JPH11353956A - Oxide superconductive twisted wire, conductor for oxide superconductive cable, and manufacture of oxide superconductive twisted wire and conductor for oxide superconductive cable - Google Patents

Oxide superconductive twisted wire, conductor for oxide superconductive cable, and manufacture of oxide superconductive twisted wire and conductor for oxide superconductive cable

Info

Publication number
JPH11353956A
JPH11353956A JP10161639A JP16163998A JPH11353956A JP H11353956 A JPH11353956 A JP H11353956A JP 10161639 A JP10161639 A JP 10161639A JP 16163998 A JP16163998 A JP 16163998A JP H11353956 A JPH11353956 A JP H11353956A
Authority
JP
Japan
Prior art keywords
oxide superconducting
conductor
wire
cable
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10161639A
Other languages
Japanese (ja)
Other versions
JP4096406B2 (en
Inventor
Jun Fujigami
純 藤上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16163998A priority Critical patent/JP4096406B2/en
Publication of JPH11353956A publication Critical patent/JPH11353956A/en
Application granted granted Critical
Publication of JP4096406B2 publication Critical patent/JP4096406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide oxide superconductive twisted wires and a conductor for an oxide superconductive cable having high critical current density, and having the shape of winding a cylindrical core material at the prescribed pitch with element wires composed of an oxide superconductive material or its precursor and silver or a silver alloy covering it. SOLUTION: Plural twisted wires are twisted using element wires composed of an oxide superconductive material or its precursor and silver or a silver alloy covering it. A cylindrical core material 12 is wound with the plural twisted wires at the prescribed pitch, and they are heat-treated to manufacture the oxide superconductive twisted wires. The oxide superconductive twisted wires are assembled on an flexible core material having the same outside diameter as the core material used before the heat-treatment, at the same pitch as before the heat-treatment, to manufacture the conductor for the oxide superconductive cable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、酸化物超電導体
または前駆体とそれを覆う金属からなる素線を用いた酸
化物超電導撚線および酸化物超電導ケーブル用導体なら
びにそれらを製造するための技術に関し、特に、高い臨
界電流密度を有する酸化物超電導撚線および酸化物超電
導ケーブル用導体を提供するための技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting stranded wire and a conductor for an oxide superconducting cable using an oxide superconductor or a precursor and a wire covering the same, and a technique for producing the same. In particular, the present invention relates to a technique for providing a conductor for an oxide superconducting stranded wire and an oxide superconducting cable having a high critical current density.

【0002】[0002]

【従来の技術】酸化物超電導線材は、液体窒素温度で超
電導状態を示すことから、超電導マグネット、超電導ケ
ーブルなどへの応用が期待され、その開発が進められて
いる。特に、金属被覆したビスマス系酸化物超電導線材
は高い臨界電流密度を得るため、研究開発が行われてい
る。
2. Description of the Related Art Since an oxide superconducting wire exhibits a superconducting state at liquid nitrogen temperature, it is expected to be applied to superconducting magnets, superconducting cables and the like, and its development is being promoted. In particular, research and development have been conducted on a metal-coated bismuth-based oxide superconducting wire to obtain a high critical current density.

【0003】酸化物超電導ケーブル用導体に関しては、
テープ状の銀被覆したビスマス系超電導線を芯材上に多
層で螺旋巻した構造が知られている。しかし、この構造
では導体の内層と外層のインピーダンスの違いによっ
て、偏流が生じるため通電時の交流損失が大きい問題点
があった。また、大きな交流損失は、臨界電流を低下さ
せる要因になる。交流損失の小さな酸化物超電導ケーブ
ル用導体としては、撚線構造のサブケーブルから構成さ
れる酸化物超電導ケーブル用導体が提案されている。サ
ブケーブル中の素線数を多くし、多次撚線構造にするこ
とにより交流損失を低減できるが、サブケーブルのサイ
ズが大きくなる。この場合、歪みが加わると酸化物超電
導線の臨界電流特性の劣化が生じやすく、このサブケー
ブルを集合して作製する超電導ケーブル用導体の臨界電
流特性は低下し、酸化物超電導ケーブル用導体全体での
臨界電流密度特性は低くなる。
[0003] Regarding the conductor for oxide superconducting cable,
A structure is known in which a tape-shaped silver-coated bismuth-based superconducting wire is spirally wound in multiple layers on a core material. However, in this structure, there is a problem that an AC loss at the time of energization is large because a drift occurs due to a difference in impedance between the inner layer and the outer layer of the conductor. Further, a large AC loss causes a reduction in critical current. As an oxide superconducting cable conductor having a small AC loss, an oxide superconducting cable conductor composed of a stranded sub-cable has been proposed. The AC loss can be reduced by increasing the number of wires in the sub-cable and adopting a multi-strand structure, but the size of the sub-cable increases. In this case, when the strain is applied, the critical current characteristic of the oxide superconducting wire is likely to deteriorate, and the critical current characteristic of the superconducting cable conductor produced by assembling the sub-cables is reduced, and the entire conductor of the oxide superconducting cable is reduced. Has a lower critical current density characteristic.

【0004】[0004]

【発明が解決しようとする課題】本願発明の目的は、酸
化物超電導線材を用いて臨界電流特性の優れた酸化物超
電導撚線および酸化物超電導ケーブル用導体を製造する
ための技術を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a technique for manufacturing a conductor for an oxide superconducting stranded wire and an oxide superconducting cable having excellent critical current characteristics using an oxide superconducting wire. It is in.

【0005】[0005]

【課題を解決するための手段】本願発明により、酸化物
超電導材料または前駆体とそれを覆う銀または銀合金か
らなる素線を用いて、酸化物超電導撚線、酸化物超電導
ケーブル用導体を製造する方法が提供される。この方法
は、酸化物超電導材料または前駆体とそれを覆い銀また
は銀合金からなる素線を作製する工程と、素線に電気絶
縁層を設ける工程と、素線を撚り合わせることにより、
素線に転位を施す工程と、酸化物超電導材料の生成に必
要な温度まで、この撚線を加熱し、熱処理する工程とを
備える。
According to the present invention, an oxide superconducting twisted wire and a conductor for an oxide superconducting cable are manufactured using an oxide superconducting material or a precursor and a wire made of silver or a silver alloy covering the same. A method is provided for doing so. This method comprises the steps of: preparing an oxide superconducting material or a precursor and a wire made of silver or a silver alloy covering the same; and a step of providing an electric insulating layer on the wire, and twisting the wire.
The method includes a step of displacing the strand, and a step of heating and heat-treating the stranded wire to a temperature required for producing an oxide superconducting material.

【0006】本願発明の製造方法における素線の電気絶
縁層としては、ケイ素系有機金属ポリマーを主成分とす
る塗料、リン酸アルミニウムなどを主成分とする塗料な
どを電気絶縁層として用いることができる。また、本願
発明による製造方法において、素線を撚り合せた後、得
られた撚線を、例えばその断面が平角または扇形になる
よう成形することができる。次いで、成形された撚線を
酸化物超電導材料の生成に必要な温度まで加熱し、熱処
理を行なう。このように撚線を成形した後に、熱処理を
行なうことで撚線成形時における影響を低減し、高い臨
界電流および臨界電流密度を示す超電導撚線が得られ
る。成形された超電導撚線は、コンパクトなケーブル用
導体を構成するために有用である。
[0006] As the electric insulating layer of the strand in the production method of the present invention, a coating mainly containing a silicon-based organometallic polymer, a coating mainly containing aluminum phosphate, or the like can be used as the electric insulating layer. . Further, in the manufacturing method according to the present invention, after the strands are twisted, the obtained stranded wire can be formed, for example, so that its cross section becomes a flat or fan shape. Next, the formed stranded wire is heated to a temperature necessary for forming an oxide superconducting material, and heat-treated. By performing a heat treatment after forming the stranded wire in this way, the influence during stranded wire formation is reduced, and a superconducting stranded wire having a high critical current and a high critical current density can be obtained. The formed superconducting stranded wire is useful for forming a compact cable conductor.

【0007】本願発明は、上述した製造方法によって得
られた複数本の撚線を円筒形の芯材に巻き付ける工程を
備える酸化物超電導ケーブル用導体の製造方法を提供す
る。
The present invention provides a method for manufacturing a conductor for an oxide superconducting cable, comprising a step of winding a plurality of stranded wires obtained by the above-described manufacturing method around a cylindrical core material.

【0008】本願発明により、上述した複数本の撚線を
円筒形の芯材に巻き付け、その後、酸化物超電導材料の
生成に必要な温度まで加熱し、熱処理して得られた酸化
物超電導撚線を、熱処理に使用した芯材と同一の外径を
有する可撓性のある芯材上に、熱処理前の前記撚線を円
筒形の芯材上に巻き付けた同一のピッチで集合すること
により、複数本の酸化物超電導撚線を円筒形の芯材に巻
き付けてなる酸化物超電導ケーブル用導体を提供するこ
とができる。
According to the present invention, the above-described plurality of stranded wires are wound around a cylindrical core material, and then heated to a temperature necessary for producing an oxide superconducting material, and heat-treated. On a flexible core material having the same outer diameter as the core material used for the heat treatment, by gathering the stranded wires before heat treatment at the same pitch wound on a cylindrical core material, It is possible to provide an oxide superconducting cable conductor obtained by winding a plurality of stranded oxide superconducting wires around a cylindrical core material.

【0009】[0009]

【発明の実施の形態】酸化物超電導体、例えばビスマス
系2223相酸化物超電導体を銀または銀合金などの金
属で被覆された酸化物超電導線材の製造の製造におい
て、酸化物超電導材料を生成するため、例えば約850
℃の高温において熱処理が行われる。熱処理により生成
した酸化物超電導材料は、相対的に曲げに弱く、例えば
0.3%を越えるような曲げ歪みにおいて臨界電流の劣
化を生じやすい。したがって、熱処理工程を経て得られ
た複数本の酸化物超電導線材を撚り合わせると、曲げ歪
みにより酸化物超電導材料の破壊が起こり、酸化物超電
導線材において臨界電流等の特性が劣化する。本願発明
者は素線を作製し、その素線を撚り合せる撚線工程の後
に、酸化物超電導体生成のための熱処理を行なうこと
で、優れた超電導特性を示す酸化物超電導撚線および酸
化物超電導ケーブ用導体が得られることを見出した。
DETAILED DESCRIPTION OF THE INVENTION In the manufacture of an oxide superconductor, for example, a bismuth-based 2223 phase oxide superconductor coated with a metal such as silver or a silver alloy, an oxide superconductor is produced. For example, about 850
Heat treatment is performed at a high temperature of ° C. The oxide superconducting material generated by the heat treatment is relatively vulnerable to bending, and is liable to deteriorate the critical current at a bending strain of, for example, more than 0.3%. Therefore, when a plurality of oxide superconducting wires obtained through the heat treatment step are twisted, bending of the oxide superconducting material occurs due to bending strain, and characteristics such as critical current of the oxide superconducting wire deteriorate. The inventor of the present application prepares an element wire, and after performing a twisting step of twisting the element wire, performs a heat treatment for generating an oxide superconductor, so that an oxide superconducting stranded wire and an oxide exhibiting excellent superconducting properties are obtained. It has been found that a conductor for a superconducting cable can be obtained.

【0010】酸化物超電導材料の原料を所定量、秤量
し、仮焼して作製した酸化物超電導材料の前駆体の粉末
1を銀または銀合金の金属管2に充填することにより、
図1に示すような複合材が得られる。
[0010] A predetermined amount of a raw material of the oxide superconducting material is weighed, and the precursor powder 1 of the oxide superconducting material produced by calcining is filled in a silver or silver alloy metal tube 2.
A composite as shown in FIG. 1 is obtained.

【0011】この酸化物超電導体の前駆体の粉末と金属
の複合材を圧延加工することにより図2のようなテープ
状複合材が得られる。
The composite material of the precursor powder of the oxide superconductor and the metal is rolled to obtain a tape-like composite material as shown in FIG.

【0012】銀または銀合金の芯線3の周囲に図2のテ
ープ状複合材を配置し、これを銀または銀合金の金属管
5に挿入し、伸線加工のような縮径加工を行なうことに
より、図3に示すような、酸化物超電導体の前駆体の粉
末からなる多層部4を設けた複合材6が得られる。テー
プ状複合材の巻き付ける量により、酸化物超電導体の前
駆体の量を調整することができる。
A tape-shaped composite material shown in FIG. 2 is arranged around a silver or silver alloy core wire 3 and inserted into a silver or silver alloy metal tube 5 to perform a diameter reduction such as wire drawing. As a result, a composite material 6 having a multilayer portion 4 made of a powder of a precursor of an oxide superconductor as shown in FIG. 3 is obtained. The amount of the precursor of the oxide superconductor can be adjusted by the amount of winding of the tape-shaped composite material.

【0013】図4に示すように、複数本の図3の複合材
6を銀または銀合金の金属管7に挿入し、次に伸線加工
のような縮径加工を行なうことにより、図5に示すよう
な、複数本の図3の複合材6を銀または銀合金の母材8
に多芯に埋め込んだ素線9が得られる。図3の複合材6
の本数により、酸化物超電導体の前駆体の量を調整する
ことができる。また、銀または銀合金の金属管5の厚さ
を調整することで、芯材間の間隔を調整することによ
り、熱処理により生成する酸化物超電導体の間隔を調整
することができ、高い臨界電流値および低交流損失な酸
化物超電導線材を得ることができる。
As shown in FIG. 4, a plurality of composite materials 6 shown in FIG. 3 are inserted into a silver or silver alloy metal tube 7 and then subjected to a diameter reduction such as a wire drawing to obtain a composite material 6 as shown in FIG. A plurality of the composite materials 6 shown in FIG.
A wire 9 embedded in multiple cores is obtained. Composite material 6 of FIG.
Can control the amount of the precursor of the oxide superconductor. Also, by adjusting the thickness of the metal tube 5 made of silver or silver alloy, by adjusting the interval between the core materials, the interval between the oxide superconductors generated by the heat treatment can be adjusted, and the high critical current can be adjusted. An oxide superconducting wire having a low value and low AC loss can be obtained.

【0014】図5に示すように素線9の外周には電気絶
縁層10を形成する。この電気絶縁層として、熱処理に
耐え、素線に対する密着性および強度という点から、ケ
イ素系有機金属ポリマー等の有機金属ポリマー、リン酸
アルミニウム等の化合物、または窒化ホウ素が優れてい
ることを見出した。これらの材料を用いれば、撚線時に
剥離しにくく、かつ強度の優れたコーティング層を形成
することができる。素線表面に電気絶縁層を施すことに
より、素線間の結合電流を低減することができ、交流損
失を低減することができる。
As shown in FIG. 5, an electric insulating layer 10 is formed on the outer periphery of the strand 9. As the electric insulating layer, it has been found that organometallic polymers such as silicon-based organometallic polymers, compounds such as aluminum phosphate, or boron nitride are excellent in terms of resistance to heat treatment, adhesion to strands and strength. . If these materials are used, it is difficult to peel off at the time of twisting, and a coating layer having excellent strength can be formed. By providing an electric insulating layer on the surface of the strand, the coupling current between the strands can be reduced, and the AC loss can be reduced.

【0015】上述したように電気絶縁層10が形成され
た複数の素線9は、撚線を形成するため撚り合わされ
る。撚り合わせの際、素線9に転位を施すことにより、
素線内の酸化物超電導体間の偏流を低減することができ
る。
The plurality of strands 9 on which the electric insulating layer 10 is formed as described above are twisted to form a stranded wire. At the time of twisting, by subjecting the strand 9 to dislocation,
The drift between the oxide superconductors in the strand can be reduced.

【0016】撚線工程を繰返すことにより2次以上の高
次撚線を得ることができる。図6は銀または銀合金の芯
線11に6本の素線9を1次撚線し、さらに、この1次
撚線を4本撚線した2次撚線の例である。撚線の本数、
撚り次数により、電流容量の大きな撚線を得ることがで
きる。また、撚り本数が増えるほど、転位の効果が大き
くなり、撚線の外層および内層のインピーダンスを均一
化することができ、撚線間の偏流を低減することがで
き、交流損失を少なくすることができる。
By repeating the twisting step, a secondary or higher order twisted wire can be obtained. FIG. 6 shows an example of a secondary stranded wire in which six strands 9 are primary stranded on a core wire 11 of silver or a silver alloy, and four primary stranded wires are further stranded. The number of twisted wires,
Depending on the twist order, a stranded wire having a large current capacity can be obtained. Also, as the number of twists increases, the effect of dislocation increases, the impedance of the outer and inner layers of the twisted wires can be made uniform, the drift between the twisted wires can be reduced, and the AC loss can be reduced. it can.

【0017】また、得られた撚線を平角、扇形などの形
状に成形することで、パッキングファクタを大きくする
ことができ、よりコンパクトな撚線が得られ、電流密度
を向上させることができる。図7は、図6を平角成形し
た例で、素線間および撚線間の空間の小さなコンパクト
な成形撚線が得られる。
Further, by forming the obtained stranded wire into a shape such as a rectangular shape or a fan shape, the packing factor can be increased, a more compact stranded wire can be obtained, and the current density can be improved. FIG. 7 shows an example in which FIG. 6 is formed into a rectangular shape, and a compact formed stranded wire having a small space between the strands and between the stranded wires can be obtained.

【0018】図8に示すように、このようにして作製し
た撚線をサブケーブル13として、円筒形の焼結用芯材
12に所定のピッチで巻き付け、図9および図10に示
すように、複数本のサブケーブル13を集合し、超電導
ケーブル用導体を作製することができる。焼結用芯材1
2は酸化物超電導材料の熱処理に必要な温度に耐える金
属管を用いる。
As shown in FIG. 8, the stranded wire produced in this manner is wound as a sub-cable 13 around the cylindrical sintering core 12 at a predetermined pitch, and as shown in FIGS. By collecting a plurality of sub-cables 13, a conductor for a superconducting cable can be manufactured. Core material for sintering 1
2 uses a metal tube that can withstand the temperature required for heat treatment of the oxide superconducting material.

【0019】酸化物超電導体生成のための熱処理は、例
えば、800〜900℃の温度、好ましくは、840〜
850℃の温度で行われる。このように円筒形の焼結用
芯材に所定のピッチで巻き付け、撚線を集合した後、熱
処理を行なうことで撚線時の歪みによる影響を低減し、
高い臨界電流および臨界電流密度特性を示す撚線が得ら
れる。
The heat treatment for forming the oxide superconductor is performed, for example, at a temperature of 800 to 900 ° C., preferably 840 to 900 ° C.
It is performed at a temperature of 850 ° C. In this way, the cylindrical core material for sintering is wound at a predetermined pitch, and after the stranded wires are assembled, heat treatment is performed to reduce the influence of distortion during stranded wire,
A stranded wire exhibiting high critical current and critical current density characteristics is obtained.

【0020】複数本の撚線からなるサブケーブルを円筒
形の焼結用芯材12上に所定のピッチで巻き付け、熱処
理した後、サブケーブルの撚りを緩めるなどして巻き付
け径を拡大して焼結用芯材12を外す。この後、焼結用
芯材12と同一の外径を有する可撓性のある芯材と差し
替え、熱処理前に円筒形の芯材に巻き付けた同一のピッ
チで集合することにより酸化物超電導ケーブル用導体を
得ることができる。超電導ケーブル用導体の可撓性芯材
としては、例えば、銅、アルミニウム、FRP(繊維強
化プラスチック)等から形成でき、強度および可撓性の
点からは銅製芯材を用いることが好ましい。
A sub-cable consisting of a plurality of stranded wires is wound around a cylindrical sintering core 12 at a predetermined pitch, and after heat treatment, the winding diameter is enlarged by loosening the twist of the sub-cable or the like. Remove the binding core 12. After that, the core material is replaced with a flexible core material having the same outer diameter as the sintering core material 12, and assembled at the same pitch wound around the cylindrical core material before the heat treatment. A conductor can be obtained. The flexible core material of the superconducting cable conductor can be formed of, for example, copper, aluminum, FRP (fiber reinforced plastic) or the like, and it is preferable to use a copper core material in terms of strength and flexibility.

【0021】また、複数本の撚線からなるサブケーブル
を円筒形の焼結用芯材12上に所定のピッチで巻き付
け、熱処理した後、導体の解体を行なう。この場合、サ
ブケーブルは導体解体の後も、巻き付けられた形状を保
つように解体し、導体解体後のサブケーブルを焼結用芯
材と同径の可撓性のある芯材銅管に組み直し、この芯材
上に集合することで、酸化物超電導ケーブル用導体を得
ることができる。この場合も、焼結用芯材と可撓性芯材
の材料をそれぞれの耐熱性あるいは可撓性などの点から
適した、芯材の材料を選択することができる。
Further, a sub-cable consisting of a plurality of stranded wires is wound around a cylindrical sintering core material 12 at a predetermined pitch, and after heat treatment, the conductor is disassembled. In this case, the sub-cable is disassembled so as to maintain the wound shape even after disassembly of the conductor, and the sub-cable after disassembly of the conductor is reassembled into a flexible core copper pipe having the same diameter as the sintering core. By assembling on this core material, a conductor for an oxide superconducting cable can be obtained. Also in this case, the material for the core material for sintering and the material for the flexible core material can be selected from the viewpoint of their heat resistance and flexibility.

【0022】このように撚線からなるサブケーブルを集
合することにより、酸化物超電導ケーブル用導体を作製
する際の歪みによる影響を低減することができ、単に素
線を熱処理後、撚線を作製し、この撚線を巻き付けなが
ら集合することにより作製した酸化物超電導ケーブル用
導体、あるいは熱処理した撚線を巻き付けながら集合す
ることにより作製した酸化物超電導ケーブル用導体に比
べ、高い臨界電流特性を得ることができる。以下、実施
例により本願発明をより詳細に説明する。
By assembling the stranded sub-cables in this way, the effect of distortion during the production of the oxide superconducting cable conductor can be reduced. Higher critical current characteristics are obtained as compared to an oxide superconducting cable conductor produced by assembling while winding this stranded wire or an oxide superconducting cable conductor produced by assembling while winding a heat-treated stranded wire. be able to. Hereinafter, the present invention will be described in more detail with reference to examples.

【0023】[0023]

【実施例】実施例1 Bi23、PbO、SrCO3、CaCO3およびCuO
の粉末を用いて、Bi:Pb:Sr:Ca:Cu=1.
8:0.4:2:2:3の組成比の粉末を混合した。こ
の粉末を700℃で12時間および8時間800℃で8
時間の仮焼を行なった後、さらに850℃で8時間の仮
焼を行なった。この仮焼した粉末をボールミルで粉砕し
た。この粉末を800℃、15分の加熱で脱気した後、
銀パイプに図1のように充填した。この銀パイプを1.
15mmφまで伸線した後、厚さ0.2mmまで図2の
ように圧延した。図3に示すように、複数の圧延したテ
ープ線材を銀棒を軸として同心円状に配置した酸化物超
電導材料前駆体と銀の複合材を7本用い、銀パイプに図
4のように嵌合し、その後、0.9mmφまで伸線加工
を行ない、図5のような丸形状の素線を作製した。この
素線に850℃、50時間の熱処理を行ない、さらにS
iO2ベースの無機絶縁材料を用いて電気絶縁層10を
設けた後、撚線加工を行なった。1次撚線加工は、0.
9mmφの銀線5を中心線として、6本の素線を撚りピ
ッチ40mmで撚り合せた。2次撚線加工はこの1次撚
線4本を撚りピッチ80mmで図6のように撚り合わ
せ、幅8mm、厚さ3mmに成形し、図7に示すような
2次撚線のサブケーブルを作製した。
EXAMPLES Example 1 Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO
Using the powder of Bi: Pb: Sr: Ca: Cu = 1.
Powders having a composition ratio of 8: 0.4: 2: 2: 3 were mixed. This powder was treated at 700 ° C for 12 hours and at 800 ° C for 8 hours for 8 hours.
After calcination for an hour, calcination was further performed at 850 ° C. for 8 hours. This calcined powder was pulverized with a ball mill. After degassing the powder by heating at 800 ° C. for 15 minutes,
Silver pipes were filled as shown in FIG. This silver pipe is 1.
After drawing to 15 mmφ, it was rolled as shown in FIG. 2 to a thickness of 0.2 mm. As shown in FIG. 3, a plurality of rolled tape wire rods are arranged concentrically around a silver bar, and seven oxide superconducting material precursor and silver composite materials are used and fitted to a silver pipe as shown in FIG. Then, wire drawing was performed to 0.9 mmφ to produce a round element wire as shown in FIG. This wire was subjected to a heat treatment at 850 ° C. for 50 hours,
After the electrical insulating layer 10 was provided using an inorganic insulating material based on iO 2 , a twisting process was performed. Primary stranded wire processing is 0.
Six strands were twisted at a twist pitch of 40 mm with the silver wire 5 of 9 mmφ as the center line. In the secondary stranded wire processing, the four primary stranded wires are twisted at a twist pitch of 80 mm as shown in FIG. 6 and formed into a width of 8 mm and a thickness of 3 mm. Produced.

【0024】このサブケーブルを図8に示すように、外
径19mmφ、内径17mmφのステンレス管の芯材に
巻き付けピッチPを200mmとして巻き付け、ガラス
テープでバインドした後、850℃、100時間の熱処
理を施した。熱処理後に巻き付けたままの状態で液体窒
素中でIcを測定したところ、Icは40Aであった。
As shown in FIG. 8, the sub-cable is wound around a stainless steel tube core having an outer diameter of 19 mmφ and an inner diameter of 17 mmφ with a pitch P of 200 mm, bound with a glass tape, and subjected to a heat treatment at 850 ° C. for 100 hours. gave. When Ic was measured in liquid nitrogen while being wound after the heat treatment, Ic was 40 A.

【0025】比較例1 実施例1で得られた熱処理前の直状の2次撚線に850
℃、100時間の熱処理を施した。熱処理後にサブケー
ブルの一部を切り出し、液体窒素中で臨界電流Icを測
定したところ、Icは40Aであった。一方、直状で熱
処理した後のサブケーブルを、図8に示すように、外径
19mmφ、内径17mmφのステンレス管の芯材12
を用い、巻き付けピッチPを200mmとして巻き付
け、巻き付けたままの状態で液体窒素中でIcを測定し
たところ、Icは12Aに低下した。
COMPARATIVE EXAMPLE 1 850 was added to the straight secondary stranded wire obtained in Example 1 before the heat treatment.
Heat treatment was performed at 100C for 100 hours. After the heat treatment, a part of the sub-cable was cut out, and the critical current Ic was measured in liquid nitrogen. On the other hand, as shown in FIG. 8, the sub-cable which has been heat-treated in a straight shape is made of a stainless steel core material 12 having an outer diameter of 19 mmφ and an inner diameter of 17 mmφ.
The winding pitch P was set to 200 mm, and Ic was measured in liquid nitrogen in a state of being wound. As a result, Ic was reduced to 12A.

【0026】このことから、実施例1の本願発明の酸化
物超電導撚線において、直状で熱処理した酸化物超電導
撚線と同様なIcを得ることができ、熱処理後の撚線を
芯材に巻き付けた酸化物超電導撚線に比べ、高い臨界電
流特性を得ることができることが確認できた。
From the above, in the oxide superconducting stranded wire of the present invention of Example 1, the same Ic as that of the heat-treated oxide superconducting stranded wire can be obtained, and the heat-treated stranded wire is used as the core material. It was confirmed that a higher critical current characteristic can be obtained as compared with the wound oxide superconducting stranded wire.

【0027】比較例2 図9および図10に示すように、銅製直管を芯材とし、
実施例1で得られたサブケーブル13を熱処理し、この
7本のサブケーブルを使用し、長さ5mの1層導体を作
製した。このサブケーブルの芯材への巻き付けピッチは
200mmとし、導体表面にはマイラーテープを巻き付
けた。この導体を作製後、導体を胴径1.6mφのドラ
ムに巻き付けた。ドラムから導体を巻き戻し、この導体
を解体して外観調査を行なったところ、芯材およびサブ
ケーブルに座屈ならびに断裂は認められなかった。本試
験により、銅製直管は導体用芯材として可撓性の点では
問題ないことが確認できた。一方、導体解体後のサブケ
ーブルの一部を切り出して、Ic測定を行なったとこ
ろ、Icは10AにIcが低下した。これは、熱処理後
のサブケーブル集合時の機械的歪みに加えて、ドラムに
巻き付ける際の曲げによる機械的歪みがサブケーブルに
新たに加わったことによる。
Comparative Example 2 As shown in FIGS. 9 and 10, a copper straight pipe was used as a core material.
The sub-cable 13 obtained in Example 1 was heat-treated, and a single-layer conductor having a length of 5 m was produced using the seven sub-cables. The winding pitch of the sub cable around the core material was 200 mm, and a Mylar tape was wound around the conductor surface. After producing this conductor, the conductor was wound around a drum having a body diameter of 1.6 mφ. When the conductor was rewound from the drum, the conductor was disassembled and the appearance was examined. No buckling or tearing was found in the core material and the sub-cable. This test confirmed that the copper straight pipe had no problem in terms of flexibility as a conductor core material. On the other hand, when a part of the sub-cable after the conductor disassembly was cut out and subjected to Ic measurement, Ic was reduced to 10A. This is because, in addition to the mechanical strain at the time of assembling the sub-cables after the heat treatment, the sub-cable is newly subjected to mechanical strain due to bending when wound around the drum.

【0028】比較例3 また、ステンレス直管を芯材とし、実施例1で作製した
熱処理前のサブケーブルを7本使用し、長さ5mの1層
導体を製作した。このサブケーブルの芯材への巻き付け
ピッチは200mmとした。本導体に850℃、100
時間の2次熱処理を施した後に、導体を胴径1.6mφ
のドラムに巻き付けた。その後、ドラムから巻き戻し、
この導体を解体した。導体解体後のサブケーブルの一部
を切り出して、Ic測定を行なったところ、Icは30
Aと比較例2の場合よりも、Icが3倍高いことがわか
った。しかしながら、解体後、外観調査を行なったとこ
ろ、ステンレス直管に座屈ならびに断裂が生じているこ
とが分かり、使用したステンレス製直管は、導体用芯材
として可撓性の点では不十分であることがわかった。
Comparative Example 3 A single-layer conductor having a length of 5 m was manufactured using a stainless steel straight pipe as a core material and seven sub-cables before heat treatment prepared in Example 1. The winding pitch of the sub cable around the core material was 200 mm. 850 ° C, 100
After the secondary heat treatment for a time, the conductor was sunk to a diameter of 1.6 mφ.
Wrapped around the drum. Then rewind from the drum,
This conductor was dismantled. A part of the sub-cable after the conductor was disassembled was cut out, and Ic measurement was performed.
It was found that Ic was three times higher than that of A and Comparative Example 2. However, after dismantling, an appearance inspection was performed, and it was found that buckling and tearing occurred in the stainless straight pipe, and the stainless steel straight pipe used was insufficient in flexibility as a conductor core material. I found it.

【0029】実施例2 ステンレス直管を芯材とし、実施例1で作製した熱処理
前のサブケーブルを7本用い、長さ5mのを1層巻き導
体を作製した。このサブケーブルの芯材への巻き付けピ
ッチは200mmとした。本導体に850℃、100時
間の熱処理を施した後に、ステンレス直管を抜くと同時
に銅パイプを挿入して、芯材が銅パイプの1層導体とし
た。導体表面には保護ならびに固定の目的でマイラーテ
ープを巻き付けた。さらに、導体を胴径1.6mφのド
ラムに巻き付けた後、導体を巻き戻し、解体後のサブケ
ーブルの一部を切り出してIc測定を行なったところ、
Icは30Aと、比較例2の場合よりもIcが3倍高い
ことがわかった。また、導体を解体して外観調査を行な
ったところ、芯材、ならびにサブケーブルの外観に座屈
ならびに断裂は見られず、本導体が可撓性の点で問題な
いことがわかった。以上のように本手法で作製した導体
は、可撓性と高臨界電流特性を有することがわかった。
Example 2 Using a stainless steel straight tube as a core material and seven sub-cables before heat treatment prepared in Example 1, a single-layer conductor of 5 m in length was produced. The winding pitch of the sub cable around the core material was 200 mm. After subjecting this conductor to heat treatment at 850 ° C. for 100 hours, the stainless steel straight tube was pulled out and a copper pipe was inserted at the same time, so that the core material was a single-layer conductor of a copper pipe. Mylar tape was wrapped around the conductor surface for the purpose of protection and fixing. Further, after the conductor was wound around a drum having a body diameter of 1.6 mφ, the conductor was rewound, and a part of the sub-cable after being disassembled was cut out and subjected to Ic measurement.
It was found that Ic was 30 A, which was three times higher than that of Comparative Example 2. In addition, when the conductor was disassembled and the appearance was examined, no buckling or tearing was observed in the outer appearance of the core material and the sub-cable, and it was found that the conductor had no problem in terms of flexibility. As described above, it was found that the conductor manufactured by this method had flexibility and high critical current characteristics.

【0030】実施例3 別な実施例として、ステンレス直管を芯材とし、実施例
1で作製した熱処理前のサブケーブルを7本使用し、長
さ1mの1層巻き導体を作製した。このサブケーブルの
芯材への巻き付けピッチは200mmとした。本導体に
850℃、100時間の熱処理を施した後に、導体の解
体を行なった。サブケーブルは導体解体の後も捻じられ
た形状を保っていた。導体解体後のサブケーブル7本を
ステンレス管と同径(19mmφ)の銅管を芯材として
組み直し、巻き付けピッチ200mmの1層巻き導体と
した。導体表面には保護ならびに固定の目的でマイラー
テープを巻き付けた。この導体を胴径1.6mφのドラ
ムに巻き付け、その後、ドラムから巻き戻した。解体後
のサブケーブルの一部を切り出してIc測定を行なった
ところ、Icは28Aと、比較例2の場合よりIcが約
3倍高いことがわかった。また、導体を解体して外観調
査を行なったところ、芯材ならびにサブケーブルに座屈
ならびに断裂は見られず、本導体が可撓性の点で問題な
いことがわかった。以上のように、熱処理後のサブケー
ブルを一旦、解体し、サブケーブルの形状を維持したま
ま、熱処理に用いた芯材を可撓性のある芯材に取り替え
ることが可能であり、この手法で作製した導体が可撓性
と高臨界電流特性を有することがわかった。
Example 3 As another example, a single-layer wound conductor having a length of 1 m was produced using a stainless steel straight pipe as a core material and seven sub-cables before heat treatment produced in Example 1. The winding pitch of the sub cable around the core material was 200 mm. After subjecting this conductor to heat treatment at 850 ° C. for 100 hours, the conductor was disassembled. The sub-cable maintained its twisted shape after the conductor was dismantled. After the conductor was disassembled, the seven sub-cables were reassembled using a copper tube having the same diameter (19 mmφ) as the stainless steel tube as a core material to obtain a single-layer wound conductor having a winding pitch of 200 mm. Mylar tape was wrapped around the conductor surface for the purpose of protection and fixing. This conductor was wound around a drum having a body diameter of 1.6 mφ, and then unwound from the drum. A part of the sub-cable after disassembly was cut out and subjected to Ic measurement. As a result, it was found that Ic was 28 A, which was about three times higher than that of Comparative Example 2. Further, when the conductor was disassembled and the appearance was examined, no buckling or tearing was found in the core material and the sub-cable, and it was found that the conductor had no problem in terms of flexibility. As described above, it is possible to temporarily disassemble the sub-cable after the heat treatment and replace the core used for the heat treatment with a flexible core while maintaining the shape of the sub-cable. It was found that the produced conductor had flexibility and high critical current characteristics.

【0031】比較例4 さらに、テープ状銀シース酸化物超電導線材(幅3.5
mm、厚さ0.2mm)を用いて、酸化物超電導ケーブ
ル用導体を作製した。14本のテープ状酸化物超電導線
を用い、巻き付けピッチ200mmでステンレス直管上
に巻き付け、長さは1mの導体を2本作製した。この導
体に850℃、100時間の2次熱処理を施した後、1
本の導体を解体した。テープ状酸化物超電導線は変形し
やすく、導体解体後の線材は芯材に巻き付けた形状を保
つのが困難であった。また、残りの1本の導体を用い、
ステンレス管の抜き取りと銅管の挿入を同時に行なった
ところ、作業時時に酸化物超電導線の巻き乱れが生じ
た。以上のように、芯材を置き換える手法は、テープ状
酸化物超電導線による導体には適用できず、本願発明の
ようにサブケーブルを用いる超電導酸化物ケーブル用導
体の作製の場合に有効あることがわかった。
Comparative Example 4 Further, a tape-shaped silver sheath oxide superconducting wire (width 3.5
mm, and a thickness of 0.2 mm) to prepare a conductor for an oxide superconducting cable. Using 14 tape-shaped oxide superconducting wires, the conductor was wound on a stainless steel straight tube at a winding pitch of 200 mm, and two conductors having a length of 1 m were produced. After subjecting this conductor to a second heat treatment at 850 ° C. for 100 hours,
The book conductor was dismantled. The tape-shaped oxide superconducting wire is easily deformed, and it is difficult for the wire after disassembly of the conductor to keep the shape wound around the core. Also, using the remaining one conductor,
When the extraction of the stainless steel tube and the insertion of the copper tube were performed simultaneously, the winding of the oxide superconducting wire was disturbed during the operation. As described above, the technique of replacing the core material cannot be applied to a conductor using a tape-shaped oxide superconducting wire, and is effective in the case of producing a conductor for a superconducting oxide cable using a sub-cable as in the present invention. all right.

【0032】[0032]

【発明の効果】以上のように本願発明において、酸化物
超電導材料または前駆体とそれを覆う銀又は銀合金から
なる素線を用いて、撚線することにより素線に転位を施
し、複数本の前記撚線を円筒形の芯材上に集合し、熱処
理して酸化物超電導撚線を作製した後、円筒形の芯材上
に所定のピッチで巻き付けられた形状を保持している前
記酸化物超電導撚線を、酸化物超電導ケーブル用導体を
構成するサブケーブルとすることにより、臨界電流特性
の優れた酸化物超電導撚線および酸化物超電導ケーブル
用導体を製造することができる。
As described above, according to the present invention, a dislocation is applied to a wire by twisting a wire made of an oxide superconducting material or a precursor and a wire made of silver or a silver alloy covering the same, and a plurality of wires are formed. After the stranded wires are assembled on a cylindrical core material and heat-treated to produce an oxide superconducting stranded wire, the oxidized wire having a shape wound around the cylindrical core material at a predetermined pitch is maintained. By using the superconducting stranded wire as a sub-cable constituting the conductor for an oxide superconducting cable, it is possible to manufacture a stranded oxide superconducting wire and a conductor for an oxide superconducting cable having excellent critical current characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明に用いる酸化物超電導体の前駆体粉末
と金属からなる複合材の断面構造を示す模式図である。
FIG. 1 is a schematic view showing a cross-sectional structure of a composite material comprising a precursor powder of an oxide superconductor and a metal used in the present invention.

【図2】本願発明に用いる酸化物超電導体の前駆体粉末
と金属からなるテープ状複合材の断面構造を示す模式図
である。
FIG. 2 is a schematic view showing a cross-sectional structure of a tape-shaped composite material composed of a precursor powder of an oxide superconductor and a metal used in the present invention.

【図3】本願発明に用いる酸化物超電導体の前駆体から
なる多層部を設けた複合材の断面構造を示す模式図であ
る。
FIG. 3 is a schematic view showing a cross-sectional structure of a composite material provided with a multilayer portion made of a precursor of an oxide superconductor used in the present invention.

【図4】本願発明に用いる図3の複数本の複合材を金属
管に挿入した複合材の断面を示す模式図である。
FIG. 4 is a schematic view showing a cross section of a composite material in which a plurality of composite materials of FIG. 3 used in the present invention are inserted into a metal tube.

【図5】複数本の図3の複合材を銀または銀合金の母材
中に埋め込んだ素線の断面構造の模式図である。
5 is a schematic diagram of a cross-sectional structure of a wire in which a plurality of composite materials of FIG. 3 are embedded in a silver or silver alloy base material.

【図6】本願発明に用いる2次撚線の断面構造を示す模
式図である。
FIG. 6 is a schematic diagram showing a cross-sectional structure of a secondary stranded wire used in the present invention.

【図7】本願発明に用いる成形された2次撚線の断面構
造を示す模式図である。
FIG. 7 is a schematic diagram showing a cross-sectional structure of a formed secondary stranded wire used in the present invention.

【図8】巻き付けピッチPで焼結用芯材に巻き付けられ
たサブケーブルの様子を示す斜視図である。
FIG. 8 is a perspective view showing a state of a sub-cable wound around a sintering core material at a winding pitch P.

【図9】酸化物超電導ケーブルの作製において、芯材に
サブケーブルを巻き付ける様子を示す斜視図である。
FIG. 9 is a perspective view showing a state in which a sub-cable is wound around a core material in manufacturing an oxide superconducting cable.

【図10】本願発明に用いる酸化物超電導ケーブル用導
体の断面構造を示す模式図である。
FIG. 10 is a schematic view showing a cross-sectional structure of a conductor for an oxide superconducting cable used in the present invention.

【符号の説明】[Explanation of symbols]

1 酸化物超電導体の前駆体の粉末 2 銀または銀合金の金属管 3 銀または銀合金の芯線 4 酸化物超電導体の前駆体粉末からなる多層部 5 銀または銀合金の金属管 6 複合材 7 銀または銀合金の金属管 8 銀または銀合金による母材 9 素線 10 電気絶縁層 11 芯材 12 芯材 13 サブケーブル DESCRIPTION OF SYMBOLS 1 Precursor powder of oxide superconductor 2 Metal tube of silver or silver alloy 3 Core wire of silver or silver alloy 4 Multilayer portion composed of precursor powder of oxide superconductor 5 Metal tube of silver or silver alloy 6 Composite material 7 Silver or silver alloy metal tube 8 Base material made of silver or silver alloy 9 Element wire 10 Electrical insulation layer 11 Core material 12 Core material 13 Sub cable

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】酸化物超電導材料または前駆体とそれを覆
う銀又は銀合金からなる素線を撚線することにより素線
に転位を施し、前記撚線を熱処理した後、円筒形の芯材
上に所定のピッチで巻き付けられた形状を保持している
ことを特徴とする酸化物超電導撚線
1. A strand made of an oxide superconducting material or a precursor and a strand made of silver or a silver alloy covering the same and subjected to dislocation, and the strand is heat-treated. Oxide superconducting stranded wire having a shape wound on it at a predetermined pitch
【請求項2】前記素線の表面には電気絶縁層が被覆され
ていることを特徴とする請求項1に記載の酸化物超電導
撚線
2. The stranded oxide superconducting wire according to claim 1, wherein an electric insulating layer is coated on a surface of said wire.
【請求項3】前記酸化物超電導撚線が多次撚線構造であ
ることを特徴とする請求項1〜2のいずれかに記載の酸
化物超電導撚線
3. The stranded oxide superconducting wire according to claim 1, wherein said stranded oxide superconducting wire has a multi-strand structure.
【請求項4】前記酸化物超電導撚線の断面が、平角また
は扇形であることを特徴とする請求1〜3のいずれかに
記載の酸化物超電導撚線
4. The stranded oxide superconducting wire according to claim 1, wherein a cross section of the stranded oxide superconducting wire is rectangular or fan-shaped.
【請求項5】酸化物超電導材料または前駆体とそれを覆
う銀又は銀合金からなる素線を撚線することにより素線
に転位を施し、複数本の前記撚線を円筒形の芯材上に集
合し、熱処理して酸化物超電導撚線を作製した後、円筒
形の芯材上に所定のピッチで巻き付けられた形状を保持
している前記酸化物超電導撚線を、酸化物超電導ケーブ
ル用導体を構成するサブケーブルとすることを特徴とす
る酸化物超電導ケーブル用導体
5. A strand of an oxide superconducting material or a precursor and a strand of silver or a silver alloy covering the same to perform dislocation on the strand, and a plurality of the strands are placed on a cylindrical core material. And heat-treated to produce an oxide superconducting stranded wire, the oxide superconducting stranded wire having a shape wound at a predetermined pitch on a cylindrical core material is used for an oxide superconducting cable. A conductor for an oxide superconducting cable, characterized in that the conductor is a sub-cable.
【請求項6】酸化物超電導材料または前駆体とそれを覆
う銀又は銀合金からなる素線を撚線することにより素線
に転位を施し、前記撚線を円筒形の芯材上に所定のピッ
チで巻き付けられた形状で熱処理することを特徴とする
酸化物超電導撚線の製造方法
6. A dislocation is applied to an element by twisting an element made of an oxide superconducting material or a precursor and silver or a silver alloy covering the element, and disposing the element on a cylindrical core material. A method for producing a stranded oxide superconducting wire, comprising heat-treating in a shape wound at a pitch.
【請求項7】酸化物超電導材料または前駆体とそれを覆
う銀又は銀合金からなる素線を撚線することにより素線
に転位を施し、複数本の前記撚線を円筒形の芯材上に所
定のピッチで巻き付け、その後、熱処理して得られた酸
化物超電導撚線を、熱処理に使用した芯材と同一の外径
を有する可撓性のある芯材上に、熱処理前に前記撚線を
円筒形の芯材上に巻き付けた同一のピッチで集合するこ
とを特徴とする酸化物超電導ケーブル用導体の製造方法
7. A dislocation is applied to a wire made of an oxide superconducting material or a precursor and a wire made of silver or a silver alloy covering the same to apply dislocation to the wire, and a plurality of the stranded wires are placed on a cylindrical core material. At a predetermined pitch, and then heat-treating the oxidized superconducting stranded wire on a flexible core material having the same outer diameter as the core material used for the heat treatment. A method for producing a conductor for an oxide superconducting cable, comprising: assembling wires at the same pitch wound on a cylindrical core material.
JP16163998A 1998-06-10 1998-06-10 Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method Expired - Fee Related JP4096406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16163998A JP4096406B2 (en) 1998-06-10 1998-06-10 Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16163998A JP4096406B2 (en) 1998-06-10 1998-06-10 Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method

Publications (2)

Publication Number Publication Date
JPH11353956A true JPH11353956A (en) 1999-12-24
JP4096406B2 JP4096406B2 (en) 2008-06-04

Family

ID=15739017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16163998A Expired - Fee Related JP4096406B2 (en) 1998-06-10 1998-06-10 Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method

Country Status (1)

Country Link
JP (1) JP4096406B2 (en)

Also Published As

Publication number Publication date
JP4096406B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JP3658841B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH07169343A (en) Superconducting cable conductor
JPH06318409A (en) Superconductor
JPH04106906A (en) High temperature superconducting coil
CN101361144B (en) Oxide superconducting wire rod, superconducting structure, method for manufacturing oxide superconducting wire rod, superconducting cable, superconducting magnet, and product comprising superconductin
JP4096406B2 (en) Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method
JP4737094B2 (en) Oxide superconducting wire, superconducting structure, manufacturing method of oxide superconducting wire, superconducting cable, superconducting magnet, and product including superconducting magnet
JPH1125785A (en) Oxide superconducting stranded wire, manufacture of oxide superconducting cable conductor, coated wire, stranded wire and cable conductor
JP2004030967A (en) Superconducting transposed segment conductor and its manufacturing method
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JP3657397B2 (en) Oxide superconducting wire and method for producing the same
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP4566576B2 (en) Dislocation segment conductor
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JPH0644834A (en) Ceramics superconductive conductor
JP3529925B2 (en) Oxide superconducting cable conductor for AC
JPH1097815A (en) Bismuth oxide multicore superconducting wire and its manufacture
JP3568767B2 (en) Superconducting cable and manufacturing method thereof
JP2000149676A (en) Oxide superconductor stranded wire and cable conductor using the same
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JP2003331659A (en) Superconducting transition segment conductor, and its manufacturing method
JP3350935B2 (en) Multi-core superconducting wire
JPH11203960A (en) Oxide superconductive cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees