JP2004030967A - Superconducting transposed segment conductor and its manufacturing method - Google Patents

Superconducting transposed segment conductor and its manufacturing method Download PDF

Info

Publication number
JP2004030967A
JP2004030967A JP2002181487A JP2002181487A JP2004030967A JP 2004030967 A JP2004030967 A JP 2004030967A JP 2002181487 A JP2002181487 A JP 2002181487A JP 2002181487 A JP2002181487 A JP 2002181487A JP 2004030967 A JP2004030967 A JP 2004030967A
Authority
JP
Japan
Prior art keywords
superconducting
dislocation
conductor
adhesive tape
segment conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002181487A
Other languages
Japanese (ja)
Inventor
Tomoshi Suzuki
鈴木 知史
Kenji Goto
後藤 謙次
Takashi Saito
斉藤 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002181487A priority Critical patent/JP2004030967A/en
Publication of JP2004030967A publication Critical patent/JP2004030967A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent transposition twist from unraveling by machining such as bending in production of a cable in a superconducting transposed segment conductor used for a superconductive cable and the like, to allow individual conductors constituting the segment conductor to move freely even after application of bending deflection and the like, and to automatically apply a tape-shaped inclusion, which is applied to the superconducting transposed segment conductor, and a non-adhesive tape and an adhesive tape continuously. <P>SOLUTION: A plurality of rectangular conductors constructed of a superconductive material are constructed in the transposed segment conductor, and a non-adhesive tape type inclusion for fixing the transposition part of the transposed segment conductor is inserted and arranged into the transposition part of the conductor. In this superconducting transposed segment conductor, a winding layer formed of the non-adhesive tape and a winding layer formed of the adhesive tape are arranged sequentially on the transposed segment conductor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は超電導転位セグメント導体並びにその製造方法に関し、前記転位セグメント導体の全体を二重テープ巻きすることによって、転位セグメント導体の安定性、機械的特性の向上並びにその製造を自動化して生産性の向上を図ったものである。
【0002】
【従来の技術】
従来のこの種の超電導転位セグメントとしては、テープ状の超電導導体の複数本を転位撚り合わせ、すなわち前記各超電導導体を長手方向に順次その位置を変えて撚り合わせることによって、この転位セグメントを用いた超電導線のインピーダンスを均等になるようにしていた。高温酸化物超電導体を用いた転位セグメント導体の場合について説明すると、例えばビスマス系の高温超電導体(BiSrCaCu、BiSrCaCu等)を銀シース等に充填し、AB面を配向させるために縮径加工と熱処理を繰り返し行うことによって所望のテープ形状に成形した後、必要により熱処理を施してビスマス系の高温超電導導体とし、これに絶縁被覆等を設けて超電導導体としていた。またこのような導体を用いた超電導マグネットを強磁場中で使用する場合には、巨大な電磁力が超電導線に加わるので、銀シース材料の高強度化が必要となる。このため銅等を加えた銀合金シースが考えられているが、銅添加元素の影響が問題となる。そこで、この超電導導体の複数本を長手方向に積層する段階で転位撚り加工を行い、そしてこれらの転位セグメント導体が解けないようにするために、適当な間隔例えば10〜15mmで粘着テープ等を巻回して、ビスマス系高温酸化物超電導転位セグメント導体を製造していた。
【0003】
しかしながら、このような構造の転位セグメント導体においては、転位セグメント導体に曲げ歪みが加えられた場合、前記セグメント導体を構成する個々の導体が一体として振舞うために、特に外側の導体に大きな歪みが加わることになり、交流通電時における損失が大きなものとなる。また、個々の導体どうしの摩擦等によって曲げ半径が小さな場合、例えば曲率半径が50mm程度になると、内側の導体が膨らんでしまうようなことが生じる。さらに、この転位セグメント導体をフォーマー等にスパイラル状に巻き付けたりする時にピッチが小さい場合には、転位撚りが崩れたりすることが生じていた。また前記転位セグメント導体の製造は、前記粘着テープ等の巻回留めを手作業で行なっているので手間がかかり、生産性も悪いものであった。
【0004】
【発明が解決しようとする課題】
よって本発明が解決しようとする課題は、超電導ケーブル等に用いられる超電導転位セグメント導体が、前記ケーブルの製造時の曲げ加工等により転位撚りが解けないようにすること、さらに曲歪み等が施されても前記セグメント導体を構成する個々の導体が自由に動くことができるようにすること、さらにまた前記超電導転位セグメント導体に施す介在、さらに非粘着性テープ並びに粘着性テープを、自動的に連続して行えるようにすることにある。
【0005】
【課題を解決するための手段】
前記課題を解決するためには請求項1に記載されるように、複数本の超電導材料からなる平角状導体が転位セグメントに構成され、かつその転位セグメントの転位部分を固定するために、非粘着性のテープ状介在が前記転位部分に挿入固定され、かつこの転位セグメントには順次、非粘着性テープからなる卷回層、粘着性テープからなる卷回層が施された超電導転位セグメント導体とすることによって、解決される。
【0006】
また請求項2に記載されるように、前記超電導材料の平角状導体が、高温酸化物超電導導体或いはA15型の金属間化合物からなる超電導導体である、超電導転位セグメント導体とすることによって、解決される。
【0007】
さらに請求項3に記載されるように、複数本の平角状超電導導体を、分線盤を通過させて集合しながら撚合せダイスに導入して、転位撚りを施して転位セグメント導体とし、ついで前記転位セグメント導体の転位部分に、非粘着性のテープ状介在を挿入固定した後、順次前記転位セグメント導体上に、非粘着性のテープを卷回し、ついで粘着性テープを卷回して一体化する、二重テープ巻きした超電導転位セグメント導体の製造方法とすることによって、解決される。
【0008】
【発明の実施の形態】
つぎに本発明を詳細に説明する。請求項1に記載される発明は、複数本の超電導材料からなる平角状導体が転位セグメントに構成され、かつその転位セグメントの転位部分を固定するために、非粘着性のテープ状介在が前記転位部分に挿入固定され、かつこの転位セグメントには順次、非粘着性テープからなる卷回層、粘着性テープからなる卷回層が施された超電導転位セグメント導体としたので、前記超電導転位セグメント導体の転位撚りが解けないようになり、そしてまた曲歪み等が加わっても個々の超電導導体が自由に動くことができるようになる。このことは、前記超電導転位セグメント導体を構成する個々の超電導導体が一体として振舞うことがなくなるので、外側の導体に大きな歪みが加わることもなくなる。また、前記個々の導体どうしの摩擦等によって曲げ半径が小さな場合に、内側の導体が膨らんでしまうようなこともなくなる。さらに、この転位セグメント導体をフォーマー等にスパイラル状に巻回する場合も、ピッチが小さい場合に転位撚りが崩れたりすることが生じていた問題がなくなる。
【0009】
図1を用いて説明する。1は、超電導転位セグメント導体で、平角状の超電導導体2が転位撚り合わされて構成され、その上には非粘着性テープの卷回層3並びに粘着性テープの卷回層4が設けられて構成されるものである。図1では前記超電導導体2が6本の場合であるが、本数はその用途によって適宜選定される。すなわち、数本は奇数本或いは偶数本のどちらでも良いが、偶数本が好ましい。これは偶数本とすることにより、積層した場合に1本だけとなる層がないため、転位セグメントの転位撚りを維持しやすくかつ転位セグメントが一体的に挙動せず、各超電導体に係る歪みを小さくできるためである。また、前記非粘着性テープ3は、後述する転位セグメント導体1の転位を固定するために設けられるテープ状介在の押さえの役目をするものであるから、突合せ巻、ラップ巻等の巻付け方によって、前記転位セグメントの解けを確実になくし、その形状を一定に維持することが出来ることになる。このようなために用いる前記非粘着性のテープ3は、転位セグメント導体1が曲げ等によって個々に動いたときに、一緒に追随して動くことが可能な材料とすることが好ましく、テフロン(デュポン社の登録商標)等のフッ素系樹指テープが考えられる。そしてこのテープ厚さは、通常10μm以上であれば十分機能する。さらにまたその上に卷回される粘着性テープ4としては、前記転位セグメント導体1を確実に固定させるために設けられるもので、ポリアミド、ポリイミドやポリエチレン等のテープからなるもので、その片面に粘着剤層が設けられたものである。そしてこのテープは、その目的から耐低温性、耐破損強度等の特性を有し、その形成方法は通常ラッピング状に卷回されるものである。またこのテープは、強度等を考慮して、通常20μm以上の厚さのテープが用いられる。
【0010】
より詳細に説明すると、前記平角状の超電導導体2は、例えば6本を図1に示すように2列に積み上げられ、順次エッジ方向に転位させて超電導転位セグメント導体1としたものであるが、この超電導転位セグメント導体1は、図2に示されるように、前記転位部分が解けないようにするために、転位セグメント導体1の転位部分近傍に非粘着性のテープ状介在5が、挿入配置される。具体的には、転位セグメントの平行部の導体2間に、テープ状介在5を引込むことによって挿入配置される。このテープ状介在5は、その大きさが幅1cm程度で長さが3〜6cm程度のものであり、その両端が前記転位セグメント導体1から少しはみ出すように挿入配置される。そしてこのはみ出した部分は、その後に施す非粘着性のテープの卷回層3が形成されるときに、一緒に巻き込まれて卷回されることになる。このようなテープ状介在5としては、ポリアミドテープやポリエチレンテープ等が好ましく用いられる。またその厚さは、強度等を考慮して通常20μm以上のものが好ましい。このようにテープ状介在5を配置して前記転位セグメント導体を製造すると、その転位させた部分はその後の作業によっても転位撚りを十分維持し、従来のように粘着テープによりテープ止めしたものに比較して、曲げを加えるようなことがあっても、前記転位セグメントが一体化して挙動することがないので、前記超電導導体に係る歪みを小さなものすることができることになる。
【0011】
以上のように構成された超電導転位セグメント導体1は、非粘着性のテープの押さえ巻き層と粘着性テープからなる卷回層の二重のテープ巻層が施されているので、これに曲げ加工等を加えてもその形状を十分に保持することができる。さらに粘着性テープ卷回層によって、その下に設けた非粘着性テープの卷回層の破損を防ぐ効果もあり、また前記超電導転位セグメント導体の個々の超電導導体は、転位セグメント導体が一体的に挙動することがないので、自由に動くことができ、前記超電導導体の膨らみの問題や大きな圧縮力等の歪みがかかることもない。このような本発明の超電導転位セグメント導体は、可撓性に優れたものとなり、あたかも1本の導体と同様に扱うことが可能となるものである。なお、このような超電導転位セグメント導体は、その用途として超電導ケーブル、超電導変圧器、超電導マグネット、超電導限流器等に使用することができる。
【0012】
つぎに前記超電導導体2について説明すると、請求項2に記載するような高温酸化物超伝導体やA15型と称される金属間化合物超伝導体が好ましい。例えばビスマス系の高温酸化物超電導体として知られる、BiSrCaCu系やBiSrCaCu系のものが、イットリウム系高温超電導導体として知られる、YBaCu系等の高温酸化物超電導体或いはその原料粉末が銀シース中に充填され、これを平角状にダイス等により成形加工し、必要により焼成することによって製造される。通常この超電導導体は、さらに多数本を銀シース等に配置し、前述と同様に成形加工が繰り返されて、極細多芯の超電導線として使用されるものである。なお前記シース材料としては、銀(Ag)以外にも白金(Pt)、金(Au)等の貴金属の単体並びに合金や強化銀(Ag−0.2Wt%Mg−0.3Wt%Sb)も使用できる。また、金属間化合物系の超電導体として、A15型と称されるNbSn、NbAlやVGa等の超電導体を成形加工して、平角状の超電導導体とするものである。大きさは例えば、厚さ0.05〜2mm×幅1〜10mm程度のものである。このような高温酸化物系超電導導体やA15の金属間化合物からなる超電導導体を用いることによって、超電導転位セグメント導体は、線材の幾何的配置の差異により、偏流せず高電流を通電できることになる。
【0013】
また、請求項3に記載する製造方法について述べると、複数本の平角状超電導導体を順次分線盤を通過させて集合しながら撚合せダイスに導入して、転位撚りを施して転位セグメント導体とし、ついで前記転位セグメント導体の転位部分に非粘着性のテープ状介在を挿入配置した後、前記転位セグメント導体上に、まず非粘着性のテープを押さえとして卷回し、さらにその上に粘着性のテープを卷回する、二重テープ巻き型の超電導転位セグメント導体の製造方法に関するものである。このような製造方法とすることにより、超電導転位セグメント導体を自動化して効率よく製造することができるようになる。
【0014】
図3を用いて説明する。例えば、0.24mm×1.9mmの銀シース被覆ビスマス系酸化物超電導体からなる平角状の超電導導体2が、図3の左方から順次送出され、分線盤6を通過して集合され、転位を一次的に保つように設けられた転位撚合わせダイス7によって、図1に示されるような転位セグメントに成形される。ついで、テープ状介在を挿入配置する装置8によって、図2に示されるようにテープ状介在が配置された後、非粘着性テープの卷回装置9および粘着性テープの卷回装置10を順次通過して、テープ卷回層が形成されて、二重テープ巻き型の超電導転位セグメント導体1(0.8mm×3.9mm)として、巻き取られる。このような製造方法とすることによって、製造ラインを完全に自動化することが可能となり、従来のように前記転位セグメント導体に、解れ防止のための押さえ粘着テープを手作業で行う必要がなくなり、大幅に生産性が向上できる。さらに、機械で均一に巻くため、部分的に太くなるなどの不均一性が小さい。また、このようにして得られた超電導転位セグメント導体も、前述のように転位セグメント導体に曲げ加工等を加えてもその形状を十分に保持することができ、また前記転位セグメント導体の個々の導体は、それぞれが自由に動くことができるので、前記超電導導体の膨らみの問題や大きな圧縮力等の歪みがかかることもなくなる。このように本発明の超電導転位セグメント導体は、可撓性に優れたものとなり、あたかも1本の導体と同様に扱うことが可能となる。
【0015】
【実施例】
本発明の実施例を記載して、効果について述べる。
【0016】
実施例1:高温超電導材料であるビスマス系の酸化物超電導導体(BiSrCaCu)からなる厚さ0.24mm、幅が1.9mmの銀シース平角状超電導導体6本を用い、図1に示すような長さ10cmの超電導転位セグメント導体を作製して試料とした。具体的には、前記転位セグメント導体の転位部近傍2箇所には、幅1cm、長さ3cmのポリイミドテープ(デュポン社の「カプトンテープ」)からなるテープ状介在が挿入配置され、その上には厚さ10μmのニトフロン(日東電工社の商品名)からなる非粘着性のテープが、転位セグメントがばらけるのを防ぐように押さえ巻きされて卷回層を形成し、さらにその上には、厚さ20μmの粘着剤付カプトンテープが、前記非粘着性テープを保護するようにラッピング巻きされて卷回層を形成して、一体化されたものである。また比較例1として、前記テープ状介在が挿入配置されない以外は、実施例と同様の超電導転位セグメント導体を作製して試料とした。これらの試料について、ボビンへの巻返しのような繰返し曲げ加工を与えた後に、前記試料の状態を観察した。さらに前記のような曲げ加工を繰り返し受けた後の高温超電導導体の特性劣化(臨界電流値の変化)について測定した。結果は、実施例1については、超電導導体には何らの変形や破損等は生じていなかった。また臨界電流値は、初期値から低下していなかった。これに対して比較例1は、超電導導体に局所的な曲げが生じており、また臨界電流値も低下していた。この結果から明らかな如く、超電導転位セグメント導体の転位部分の固定に、非粘着性のテープ状介在を挿入配置した本発明の構造のものは、局所的な曲げ等が生じない優れたものであることがわかる。
【0017】
実施例2:前記実施例1と全く同様の超電導転位セグメント導体を作製して、試料とした。また比較例2として、前記非粘着性のテープであるニトフロンテープを用いない以外は、実施例2と同様の超電導転位セグメント導体を作製して、試料とした。これらの試料について、ボビンへの巻返しのような繰返し曲げ加工を与えた後に、前記試料の状態を観察した。さらに前記のような曲げ加工を繰返し受けた後の高温超電導導体の特性劣化(臨界電流値の変化)について測定した。結果は、実施例2については、超電導導体には何らの変形や破損等は生じていなかった。また臨界電流値は、初期値からの低下はなかった。これに対して比較例2は、超電導導体にフィラメントの破断が生じており、臨界電流値も低下していた。この結果から明らかな如く、超電導転位セグメント導体に押さえ巻きとしての非粘着性テープの卷回層を形成するものは、曲げ加工によっても劣化しにくいものであり、優れていることがわかる。
【0018】
実施例3:本発明の超電導転位セグメント導体を用いた、超電導ケーブルの例について述べる。図4に示すような直径20mmのステンレス製のフォーマー12に、実施例1に記載する超電導転位セグメント導体1を15本、スパイラル状にピッチ100mm〜1000mmの範囲で巻回配置し、その上に不織布を絶縁被覆13して、超電導ケーブル11とした。また比較例として、前記実施例1と同様の超電導導体を用いて転位セグメント導体を作製し、従来行われている粘着テープを解れ防止として卷回した、超電導転位セグメント導体を用いて超電導ケーブルを作製して比較例3とした。この転位セグメント導体の各導体(素線)に係る、スパイラルピッチに依存する歪み(%)を比較した。結果を、図5に示した。
【0019】
この図5から明らかな如く、本発明の実施例3の結果を示すAの曲線から、本発明のテープ状介在、非粘着性テープの卷回層および粘着性テープの卷回層を施した超電導転位セグメント導体は、粘着テープのみによって解れないようにした比較例3の超電導転位セグメント導体に関する曲線Bに比較して、スパイラルピッチに対する歪み(%)が、各スパイラルピッチ例えば100mm、200mm、400mm、600mmにおいて、60%以上小さくなっていることが判る。このことは、本発明の前記転位セグメント導体は、小さな曲げ半径で曲げられても特性劣化が少ないことを示している。よって、本発明の転位セグメント導体は、マグネット等のコイル等として十分使用可能なものであることが判る。
【0020】
実施例4:次に本発明の製造方法の実施例について述べる。厚さ0.24mmで幅が1.9mmの銀シースビスマス系超電導導体6本を、順次左方から2m/minの速度で送出し、分線盤6を通過させて集合した後、転位撚り合わせダイス7によって転位セグメントに成形し、ついでテープ状介在の挿入配置装置8で前記転位セグメント導体の転位近傍にテープ状介在を挿入配置した後、非粘着性テープ巻き装置9並びに粘着性テープ巻き装置10を順次通過させて、ニトフロンテープを突合せて卷回した卷回層を形成し、ついで粘着剤付カプトンテープをラッピング巻きした、二重テープ巻型の厚さ0.8mm、幅3.9mmの超電導転位セグメント導体1を製造した。そして、このようにして製造した超電導転位セグメント導体について、フラットワイズの曲げ加工を施し、超電導転位セグメント導体の臨界電流値を測定して、その性能を調べた。結果は、前記超電導転位セグメント導体は曲げ加工に対して転位セグメントが解れることはなかった。また、臨界電流値についても、全く問題のないものであった。そしてこのような製造方法とすることによって、製造ラインを自動化することができ、従来のように粘着テープを手作業で巻付ける製法と比較して、その製造速度は3倍以上であった。さらに、本発明の製造方法によれば超電導導体の種類に関係なく、また必要数使用して超電導転位セグメント導体を製造することができることになる。
【0021】
【発明の効果】
以上のように本発明は、超電導材料からなる複数本の平角状導体が転位セグメント導体に構成され、かつその転位セグメント導体の転位部分を固定するための非粘着性のテープ状の介在が、前記導体の転位部分に挿入配置され、かつ前記転位セグメント導体表面には、順次非粘着性テープからなる卷回層、粘着性テープからなる卷回層が施された超電導転位セグメント導体とすること、また前記超電導材料が、高温酸化物超電導導体或いはA15型の金属間化合物からなる超電導導体である超電導転位セグメント導体とすることによって、前記超電導転位セグメント導体の転位撚りが解けないように維持することができ、そしてこれに曲げ歪み等が加わっても個々の超電導導体が自由に動くことができるようになる。このことは、前記超電導転位セグメント導体を構成する個々の超電導導体が一体として振舞うことがなくなるので、外側の導体に大きな歪みが加わることもなくなることになる。また、前記個々の導体どうしの摩擦等によって、曲げ半径が小さな場合には内側の導体が膨らんでしまうようなこともなくなる。さらに、この転位セグメント導体をフォーマー等にスパイラル状に巻回する場合も、ピッチが小さい場合にも、転位撚りが崩れたりすることがなくなる。また、高温酸化物系超電導導体やA15の金属間化合物からなる超電導導体を用いることによって、超電導転位セグメント導体は、線材の幾何的配置の差異により、偏流せず高電流を通電できることになる。そしてこのような超電導転位セグメント導体は、その用途として超電導ケーブル、超電導変圧器、超電導マグネット、超電導限流器等に使用することができることになる。
【0022】
また本発明の製造方法によれば、複数本の平角状超電導導体を順次分線盤を通過させて集合しながら撚合せダイスに導入して、転位撚りを施して転位セグメント導体とし、ついで前記転位セグメント導体の転位部分に非粘着性のテープ状介在を挿入配置した後、前記転位部分近傍に非粘着性のテープ状介在が挿入配置された転位セグメント導体に、順次非粘着性のテープを卷回し、さらにその上に粘着性のテープを卷回した、二重テープ巻き型の超電導転位セグメント導体の製造方法とすることによって、前述の特性を有する超電導転位セグメント導体の製造ラインを、完全に自動化することが可能であり、従来のように前記転位セグメント導体に解れ防止のための粘着テープ等を、手作業で巻回する必要もなくなり、生産性が大幅に向上する効果がある。
【図面の簡単な説明】
【図1】本発明の超電導転位セグメント導体の一例を示す、概略断面図である。
【図2】本発明の超電導転位セグメント導体のテープ状介在を示す、概略断面図である。
【図3】本発明の超電導転位セグメント導体の製造方法の一例を示す、概略図である。
【図4】本発明の超電導転位セグメント導体を用いた、超電導ケーブルの概略を示す図面である。
【図5】図4に示した超電導ケーブルの各超電導導体に係る歪みを、スパイラルピッチごとに示すグラフである。
【符号の説明】
1  超電導転位セグメント導体
2  超電導導体
3  非粘着性テープの卷回層
4  粘着性テープの卷回層
5  テープ状介在
6  分線盤
7  転位撚り合わせダイス
8  介在の挿入配置装置
9   非粘着性テープの卷回装置
10  粘着性テープの卷回装置
11  超電導ケーブル
12  フォーマー
13  絶縁被覆
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a superconducting dislocation segment conductor and a method of manufacturing the same. By double-taping the entire dislocation segment conductor, the stability of the dislocation segment conductor, improvement of mechanical properties, and automation of its production to improve productivity. This is an improvement.
[0002]
[Prior art]
As a conventional superconducting dislocation segment of this type, a plurality of tape-shaped superconducting conductors are dislocation twisted, that is, the superconducting conductors are used by sequentially changing their positions in the longitudinal direction and twisting, thereby using this dislocation segment. The impedance of the superconducting wire was made equal. Silver the case of dislocation conductor segments will be described which incorporates a high-temperature oxide superconductor, for example, high temperature superconductors of bismuth-based and (Bi 2 Sr 2 Ca 2 Cu 3 O X, Bi 2 Sr 2 Ca 1 Cu 2 O X , etc.) After filling into a sheath or the like, and forming a desired tape shape by repeatedly performing diameter reduction processing and heat treatment to orient the AB surface, heat treatment is performed as necessary to obtain a bismuth-based high-temperature superconductor, which is insulated. And the like to provide a superconducting conductor. When a superconducting magnet using such a conductor is used in a strong magnetic field, a huge electromagnetic force is applied to the superconducting wire, so that the silver sheath material needs to have a higher strength. For this reason, a silver alloy sheath to which copper or the like is added has been considered, but the effect of the copper-added element becomes a problem. Therefore, dislocation twisting is performed at the stage of laminating a plurality of the superconducting conductors in the longitudinal direction, and an adhesive tape or the like is wound at an appropriate interval, for example, 10 to 15 mm, in order to prevent the dislocation segment conductors from being unraveled. By turning, a bismuth-based high-temperature oxide superconducting dislocation segment conductor was manufactured.
[0003]
However, in the dislocation segment conductor having such a structure, when bending strain is applied to the dislocation segment conductor, since the individual conductors constituting the segment conductor behave integrally, a large strain is particularly applied to the outer conductor. As a result, the loss during AC energization becomes large. When the bending radius is small due to friction between the individual conductors, for example, when the radius of curvature is about 50 mm, the inner conductor may swell. Further, when the dislocation segment conductor is spirally wound around a former or the like, if the pitch is small, the dislocation twist may be broken. In addition, the production of the dislocation segment conductor requires time and labor because the winding of the adhesive tape or the like is manually performed, and the productivity is poor.
[0004]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is that the superconducting dislocation segment conductor used for a superconducting cable or the like is to prevent dislocation twist from being unraveled by bending or the like at the time of manufacturing the cable, and further subjected to bending distortion or the like. In addition, the individual conductors constituting the segment conductors can be freely moved, and further, the interposition applied to the superconducting dislocation segment conductors, and further, the non-adhesive tape and the adhesive tape are automatically continuously connected. To be able to do it.
[0005]
[Means for Solving the Problems]
In order to solve the above problem, as described in claim 1, a rectangular conductor made of a plurality of superconducting materials is formed in a dislocation segment, and in order to fix a dislocation portion of the dislocation segment, a non-adhesive material is used. A superconducting dislocation segment conductor in which an adhesive tape-shaped interposition is inserted and fixed in the dislocation portion, and the dislocation segment is sequentially provided with a winding layer made of a non-adhesive tape and a winding layer made of an adhesive tape It is solved by.
[0006]
In addition, as set forth in claim 2, the problem is solved by using a superconducting dislocation segment conductor in which the rectangular conductor of the superconducting material is a high-temperature oxide superconducting conductor or a superconducting conductor made of an A15 type intermetallic compound. You.
[0007]
Further, as described in claim 3, a plurality of rectangular superconducting conductors are introduced into a twisting die while passing through a distribution board and assembled, and dislocation twisting is performed to form dislocation segment conductors. After inserting and fixing a non-adhesive tape-shaped interposition to the dislocation portion of the dislocation segment conductor, a non-adhesive tape is sequentially wound on the dislocation segment conductor, and then an adhesive tape is wound and integrated, The problem is solved by a method of manufacturing a superconducting dislocation segment conductor wound with a double tape.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail. According to the first aspect of the present invention, the rectangular conductor made of a plurality of superconducting materials is formed in a dislocation segment, and the non-adhesive tape-shaped interposition is used to fix the dislocation portion of the dislocation segment. The superconducting dislocation segment conductor is inserted and fixed in the portion, and the dislocation segment is a superconducting dislocation segment conductor in which a winding layer made of a non-adhesive tape and a winding layer made of an adhesive tape are sequentially applied. Dislocation twisting cannot be unwound, and individual superconducting conductors can move freely even when bending distortion or the like is applied. This means that the individual superconducting conductors constituting the superconducting dislocation segment conductor do not behave as one, so that no large distortion is applied to the outer conductor. In addition, when the bending radius is small due to friction between the individual conductors, the inner conductor does not expand. Furthermore, when the dislocation segment conductor is spirally wound around a former or the like, the problem that the dislocation twist is broken when the pitch is small is eliminated.
[0009]
This will be described with reference to FIG. Reference numeral 1 denotes a superconducting dislocation segment conductor, which is formed by displacing and twisting a rectangular superconducting conductor 2, and on which a winding layer 3 of a non-adhesive tape and a winding layer 4 of an adhesive tape are provided. Is what is done. FIG. 1 shows a case where the number of the superconducting conductors 2 is six, but the number is appropriately selected depending on the use. That is, the number may be either an odd number or an even number, but an even number is preferable. Since this is an even number, since there is no layer that becomes only one when laminated, it is easy to maintain the dislocation twist of the dislocation segments, and the dislocation segments do not behave integrally, so that the strain on each superconductor is reduced. This is because it can be made smaller. In addition, since the non-adhesive tape 3 serves to hold down a tape-shaped interposition provided for fixing dislocations of the dislocation segment conductor 1 described later, depending on how to wind a butt winding, a wrap winding or the like, The dislocation segments can be reliably prevented from unraveling and their shapes can be kept constant. The non-adhesive tape 3 used for this purpose is preferably made of a material that can move together with the dislocation segment conductors 1 when the dislocation segment conductors 1 move individually by bending or the like. Fluorine-based finger tape such as a registered trademark of the company is conceivable. If the tape thickness is usually 10 μm or more, it functions well. Further, the adhesive tape 4 wound thereon is provided for securely fixing the dislocation segment conductor 1, and is made of a tape of polyamide, polyimide, polyethylene, or the like. An agent layer is provided. The tape has properties such as low temperature resistance and breakage resistance for the purpose, and its forming method is usually wound in a wrapping shape. In addition, a tape having a thickness of 20 μm or more is usually used in consideration of strength and the like.
[0010]
More specifically, the rectangular superconducting conductors 2 are, for example, six superconducting conductors stacked in two rows as shown in FIG. 1 and sequentially transposed in the edge direction to form a superconducting dislocation segment conductor 1. As shown in FIG. 2, the superconducting dislocation segment conductor 1 is provided with a non-adhesive tape-shaped interposition 5 near the dislocation portion of the dislocation segment conductor 1 in order to prevent the dislocation portion from unraveling. You. Specifically, the tape-shaped interposition 5 is inserted between the conductors 2 at the parallel portions of the dislocation segments to be inserted and arranged. The tape-like interposition 5 has a size of about 1 cm in width and about 3 to 6 cm in length, and is inserted and arranged so that both ends thereof slightly protrude from the dislocation segment conductor 1. The protruding portion is wound together and wound when the wound layer 3 of the non-adhesive tape to be subsequently applied is formed. As such a tape-like interposition 5, a polyamide tape, a polyethylene tape, or the like is preferably used. The thickness is usually preferably 20 μm or more in consideration of strength and the like. When the dislocation segment conductor is manufactured by arranging the tape-like interposition 5 in this way, the dislocation portion maintains the dislocation twist sufficiently even in the subsequent work, and is compared with the conventional one that is taped with an adhesive tape. Then, even when bending is applied, the dislocation segments do not behave integrally, so that the strain on the superconducting conductor can be reduced.
[0011]
The superconducting dislocation segment conductor 1 configured as described above is provided with a double tape winding layer of a holding layer of a non-adhesive tape and a winding layer of an adhesive tape. However, the shape can be sufficiently maintained even if the addition is performed. Further, the adhesive tape wound layer has an effect of preventing breakage of the wound layer of the non-adhesive tape provided thereunder, and the individual superconducting conductors of the superconducting dislocation segment conductor are formed by integrating dislocation segment conductors integrally. Since it does not behave, it can move freely and does not suffer from the problem of swelling of the superconducting conductor or distortion such as a large compressive force. Such a superconducting dislocation segment conductor of the present invention has excellent flexibility, and can be handled as if it were a single conductor. Such a superconducting dislocation segment conductor can be used for a superconducting cable, a superconducting transformer, a superconducting magnet, a superconducting current limiter, and the like.
[0012]
Next, the superconducting conductor 2 will be described. A high-temperature oxide superconductor as described in claim 2 or an intermetallic compound superconductor called A15 type is preferable. For example, known as a high-temperature oxide superconductor of bismuth-based, those of Bi 2 Sr 2 Ca 2 Cu 3 O X system and Bi 2 Sr 2 Ca 1 Cu 2 O X system, known as the yttrium-based high temperature superconductor, Y A high temperature oxide superconductor such as 1 Ba 2 Cu 3 O X or a raw material powder thereof is filled in a silver sheath, formed into a rectangular shape by a die or the like, and fired if necessary. Usually, a large number of such superconducting conductors are arranged in a silver sheath or the like, and the forming process is repeated in the same manner as described above to be used as an ultrafine multi-core superconducting wire. As the sheath material, in addition to silver (Ag), a precious metal such as platinum (Pt) or gold (Au), or an alloy or reinforced silver (Ag-0.2Wt% Mg-0.3Wt% Sb) is also used. it can. Further, as a superconductor of an intermetallic compound system, a superconductor such as Nb 3 Sn, Nb 3 Al, V 3 Ga, or the like called an A15 type is formed into a rectangular superconductor by molding. The size is, for example, about 0.05 to 2 mm in thickness × about 1 to 10 mm in width. By using such a high-temperature oxide-based superconducting conductor or a superconducting conductor composed of an intermetallic compound of A15, the superconducting dislocation segment conductor can conduct a high current without drifting due to a difference in the geometrical arrangement of the wires.
[0013]
According to the manufacturing method described in claim 3, a plurality of rectangular superconducting conductors are sequentially introduced into a twisting die while passing through a distribution board and assembled, and dislocation twisting is performed to obtain a dislocation segment conductor. Then, after inserting and disposing a non-adhesive tape-shaped interposition at the dislocation portion of the dislocation segment conductor, firstly, winding the non-adhesion tape on the dislocation segment conductor as a non-adhesive tape, and further applying an adhesive tape thereon And a method of manufacturing a superconducting dislocation segment conductor of a double tape winding type. With such a manufacturing method, the superconducting dislocation segment conductor can be automated and efficiently manufactured.
[0014]
This will be described with reference to FIG. For example, rectangular superconducting conductors 2 composed of a 0.24 mm × 1.9 mm silver sheath-covered bismuth-based oxide superconductor are sequentially sent from the left side of FIG. By a dislocation twisting die 7 provided so as to temporarily hold the dislocation, the dislocation segment is formed into a dislocation segment as shown in FIG. Then, after the tape-shaped interposition is arranged by the device 8 for inserting and arranging the tape-shaped interposition as shown in FIG. 2, the tape-shaped interposition is sequentially passed through the winding device 9 for the non-adhesive tape and the winding device 10 for the adhesive tape. Then, a tape wound layer is formed and wound as a double tape wound superconducting dislocation segment conductor 1 (0.8 mm × 3.9 mm). By adopting such a manufacturing method, it is possible to completely automate the manufacturing line, and it is not necessary to manually apply a holding adhesive tape for preventing dislodgment to the dislocation segment conductor as in the related art. Productivity can be improved. Furthermore, since it is uniformly wound by a machine, non-uniformity such as partial thickening is small. In addition, the superconducting dislocation segment conductor obtained in this manner can sufficiently retain its shape even if bending processing or the like is applied to the dislocation segment conductor as described above. Can move freely, so that the problem of swelling of the superconducting conductor and distortion such as a large compressive force are not applied. Thus, the superconducting dislocation segment conductor of the present invention has excellent flexibility, and can be handled as if it were a single conductor.
[0015]
【Example】
Embodiments of the present invention will be described, and effects will be described.
[0016]
Example 1: HTS material bismuth-based oxide superconductor (Bi 2 Sr 2 Ca 2 Cu 3 O X) thickness 0.24 mm, silver sheath rectangular shaped superconducting six widths 1.9mm consisting of a A superconducting dislocation segment conductor having a length of 10 cm as shown in FIG. 1 was prepared as a sample. Specifically, at two places near the dislocation portion of the dislocation segment conductor, a tape-shaped intervention made of a polyimide tape ("Kapton tape" manufactured by DuPont) having a width of 1 cm and a length of 3 cm is inserted and arranged. A non-adhesive tape made of 10 μm-thick Nitoflon (trade name of Nitto Denko Corporation) is pressed and wound to prevent dislocation segments from coming apart to form a wound layer. A Kapton tape with an adhesive having a thickness of 20 μm is wrapped and wound to form a wound layer so as to protect the non-adhesive tape, and is integrated. Further, as Comparative Example 1, a superconducting dislocation segment conductor similar to that of the example was prepared as a sample except that the tape-shaped interposition was not inserted and arranged. After subjecting these samples to repeated bending, such as rewinding to a bobbin, the state of the samples was observed. Further, deterioration of characteristics (change of critical current value) of the high-temperature superconducting conductor after being repeatedly subjected to the bending as described above was measured. As a result, in Example 1, no deformation, breakage, or the like occurred in the superconducting conductor. Also, the critical current value did not decrease from the initial value. On the other hand, in Comparative Example 1, local bending occurred in the superconducting conductor, and the critical current value also decreased. As is apparent from the results, the structure of the present invention in which the non-adhesive tape-shaped interposition is inserted and fixed to fix the dislocation portion of the superconducting dislocation segment conductor is excellent in that local bending and the like do not occur. You can see that.
[0017]
Example 2: A superconducting dislocation segment conductor exactly the same as that of Example 1 was produced and used as a sample. Further, as Comparative Example 2, a superconducting dislocation segment conductor similar to that of Example 2 was prepared and used as a sample, except that the non-adhesive tape Nitoflon tape was not used. After subjecting these samples to repeated bending, such as rewinding to a bobbin, the state of the samples was observed. Further, deterioration of characteristics (change of critical current value) of the high-temperature superconducting conductor after being repeatedly subjected to the bending as described above was measured. As a result, in Example 2, no deformation, breakage, or the like occurred in the superconducting conductor. The critical current value did not decrease from the initial value. On the other hand, in Comparative Example 2, the filament was broken in the superconducting conductor, and the critical current value was also reduced. As is evident from the results, the one in which the winding layer of the non-adhesive tape as the press-winding is formed on the superconducting dislocation segment conductor is hardly deteriorated even by bending, and is excellent.
[0018]
Embodiment 3 An example of a superconducting cable using the superconducting dislocation segment conductor of the present invention will be described. Fourteen superconducting dislocation segment conductors 1 described in Example 1 are spirally wound in a range of a pitch of 100 mm to 1000 mm on a stainless steel former 12 having a diameter of 20 mm as shown in FIG. Was insulated to form a superconducting cable 11. As a comparative example, a dislocation segment conductor was manufactured using the same superconducting conductor as in Example 1, and a superconducting cable was manufactured using a superconducting dislocation segment conductor obtained by winding a conventional adhesive tape to prevent unraveling. Thus, Comparative Example 3 was obtained. The distortion (%) depending on the spiral pitch of each conductor (element wire) of the dislocation segment conductor was compared. The results are shown in FIG.
[0019]
As is apparent from FIG. 5, the curve A showing the results of Example 3 of the present invention shows that the superconducting tape having the tape-shaped interposition, the wound layer of the non-adhesive tape, and the wound layer of the adhesive tape is provided. As compared with the curve B relating to the superconducting dislocation segment conductor of Comparative Example 3 in which the dislocation segment conductor was not unbreakable only by the adhesive tape, the distortion (%) with respect to the spiral pitch was 100 mm, 200 mm, 400 mm, and 600 mm for each spiral pitch. In the figure, it is understood that it is reduced by 60% or more. This indicates that the dislocation segment conductor of the present invention has less characteristic deterioration even when bent with a small bending radius. Therefore, it is understood that the dislocation segment conductor of the present invention can be sufficiently used as a coil or the like of a magnet.
[0020]
Embodiment 4: Next, an embodiment of the production method of the present invention will be described. Six silver-sheathed bismuth-based superconducting conductors having a thickness of 0.24 mm and a width of 1.9 mm are sequentially sent from the left at a speed of 2 m / min, passed through a distribution board 6, assembled, and then twisted with dislocations. After forming into a dislocation segment by a die 7 and then inserting and disposing a tape-like intervention near the dislocation of the dislocation segment conductor by an insertion and placement device 8 for a tape-like intervention, a non-adhesive tape winding device 9 and an adhesive tape winding device 10 Are sequentially passed to form a wound layer in which a Nitoflon tape is abutted and wound, and then a Kapton tape with an adhesive is wrapped and wound, a double tape wound form having a thickness of 0.8 mm and a width of 3.9 mm. A superconducting dislocation segment conductor 1 was manufactured. Then, the superconducting dislocation segment conductor thus manufactured was subjected to flatwise bending, and the critical current value of the superconducting dislocation segment conductor was measured to examine its performance. As a result, in the superconducting dislocation segment conductor, no dislocation segment was unraveled by bending. Also, there was no problem in the critical current value. By adopting such a manufacturing method, a manufacturing line can be automated, and the manufacturing speed is three times or more as compared with a conventional manufacturing method in which an adhesive tape is manually wound. Furthermore, according to the manufacturing method of the present invention, a superconducting dislocation segment conductor can be manufactured using a required number of superconducting conductors regardless of the type of superconducting conductor.
[0021]
【The invention's effect】
As described above, in the present invention, a plurality of rectangular conductors made of a superconducting material are configured as dislocation segment conductors, and a non-adhesive tape-shaped interposition for fixing dislocation portions of the dislocation segment conductor, A superconducting dislocation segment conductor in which a winding layer made of a non-adhesive tape and a winding layer made of an adhesive tape are sequentially applied to the surface of the dislocation segment conductor, which are inserted and arranged in the dislocation portion of the conductor; When the superconducting material is a superconducting dislocation segment conductor that is a high-temperature oxide superconducting conductor or a superconducting conductor made of an A15 type intermetallic compound, it is possible to maintain the dislocation twist of the superconducting dislocation segment conductor so as not to be unraveled. The individual superconducting conductors can freely move even if bending strain is applied thereto. This means that the individual superconducting conductors constituting the superconducting dislocation segment conductor do not behave as one, so that no large distortion is applied to the outer conductor. Further, when the bending radius is small due to the friction between the individual conductors, the inner conductor does not expand. Further, even when the dislocation segment conductor is spirally wound around a former or the like or when the pitch is small, the dislocation twist does not collapse. Further, by using a high-temperature oxide-based superconductor or a superconductor made of an intermetallic compound of A15, the superconducting dislocation segment conductor can conduct a high current without drift due to a difference in the geometrical arrangement of the wires. Such a superconducting dislocation segment conductor can be used for a superconducting cable, a superconducting transformer, a superconducting magnet, a superconducting current limiter, and the like.
[0022]
According to the production method of the present invention, a plurality of rectangular superconducting conductors are successively passed through a distribution board, assembled and introduced into a twisting die, subjected to dislocation twisting to form a dislocation segment conductor, and then the dislocation After inserting and disposing a non-adhesive tape-shaped interposition in the dislocation portion of the segment conductor, a non-adhesive tape is sequentially wound around the dislocation segment conductor in which the non-adhesive tape-shaped intervention is inserted and disposed in the vicinity of the dislocation portion. Further, a production line for a superconducting dislocation segment conductor having the above-mentioned characteristics can be completely automated by adopting a method for producing a superconducting dislocation segment conductor of a double tape winding type in which an adhesive tape is wound thereon. It is not necessary to manually wind an adhesive tape or the like for preventing dislocation in the dislocation segment conductor as in the related art, and productivity is greatly improved. There is an effect.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a superconducting dislocation segment conductor of the present invention.
FIG. 2 is a schematic cross-sectional view showing a tape-like interposition of a superconducting dislocation segment conductor of the present invention.
FIG. 3 is a schematic view showing one example of a method for producing a superconducting dislocation segment conductor of the present invention.
FIG. 4 is a drawing schematically showing a superconducting cable using the superconducting dislocation segment conductor of the present invention.
FIG. 5 is a graph showing the distortion of each superconducting conductor of the superconducting cable shown in FIG. 4 for each spiral pitch.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 superconducting dislocation segment conductor 2 superconducting conductor 3 wound layer of non-adhesive tape 4 wound layer of adhesive tape 5 tape-like interposition 6 distribution board 7 dislocation twisting die 8 interposition insertion device 9 non-adhesion tape Winding device 10 Adhesive tape winding device 11 Superconducting cable 12 Former 13 Insulation coating

Claims (3)

複数本の超電導材料からなる平角状導体が転位セグメントに構成され、かつその転位セグメントの転位部分を固定するために、非粘着性のテープ状介在が前記転位部分に挿入固定され、かつこの転位セグメントには順次、非粘着性テープからなる卷回層、粘着性テープからなる卷回層が施されたことを特徴とする、超電導転位セグメント導体。A flat conductor made of a plurality of superconducting materials is formed in a dislocation segment, and a non-adhesive tape-like interposition is inserted and fixed in the dislocation portion to fix the dislocation portion of the dislocation segment, and the dislocation segment Wherein a winding layer made of a non-adhesive tape and a winding layer made of an adhesive tape are sequentially applied. 前記超電導材料の平角状導体が、高温酸化物超電導導体或いはA15型の金属間化合物からなる超電導導体であることを特徴とする、請求項1に記載の超電導転位セグメント導体。The superconducting dislocation segment conductor according to claim 1, wherein the rectangular conductor of the superconducting material is a high-temperature oxide superconducting conductor or a superconducting conductor made of an A15 type intermetallic compound. 複数本の平角状超電導導体を、分線盤を通過させて集合しながら撚合せダイスに導入して転位撚りを施して転位セグメント導体とし、ついで前記転位セグメント導体の転位部分に、非粘着性のテープ状介在を挿入固定した後、順次前記転位セグメント導体上に、非粘着性のテープを卷回し、ついで粘着性テープを卷回して一体化することを特徴とする、二重テープ巻きした超電導転位セグメント導体の製造方法。A plurality of rectangular superconducting conductors are introduced into a twisting die while passing through a distribution board, and are introduced into a twisting die to be subjected to dislocation twisting to form dislocation segment conductors. After inserting and fixing the tape-shaped interposition, a non-adhesive tape is sequentially wound on the dislocation segment conductor, and then an adhesive tape is wound and integrated to form a double-tape superconducting transposition. A method for manufacturing a segment conductor.
JP2002181487A 2002-06-21 2002-06-21 Superconducting transposed segment conductor and its manufacturing method Pending JP2004030967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181487A JP2004030967A (en) 2002-06-21 2002-06-21 Superconducting transposed segment conductor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181487A JP2004030967A (en) 2002-06-21 2002-06-21 Superconducting transposed segment conductor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004030967A true JP2004030967A (en) 2004-01-29

Family

ID=31178311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181487A Pending JP2004030967A (en) 2002-06-21 2002-06-21 Superconducting transposed segment conductor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004030967A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665670B1 (en) 2005-09-12 2007-01-09 학교법인 한국산업기술대학 Manufacturing method for coated conductor
EP1936705A2 (en) 2006-12-21 2008-06-25 Industrial Research Limited Apparatus and Method for Forming HTS Continuous Conductor Elements
EP1936706A2 (en) 2006-12-21 2008-06-25 Industrial Research Limited Apparatus and method for producing composite cable
JP2009295292A (en) * 2008-06-02 2009-12-17 Sumitomo Electric Ind Ltd Superconducting wire rod wrapping device and method for manufacturing superconducting wire rod with insulating coating
WO2011062344A1 (en) * 2009-11-20 2011-05-26 한국산업기술대학교산학협력단 Multiple transposition method for a superconducting wire
JP2011113933A (en) * 2009-11-30 2011-06-09 Toshiba Corp Superconducting wire, and superconducting coil using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665670B1 (en) 2005-09-12 2007-01-09 학교법인 한국산업기술대학 Manufacturing method for coated conductor
EP1936705A2 (en) 2006-12-21 2008-06-25 Industrial Research Limited Apparatus and Method for Forming HTS Continuous Conductor Elements
EP1936706A2 (en) 2006-12-21 2008-06-25 Industrial Research Limited Apparatus and method for producing composite cable
JP2009295292A (en) * 2008-06-02 2009-12-17 Sumitomo Electric Ind Ltd Superconducting wire rod wrapping device and method for manufacturing superconducting wire rod with insulating coating
WO2011062344A1 (en) * 2009-11-20 2011-05-26 한국산업기술대학교산학협력단 Multiple transposition method for a superconducting wire
KR101087808B1 (en) 2009-11-20 2011-11-29 우석대학교 산학협력단 Multiple transposition method for superconducting wire
JP2011113933A (en) * 2009-11-30 2011-06-09 Toshiba Corp Superconducting wire, and superconducting coil using the same

Similar Documents

Publication Publication Date Title
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
US6725071B2 (en) Fully transposed high tc composite superconductor, method for producing the same and its use
JP4696436B2 (en) Oxide superconducting wire manufacturing method, oxide superconducting wire, superconducting coil, and superconducting equipment
KR20020040672A (en) Method for joining high temperature superconducting components with negligible critical current degradation and articles of manufacture in accordance therewith
JPH04106906A (en) High temperature superconducting coil
JP2004030967A (en) Superconducting transposed segment conductor and its manufacturing method
WO2008065781A1 (en) Oxide superconducting wire rod, superconducting structure, method for manufacturing oxide superconducting wire rod, superconducting cable, superconducting magnet, and product comprising superconducting magnet
JP4566576B2 (en) Dislocation segment conductor
KR101118748B1 (en) method for manufacturing round wire using superconducting coated conductors and superconducting cables thereof
EP2729943A1 (en) Method for producing superconducting coils and apparatus comprising a superconducting coil produced in accordance with the method
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JP5122047B2 (en) Dislocation superconducting tape unit and superconducting application equipment using the same
JP2003331659A (en) Superconducting transition segment conductor, and its manufacturing method
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP4214630B2 (en) Inorganic insulating oxide high temperature superconducting cable
JP3701606B2 (en) Dislocation superconducting tape unit and superconducting application equipment using the same
JP3098887B2 (en) Oxide superconducting wire and method of using the same
JP4203313B2 (en) Bi-based rectangular oxide superconductor
WO1999007003A1 (en) A high temperature superconductor and method of making and using same
JP4096406B2 (en) Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method
JP4172454B2 (en) Flat cable manufacturing method
JP2005149840A (en) Transposed segment conductor
JPH10144153A (en) Superconductor
JPH04132108A (en) Nb3al superconductor