφ, and is still wound. When Ic was measured in liquid nitrogen, Ic was reduced to 12A.
[0026]
From this, in the oxide superconducting stranded wire of the present invention of Example 1, Ic similar to the oxide superconducting stranded wire heat-treated in a straight state can be obtained, and the oxidized wire obtained by winding the heat-treated stranded wire around the core material It was confirmed that high critical current characteristics can be obtained compared to a superconducting stranded wire.
[0027]
Comparative Example 2
As shown in FIGS. 9 and 10, a copper straight pipe is used as a core, the sub cable 13 obtained in Example 1 is heat-treated, and the seven sub cables are used to form a one-layer conductor having a length of 5 m. Produced. The winding pitch of the sub cable around the core material was 200 mm, and Mylar tape was wound around the conductor surface. After producing this conductor, the conductor was wound around a drum having a body diameter of 1.6 mφ.
When the conductor was unwound from the drum, the conductor was disassembled and the appearance was examined, no buckling or tearing was observed in the core material and the sub-cable. By this test, it was confirmed that the copper straight pipe was satisfactory as a conductor core material in terms of flexibility.
On the other hand, when a part of the sub-cable after the conductor disassembly was cut out and Ic measurement was performed, Ic was reduced to 10A. This is because, in addition to the mechanical strain at the time of assembly of the sub-cable after heat treatment, mechanical strain due to bending when being wound around the drum is newly added to the sub-cable.
[0028]
Comparative Example 3
Moreover, a stainless steel straight pipe was used as a core material, and seven sub-cables before heat treatment produced in Example 1 were used to produce a single-layer conductor having a length of 5 m. The winding pitch of the sub cable around the core material was 200 mm. After subjecting this conductor to a secondary heat treatment at 850 ° C. for 100 hours, the conductor was wound around a drum having a body diameter of 1.6 mφ.
Thereafter, the conductor was unwound from the drum and the conductor was disassembled. When a part of the sub-cable after the conductor disassembly was cut out and Ic measurement was performed, it was found that Ic was 3 times higher than that of Comparative Example 2 at 30A.
However, after disassembling, an external inspection was conducted and it was found that the stainless steel straight tube was buckled and torn, and the stainless steel straight tube used was not sufficient in terms of flexibility as a conductor core material. I found out.
[0029]
Example 2
A stainless steel straight pipe was used as a core material, and 7 sub-cables before heat treatment produced in Example 1 were used to produce a single-layer wound conductor having a length of 5 m. The winding pitch of the sub cable around the core material was 200 mm. After subjecting this conductor to heat treatment at 850 ° C. for 100 hours, the stainless steel straight pipe was pulled out and a copper pipe was inserted at the same time to form a one-layer conductor having a copper pipe as the core material. Mylar tape was wrapped around the conductor surface for the purpose of protection and fixation.
Further, after winding the conductor around a drum having a drum diameter of 1.6 mφ, the conductor was rewound, and a part of the sub-cable after disassembly was cut out and Ic measurement was performed. Ic was found to be 3 times higher.
When the conductor was disassembled and the appearance was examined, it was found that the appearance of the core material and the sub-cable was not buckled or broken, and that this conductor had no problem in terms of flexibility.
As described above, it was found that the conductor produced by this method has flexibility and high critical current characteristics.
[0030]
Example 3
As another example, a stainless steel straight pipe was used as a core material, and seven sub-cables before heat treatment produced in Example 1 were used to produce a 1-m long single-layer wound conductor. The winding pitch of the sub cable around the core material was 200 mm. The conductor was heat-treated at 850 ° C. for 100 hours, and then the conductor was disassembled. The sub-cable maintained the twisted shape after the conductor was disassembled.
The seven sub-cables after the conductors were disassembled were reassembled with a copper tube having the same diameter (19 mmφ) as the stainless steel tube as a core material to form a one-layer winding conductor with a winding pitch of 200 mm. Mylar tape was wrapped around the conductor surface for the purpose of protection and fixation.
This conductor was wound around a drum having a drum diameter of 1.6 mφ, and then rewound from the drum. When a part of the sub-cable after disassembly was cut out and Ic measurement was performed, it was found that Ic was 28 A, which is about 3 times higher than that in Comparative Example 2.
Moreover, when the conductor was disassembled and the appearance was examined, it was found that the core material and the sub-cable were not buckled or broken, and that this conductor had no problem in terms of flexibility.
As described above, it is possible to dismantle the sub-cable after the heat treatment and replace the core material used for the heat treatment with a flexible core material while maintaining the shape of the sub-cable. The fabricated conductor was found to have flexibility and high critical current characteristics.
[0031]
Comparative Example 4
Further, a conductor for an oxide superconducting cable was produced using a tape-shaped silver sheath oxide superconducting wire (width 3.5 mm, thickness 0.2 mm).
Using 14 tape-shaped oxide superconducting wires, winding was performed on a stainless steel straight pipe at a winding pitch of 200 mm, and two conductors having a length of 1 m were produced. The conductor was subjected to a secondary heat treatment at 850 ° C. for 100 hours, and then one conductor was disassembled. The tape-shaped oxide superconducting wire is easily deformed, and it is difficult to maintain the shape of the wire rod after being disassembled from the conductor.
Further, when the remaining one conductor was used and the stainless steel tube was pulled out and the copper tube was inserted at the same time, the oxide superconducting wire was disturbed during operation. As described above, the method of replacing the core material cannot be applied to a conductor using a tape-shaped oxide superconducting wire, and may be effective in the case of producing a conductor for a superconducting oxide cable using a sub cable as in the present invention. all right.
[0032]
【The invention's effect】
As described above, in the present invention, using an oxide superconducting material or a precursor and a strand made of silver or a silver alloy covering it, the strand is subjected to dislocation by twisting, and a plurality of the strands are After the oxide superconducting stranded wire is assembled on a cylindrical core material and heat-treated to produce an oxide superconducting stranded wire, the oxide superconducting stranded wire holding the shape wound at a predetermined pitch on the cylindrical core material is By using the sub-cable constituting the conductor for the oxide superconducting cable, the oxide superconducting stranded wire and the oxide superconducting cable conductor having excellent critical current characteristics can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a cross-sectional structure of a composite material composed of a precursor powder of an oxide superconductor used in the present invention and a metal.
FIG. 2 is a schematic diagram showing a cross-sectional structure of a tape-shaped composite material made of a precursor powder of an oxide superconductor and metal used in the present invention.
FIG. 3 is a schematic diagram showing a cross-sectional structure of a composite material provided with a multilayer portion made of a precursor of an oxide superconductor used in the present invention.
4 is a schematic view showing a cross section of a composite material in which a plurality of composite materials of FIG. 3 used in the present invention are inserted into a metal tube.
5 is a schematic diagram of a cross-sectional structure of a strand in which a plurality of composite materials of FIG. 3 are embedded in a base material of silver or a silver alloy.
FIG. 6 is a schematic diagram showing a cross-sectional structure of a secondary stranded wire used in the present invention.
FIG. 7 is a schematic diagram showing a cross-sectional structure of a molded secondary stranded wire used in the present invention.
FIG. 8 is a perspective view showing a state of a sub cable wound around a sintering core material at a winding pitch P;
FIG. 9 is a perspective view showing a state in which a sub cable is wound around a core material in manufacturing an oxide superconducting cable.
FIG. 10 is a schematic view showing a cross-sectional structure of a conductor for an oxide superconducting cable used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oxide superconductor precursor powder 2 Silver or silver alloy metal tube 3 Silver or silver alloy core wire 4 Multilayer part 5 made of oxide superconductor precursor powder Silver or silver alloy metal tube 6 Composite 7 Silver or silver alloy metal tube 8 Base material 9 made of silver or silver alloy Wire 10 Electrical insulation layer 11 Core material 12 Core material 13 Sub cable

Claims (2)

酸化物超電導材料または前駆体とそれを覆う銀又は銀合金からなる素線を撚線することにより素線に転位を施し、複数本の前記撚線を円筒形の芯材上に集合し、熱処理して酸化物超電導撚線を作製した後、円筒形の芯材上に所定のピッチで巻き付けられた形状を保持している前記酸化物超電導撚線を、酸化物超電導ケーブル用導体を構成するサブケーブルとすることを特徴とする酸化物超電導ケーブル用導体。  An oxide superconducting material or a precursor and a strand made of silver or a silver alloy covering the strand are twisted to dispose the strand, and a plurality of the strands are assembled on a cylindrical core material, followed by heat treatment After forming the oxide superconducting stranded wire, the oxide superconducting stranded wire holding the shape wound around the cylindrical core material at a predetermined pitch is used as the subconductor constituting the oxide superconducting cable conductor. A conductor for an oxide superconducting cable, characterized by being a cable. 酸化物超電導材料または前駆体とそれを覆う銀又は銀合金からなる素線を撚線することにより素線に転位を施し、複数本の前記撚線を円筒形の芯材上に所定のピッチで巻き付け、その後、熱処理して得られた酸化物超電導撚線を、熱処理に使用した芯材と同一の外径を有する可撓性のある芯材上に、熱処理前に前記撚線を円筒形の芯材上に巻き付けた同一のピッチで集合することを特徴とする酸化物超電導ケーブル用導体の製造方法。  Displacement is performed on the strand by twisting a strand made of an oxide superconducting material or precursor and silver or a silver alloy covering the oxide superconducting material or precursor, and a plurality of the strands are placed on a cylindrical core material at a predetermined pitch. The oxide superconducting stranded wire obtained by winding and then heat-treating the stranded wire on a flexible core material having the same outer diameter as that of the core material used for the heat treatment, before the heat treatment. A method for producing a conductor for an oxide superconducting cable, wherein the conductors are gathered at the same pitch wound on a core material.
JP16163998A 1998-06-10 1998-06-10 Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method Expired - Fee Related JP4096406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16163998A JP4096406B2 (en) 1998-06-10 1998-06-10 Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16163998A JP4096406B2 (en) 1998-06-10 1998-06-10 Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method

Publications (2)

Publication Number Publication Date
JPH11353956A JPH11353956A (en) 1999-12-24
JP4096406B2 true JP4096406B2 (en) 2008-06-04

Family

ID=15739017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16163998A Expired - Fee Related JP4096406B2 (en) 1998-06-10 1998-06-10 Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method

Country Status (1)

Country Link
JP (1) JP4096406B2 (en)

Also Published As

Publication number Publication date
JPH11353956A (en) 1999-12-24

Similar Documents

Publication Publication Date Title
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
US5932523A (en) Superconducting cable conductor
JP3658841B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH06318409A (en) Superconductor
JPH04106906A (en) High temperature superconducting coil
CN101361144B (en) Oxide superconducting wire rod, superconducting structure, method for manufacturing oxide superconducting wire rod, superconducting cable, superconducting magnet, and product comprising superconductin
JP4096406B2 (en) Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method
JP4737094B2 (en) Oxide superconducting wire, superconducting structure, manufacturing method of oxide superconducting wire, superconducting cable, superconducting magnet, and product including superconducting magnet
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP3657397B2 (en) Oxide superconducting wire and method for producing the same
JP4200663B2 (en) Manufacturing method of oxide superconducting wire
JP4566576B2 (en) Dislocation segment conductor
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP3033624B2 (en) Ceramic superconducting conductor
JP3757659B2 (en) Superconducting wire and method for manufacturing the same
JP3042558B2 (en) Ceramic superconducting conductor
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JPH1097815A (en) Bismuth oxide multicore superconducting wire and its manufacture
JP3775091B2 (en) Superconducting wire and method for manufacturing the same
JPH11203960A (en) Oxide superconductive cable
JP3568767B2 (en) Superconducting cable and manufacturing method thereof
JPH07114838A (en) Oxide superconducting cable
JP3350935B2 (en) Multi-core superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees