JP3033624B2 - Ceramic superconducting conductor - Google Patents

Ceramic superconducting conductor

Info

Publication number
JP3033624B2
JP3033624B2 JP3340171A JP34017191A JP3033624B2 JP 3033624 B2 JP3033624 B2 JP 3033624B2 JP 3340171 A JP3340171 A JP 3340171A JP 34017191 A JP34017191 A JP 34017191A JP 3033624 B2 JP3033624 B2 JP 3033624B2
Authority
JP
Japan
Prior art keywords
tape
ceramic
composite
superconducting conductor
shaped composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3340171A
Other languages
Japanese (ja)
Other versions
JPH05151836A (en
Inventor
祐行 菊地
清 根本
築志 原
英雄 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Tokyo Electric Power Co Inc
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Tokyo Electric Power Co Inc filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP3340171A priority Critical patent/JP3033624B2/en
Publication of JPH05151836A publication Critical patent/JPH05151836A/en
Application granted granted Critical
Publication of JP3033624B2 publication Critical patent/JP3033624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電力ケーブル等のような
高圧の電力輸送に適用可能なセラミックス超電導導体に
関するもので、特に導体の構成が簡潔で曲げ歪に対して
も超電導特性の劣化が少ない高Icのセラミックス超電
導導体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic superconducting conductor applicable to high-voltage power transport such as a power cable and the like, and in particular, has a simple conductor structure and has little deterioration in superconducting characteristics even with bending strain. The present invention relates to a high Ic ceramic superconducting conductor.

【0002】[0002]

【従来の技術】Y系、Bi系、Tl系等のように液体窒
素温度を越えるTcを有するセラミックス超電導体が知
られている。このようなセラミックス超電導体は各分野
への利用を目指して種々の形状に成形することが検討さ
れている。例えば、線材に成型する場合には一般に金属
シース法が用いられている。これは超電導体となり得る
セラミックスの原料を金属パイプ内に充填して複合ビレ
ットとし、これを断面減少加工して所望形状・寸法の複
合線材に仕上げ、然る後、熱処理を行なってセラミック
ス超電導導体とするものである。
2. Description of the Related Art Ceramic superconductors having a Tc exceeding liquid nitrogen temperature, such as Y-based, Bi-based, and Tl-based, are known. It has been studied to form such ceramic superconductors into various shapes for use in various fields. For example, when molding into a wire, a metal sheath method is generally used. This is to fill a metal pipe with a ceramic raw material that can become a superconductor to form a composite billet, reduce the cross section and finish it into a composite wire with the desired shape and dimensions, and then heat treat it with a ceramic superconductor. Is what you do.

【0003】この方法で得られる線材の形状としては、
断面形状が例えば丸型、楕円形、四角形、テープ状のも
のが有る。また、これらの線材を複数本束ねた多芯線材
や、金属層内にセラミックス超電導体層が同芯円筒状ま
たは渦巻状に配置された構造の多層線材等も種々試作検
討されている。
[0003] The shape of the wire obtained by this method is as follows.
For example, there are round, elliptical, square, and tape-shaped cross sections. In addition, various trial productions of a multi-core wire obtained by bundling a plurality of these wires and a multilayer wire having a structure in which a ceramic superconductor layer is arranged in a concentric cylindrical or spiral shape in a metal layer have been studied.

【0004】この場合使用される金属の材質としては熱
伝導性、電気伝導性に優れた材料、例えばAg、Ag合
金、Cu、Cu合金等が適するが、酸素透過性、耐酸化
性の点でAg、Ag合金を用いる例が多い。また、断面
減少加工法としては、得られる線材の形状に応じて押し
出し、圧延、引き抜き、スウェージング等の従来の塑性
加工法がそのまま適用される。
[0004] In this case, as the material of the metal used, a material having excellent heat conductivity and electric conductivity, for example, Ag, Ag alloy, Cu, Cu alloy, etc. is suitable, but in terms of oxygen permeability and oxidation resistance. In many cases, Ag or an Ag alloy is used. Further, as the cross-section reduction processing method, a conventional plastic processing method such as extrusion, rolling, drawing, or swaging according to the shape of the obtained wire is applied as it is.

【0005】近年、このようにして得られたテープ状複
合体を金属パイプ、丸棒等の芯材の外周に所望枚数縦添
え包被した或は螺旋状に巻き付けたセラミックス超電導
導体を電力ケーブル等のような電力輸送用導体に適用す
ることが検討されている。具体的には図4(a)に示す
ように、幅の広いテープ状複合体Dを芯材Aの外周に1
層当たり1枚ずつフォーミングするように巻き付け包被
し、これを多層状に積層したものとか、同図(b)のよ
うに同様のテープ状複合体Dを1層当たり2枚使用し、
多層状に積層したもの等がある。
In recent years, a ceramic superconducting conductor in which a tape-like composite obtained as described above is vertically wrapped around the outer periphery of a core material such as a metal pipe, a round bar or the like or spirally wound is used as a power cable or the like. It has been studied to apply it to a conductor for power transport such as described above. Specifically, as shown in FIG. 4A, a wide tape-shaped composite D is
One layer per layer is wrapped and wrapped so as to form one layer at a time, and this is laminated in a multilayer shape, or as shown in FIG.
There are those laminated in multiple layers.

【0006】図4のセラミックス超電導導体は芯材Aに
巻き付け包被するテープ状複合体Dの幅が広く内部のセ
ラミックス超伝導体Cの断面積が増大するため、Icの
向上が図れること、また導体構成が容易になること等の
利点がある。
In the ceramic superconducting conductor shown in FIG. 4, the width of the tape-shaped composite D wound around the core material A is wide and the cross-sectional area of the ceramic superconductor C inside is increased, so that Ic can be improved. There are advantages such as easy conductor configuration.

【0007】[0007]

【発明が解決しようとする課題】図4に示すセラミック
ス超電導導体を実際に電力輸送のケーブルとして使用す
る場合、製造、運搬、布設の作業性の面から、セラミッ
クス超電導導体をドラムに巻き取る必要がある。このた
めドラムへの巻き付け、巻き戻しによる曲げ、施工作業
時の曲げ等を考慮すると、セラミックス超電導導体を数
回繰り返して曲げても超電導特性が劣化しないことが望
ましい。
When the ceramic superconducting conductor shown in FIG. 4 is actually used as a cable for transporting electric power, it is necessary to wind the ceramic superconducting conductor around a drum from the viewpoint of workability in manufacturing, transporting and laying. is there. For this reason, in consideration of winding around a drum, bending due to unwinding, bending during construction work, and the like, it is desirable that the superconducting characteristics do not deteriorate even if the ceramic superconducting conductor is repeatedly bent several times.

【0008】しかし、図4に示すセラミックス超電導導
体ではテープ状複合体Dの幅が広いため、Icは高いが
繰り返し曲げによる歪みに弱く、このため全体に曲げ歪
を付与した場合、セラミックス超電導体Cが局部的に変
形したり破断したりすることがあり、その結果Icが低
下するという問題点があった。
However, in the ceramic superconducting conductor shown in FIG. 4, since the width of the tape-shaped composite D is large, Ic is high, but it is weak to the distortion due to repeated bending. Therefore, when bending distortion is applied to the whole, the ceramic superconductor C May be locally deformed or broken, resulting in a problem that Ic is reduced.

【0009】本発明の目的は構造が簡潔で、繰り返し曲
げられても超電導特性が劣化しにくい高Icのセラミッ
クス超電導導体を提供することにある。
It is an object of the present invention to provide a high Ic ceramic superconducting conductor which has a simple structure and whose superconducting characteristics are hardly deteriorated even when repeatedly bent.

【0010】[0010]

【課題を解決するための手段】本発明のセラミックス超
電導導体は前記欠点を改善するために種々実験し、検討
した結果得られたもので、金属層1内にセラミックス超
電導体層2を設けたテープ状複合体3の幅方向両端縁部
に、その幅方向に長いスリット4をテープ状複合体3の
長手方向に所定間隔で設け、このテープ状複合体3を金
属製パイプ、棒等の芯材5の外周に所望枚数、所望層数
縦添え包被して配置したことを特徴とするものである。
The ceramic superconducting conductor of the present invention is obtained by conducting various experiments and examinations to improve the above-mentioned disadvantages, and is a tape obtained by providing a ceramic superconducting layer 2 in a metal layer 1. Slits 4 long in the width direction are provided at predetermined intervals in the longitudinal direction of the tape-shaped composite 3 at both ends in the width direction of the tape-shaped composite 3, and the tape-shaped composite 3 is made of a core material such as a metal pipe or a rod. 5 and a desired number of layers and a desired number of layers are vertically wrapped and arranged.

【0011】前記芯材5は金属パイプの他、例えば金属
製の丸棒、或は金属パイプに波付け加工を施して可撓性
を持たせたもの等を用いてもよい。また同芯材5の外周
に縦添え包被するテープ状複合体3の1層当たりの枚
数、積層する層数に制約は無く、図1(a)のように1
層当たり1枚づつでも、同図(b)のように1層当たり
2枚づつでも、或はそれ以上でもよい。
The core material 5 may be a metal pipe, for example, a metal round bar, or a metal pipe obtained by corrugating the metal pipe to have flexibility. Further, there is no restriction on the number of tape-shaped composites 3 vertically wrapped around the outer periphery of the concentric material 5 per layer and the number of layers to be laminated, and as shown in FIG.
The number of sheets may be one per layer, two per layer as shown in FIG. 3B, or more.

【0012】前記テープ状複合体3の幅方向両端縁部に
設けるスリット4の角度には特に制約が無く、例えば図
3(a)に示すようにスリット4をテープ状複合体3の
幅方向に沿って平行に設けたり、或は同図(b)のよう
に幅方向両端縁部のスリット4を同じ方向に傾斜させた
り、同図(c)に示すように幅方向両端縁部のスリット
4を互いに逆方向に傾斜させたりして設けてもよい。
There is no particular limitation on the angle of the slits 4 provided at both ends in the width direction of the tape-shaped composite 3. For example, as shown in FIG. The slits 4 at both ends in the width direction are inclined in the same direction, as shown in FIG. 3B, or the slits 4 at both ends in the width direction, as shown in FIG. May be provided inclining in opposite directions.

【0013】前記スリット4はテープ状複合体3のうち
幅方向両端縁部の金属部を除く部分の長さL(図2)と
内部のセラミックス超電導体層2の幅W(図2)との関
係が次式を満たすように設定することが望ましい。 (1/10)W≦L≦(1/2)W これは、前記長さLが(1/10)W未満では実質的な
効果がなく、曲げ歪の付加によるIc低下が大きくな
る。また前記長さLが(1/2)W以上ではセラミック
ス超電導体層2に断面積の小さい部分が生じ、しかも電
流が図2の矢印のようにスリット4を迂回して蛇行して
流れて高Ic化が図れない。また、前記スリット4の幅
はあまり大きいとスリットとしての効果が小さくなり、
さらには材料の損失も無視できなくなるため極力狭い方
がよい。隣り合うスリット4の間隔は特に制約はなく、
最終的にでき上がる導体の外径や、使用時の最大曲げ歪
等を考慮して選定すればよい。
The slit 4 is defined by the length L (FIG. 2) of the tape-shaped composite 3 excluding the metal portions at both ends in the width direction and the width W (FIG. 2) of the ceramic superconductor layer 2 inside. It is desirable that the relationship be set so as to satisfy the following equation. (1/10) W≤L≤ (1/2) W When the length L is less than (1/10) W, there is no substantial effect, and the decrease in Ic due to the addition of bending strain increases. When the length L is equal to or more than (1/2) W, a portion having a small cross-sectional area is formed in the ceramic superconductor layer 2, and the current flows meandering around the slit 4 as shown by an arrow in FIG. Ic cannot be achieved. Also, if the width of the slit 4 is too large, the effect as a slit is reduced,
Further, the loss of the material cannot be ignored, so that it is better to be as narrow as possible. There is no particular limitation on the interval between the adjacent slits 4,
The selection may be made in consideration of the outer diameter of the conductor finally formed, the maximum bending strain during use, and the like.

【0014】なお、本発明のセラミックス超電導導体は
比較的幅の広いテープ状複合体3を芯材5の外周に縦添
え包被してフォーミングする場合に適す。
The ceramic superconducting conductor of the present invention is suitable for the case where the tape-shaped composite 3 having a relatively wide width is vertically wrapped around the core material 5 for forming.

【0015】本発明のセラミックス超電導導体の製造方
法の一例を説明する。テープ状複合体3の製造には従来
の方法がそのまま適用できる。例えば金属製のパイプ状
ビレット内にセラミックス超電導体となしうる原料を充
填して複合ビレツトとし、これを断面減少加工して所定
の形状・寸法のテープ状複合体3を作製する。テープ状
複合体3の幅が比較的広い場合には断面形状が角型の複
合ビレットを用いるとよい。そして、この方法で得られ
たテープ状複合体3の幅方向両端縁部にスリット4を設
ける。この場合、例えば歯車状のカッターを用いたり、
あるいは打ち抜き等によって行うことができる。
An example of the method for manufacturing a ceramic superconductor according to the present invention will be described. The conventional method can be directly applied to the production of the tape-shaped composite 3. For example, a metal-made pipe-shaped billet is filled with a raw material that can be used as a ceramic superconductor to form a composite billet, which is reduced in cross section to produce a tape-shaped composite body 3 having a predetermined shape and dimensions. When the width of the tape-shaped composite 3 is relatively wide, it is preferable to use a composite billet having a square cross section. Then, slits 4 are provided at both edges in the width direction of the tape-shaped composite 3 obtained by this method. In this case, for example, using a gear-shaped cutter,
Alternatively, it can be performed by punching or the like.

【0016】このようにしてスリット4が形成されたテ
ープ状複合体3を図1のように芯材5の外周に所望枚数
巻き付け或は包被させて、これを所望層数積層する。さ
らに必要に応じてその上に金属テープを押え巻きしても
差し支えない。しかる後、所定の条件で熱処理を行って
セラミックス超電導導体とするものである(W&R
法)。或は前記テープ状複合体3を芯材5に巻き付け或
は包被する前に熱処理し、これを芯材5の外周に配置し
てセラミックス超電導導体を作製することもできる(R
&W法)。更にこのセラミックス超電導導体を保護する
ため、例えばFe、SUS、Cu等の波付け管内に挿入
することも本発明の範囲内である。
A desired number of the tape-shaped composites 3 having the slits 4 formed as described above are wound or wrapped around the outer periphery of the core material 5 as shown in FIG. 1, and the desired number of layers are laminated. Further, if necessary, a metal tape may be pressed and wound thereon. Thereafter, heat treatment is performed under predetermined conditions to obtain a ceramic superconductor (W & R).
Law). Alternatively, the tape-shaped composite 3 may be heat-treated before being wound or wrapped around the core material 5 and placed on the outer periphery of the core material 5 to produce a ceramic superconducting conductor (R
& W method). Further, to protect the ceramic superconducting conductor, it is also within the scope of the present invention to insert it into a corrugated pipe of, for example, Fe, SUS, Cu or the like.

【0017】[0017]

【作用】本発明のセラミックス超電導導体では、図1に
示すようにテープ状複合体3の幅方向両端縁部のスリッ
ト4が、同テープ状複合体3を芯材5に巻き付け包被さ
せた時に、セラミックス超電導導体の外周面に多数形成
されるため可撓性が良くなり、この結果、同超電導導体
に曲げ歪みを付与しても超電導特性の低下が少ない。
In the ceramic superconducting conductor of the present invention, as shown in FIG. 1, the slits 4 at both ends in the width direction of the tape-like composite 3 are wound around the core 5 when the tape-like composite 3 is covered. Since a large number of ceramic superconducting conductors are formed on the outer peripheral surface, flexibility is improved. As a result, even if bending distortion is applied to the superconducting conductors, deterioration in superconducting characteristics is small.

【0018】[0018]

【実施例1】本発明のセラミックス超電導導体の一実施
例を以下に説明する。Bi23 、PbO、 SrCO3
CaCo3、CuO等の一次原料粉をモル比でBi:P
b:Sr:Ca:Cu=1.6:0.4:2:2:3と
なるように配合し、混合した後、大気中800℃×10
0h仮焼成し、さらに粉砕して仮焼成を作製した。これ
をCIP成形した後、断面形状が角型のAg製パイプ内
に挿入して複合ビレットとし、これを断面減少加工、圧
延加工して幅約60mm(セラミックス超電導体層2の
幅50mm)、厚さ0 25mmのテープ状複合体3を
作製した。このテープ状複合体3に表1に記載する4種
類の長さのスリット4をカッター等により設けた。この
スリット4は図2(a)のようにテープ状複合体3の幅
方向両端縁面mに開口するように、且つテープ状複合体
3の幅方向に平行に形成し、これをテープ状複合体3の
幅方向両端縁部に間隔30mmのちどり状に複数形成し
たものである。
Embodiment 1 An embodiment of the ceramic superconducting conductor of the present invention will be described below. Bi 2 O 3 , PbO, SrCO 3 ,
Primary material powders such as CaCo 3 and CuO are mixed in a molar ratio of Bi: P
b: Sr: Ca: Cu = 1.6: 0.4: 2: 2: 3, blended and mixed, then 800 ° C x 10 in air.
The resultant was temporarily calcined for 0 h and further pulverized to prepare a temporary calcined product. After CIP molding, it is inserted into an Ag pipe having a square cross section to form a composite billet, which is reduced in cross section and rolled to a width of about 60 mm (width of ceramic superconductor layer 2 is 50 mm) and thickness. is to prepare a 0 · 25mm tape-like composite body 3. The tape-shaped composite 3 was provided with slits 4 having four types of lengths shown in Table 1 using a cutter or the like. As shown in FIG. 2A, the slit 4 is formed so as to open at both end surfaces m in the width direction of the tape-like composite 3 and in parallel with the width direction of the tape-like composite 3, and this is formed into a tape-like composite. A plurality of body-shaped members 3 are formed at both ends in the width direction in a zigzag manner at intervals of 30 mm.

【0019】一方、外径20mmφ、内径16mmφの
Ag製パイプ(芯材5)を作製し、これに波付け加工を
施した。芯材5の外周には前記テープ状複合体3を縦添
え包被してフォーミングし、これを10層積層した。こ
れに大気中、840℃×100hの熱処理を行ってセラ
ミックス超電導導体を作製した。このようにして得られ
たセラミックス超電導導体を曲率半径1mとなるように
曲げた状態で、液体窒素中、O磁場における環境下でI
cを測定し、その結果を表1にまとめて示した。
On the other hand, an Ag pipe (core material 5) having an outer diameter of 20 mmφ and an inner diameter of 16 mmφ was prepared and corrugated. The tape-shaped composite material 3 was vertically wrapped around the outer periphery of the core material 5 and formed, followed by laminating 10 layers. This was subjected to a heat treatment at 840 ° C. × 100 h in the air to produce a ceramic superconductor. The ceramic superconducting conductor obtained in this manner is bent so as to have a radius of curvature of 1 m.
c was measured, and the results are summarized in Table 1.

【0020】[0020]

【実施例2】実施例1と同様の仮焼粉及び角型Agパイ
プを用いて、幅30mm(超電導体の幅26mm)、厚
さ0 25mmのテープ状複合体3を作製した。これに
実施例1と同様にして表2に記載する4種類の長さのス
リット4をカッター等により設けた。このスリット4も
図2(a)のようにテープ状複合体3の幅方向両端縁面
mに開口するように、且つテープ状複合体3の幅方向に
平行に形成し、これをテープ状複合体3の幅方向両端縁
部に間隔15mmのちどり状に複数形成したものであ
る。
EXAMPLE 2 Using the same calcined powder and square Ag pipe as in Example 1, (width 26mm of the superconductor) width 30 mm, to prepare a tape-like composite body 3 having a thickness of 0 · 25 mm. In the same manner as in Example 1, slits 4 having four kinds of lengths shown in Table 2 were provided by a cutter or the like. As shown in FIG. 2A, the slit 4 is also formed so as to open at both end surfaces m in the width direction of the tape-like composite 3 and in parallel with the width direction of the tape-like composite 3, and this is formed into a tape-like composite. The body 3 is formed in a plurality of zigzag shapes at both ends in the width direction at intervals of 15 mm.

【0021】前記テープ状複合体3を2枚で1層となる
ように実施例1の芯材5と同じ芯材5の外周に縦添え包
被してフォーミングし、合計10層積層した。これに大
気中、840℃×100hの熱処理を行ってセラミック
ス超電導導体を作製した。これらのセラミックス超電導
導体を曲率半径1mとなるように曲げた状態で、液体窒
素中、O磁場の環境下でIcを測定し、その結果を表2
にまとめて示した。
The tape-shaped composite material 3 was vertically wrapped around the outer periphery of the same core material 5 as the core material 5 of Example 1 so as to form one layer with two sheets, and formed into a total of 10 layers. This was subjected to a heat treatment at 840 ° C. × 100 h in the air to produce a ceramic superconductor. In a state where these ceramic superconductors were bent to have a radius of curvature of 1 m, Ic was measured in liquid nitrogen in an environment of an O magnetic field, and the results were shown in Table 2.
Are shown together.

【0022】[0022]

【比較例1】表1の5、6、7は表1の実施例1〜4に
対する比較例である。同表の5、6は実施例1のテープ
状複合体3と同じくスリット4を形成してセラミックス
超電導導体を作製したものであるが、5はスリット4の
長さLが(1/10)Wより小さい場合であり、また6
はスリット4の長さLが(1/2)Wより大きい場合の
実験結果である。また、同表の7はテープ状複合体3に
スリット4を形成しなかった場合の実験結果である。こ
の結果から実施例1のセラミックス超電導導体は曲げ歪
みを付与した場合でも超電導特性の劣化が少ないことが
わかる。
Comparative Example 1 Tables 5, 6, and 7 are comparative examples with respect to Examples 1 to 4 in Table 1. Reference numerals 5 and 6 in the same table indicate that a slit 4 was formed in the same manner as the tape-shaped composite 3 of Example 1 to produce a ceramic superconducting conductor, and 5 indicates that the length L of the slit 4 was (1/10) W Smaller than 6
Is an experimental result when the length L of the slit 4 is larger than (1/2) W. 7 in the same table is an experimental result when the slit 4 was not formed in the tape-shaped composite 3. From this result, it can be seen that the ceramic superconducting conductor of Example 1 has little deterioration in superconducting characteristics even when bending strain is applied.

【0023】[0023]

【比較例2】表2の5、6、7は表2の実施例1〜4に
対する比較例である。同表の5、6は実施例2のテープ
状複合体3と同じくスリット4を形成してセラミックス
超電導導体を作製したものであるが、5はスリット4の
長さLが(1/10)Wより小さい場合であり、また6
はスリット4の長さLが(1/2)Wより大きい場合の
実験結果である。また、同表の7はテープ状複合体3に
スリット4を形成しなかった場合の実験結果である。同
じくこの結果から実施例2のセラミックス超電導導体は
曲げ歪みを付与した場合でも超電導特性の劣化が少ない
ことがわかった。
Comparative Example 2 Tables 5, 6, and 7 are comparative examples with respect to Examples 1 to 4 in Table 2. Reference numerals 5 and 6 in the same table indicate that a slit 4 was formed in the same manner as the tape-shaped composite 3 of Example 2 to produce a ceramic superconducting conductor, and 5 indicates that the length L of the slit 4 was (1/10) W Smaller than 6
Is an experimental result when the length L of the slit 4 is larger than (1/2) W. 7 in the same table is an experimental result when the slit 4 was not formed in the tape-shaped composite 3. Similarly, from the results, it was found that the ceramic superconducting conductor of Example 2 had little deterioration in superconducting characteristics even when bending strain was applied.

【0024】表1 Table 1

【0025】表2 Table 2

【0026】[0026]

【発明の効果】本発明のセラミックス超電導導体は構成
が簡潔で、しかも曲げ歪に対しても超電導特性の劣化が
少なく、高Icとなる。
The ceramic superconducting conductor of the present invention has a simple structure, has little deterioration in superconducting characteristics against bending strain, and has a high Ic.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明のセラミックス超電導導体の一
実施例を示す斜視図、(b)は本発明のセラミックス超
電導導体の他の実施例を示す斜視図。
FIG. 1 (a) is a perspective view showing one embodiment of a ceramic superconducting conductor of the present invention, and FIG. 1 (b) is a perspective view showing another embodiment of the ceramic superconducting conductor of the present invention.

【図2】(a)は図1のセラミックス超電導導体におけ
るテープ状複合体の一例を示す上面図、(b)はその断
面図。
2A is a top view showing an example of a tape-like composite in the ceramic superconducting conductor of FIG. 1, and FIG. 2B is a cross-sectional view thereof.

【図3】(a)(b)(c)はテープ状複合体の各種例
を示す平面図。
FIGS. 3A, 3B, and 3C are plan views showing various examples of a tape-like composite.

【図4】(a)(b)は従来のセラミックス超電導導体
の異なる例を示す斜視図。
FIGS. 4A and 4B are perspective views showing different examples of a conventional ceramic superconductor.

【符号の説明】[Explanation of symbols]

1 金属層 2 セラミックス超伝導体層 3 テープ状複合体 4 スリット 5 芯材 DESCRIPTION OF SYMBOLS 1 Metal layer 2 Ceramic superconductor layer 3 Tape composite 4 Slit 5 Core material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 築志 東京都調布市西つつじケ丘2丁目4番1 号 東京電力株式会社 技術研究所内 (72)発明者 石井 英雄 東京都調布市西つつじケ丘2丁目4番1 号 東京電力株式会社 技術研究所内 (56)参考文献 特開 昭64−65716(JP,A) 特開 平1−204313(JP,A) 特開 平2−92807(JP,A) 特開 平2−21512(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 12/00 - 13/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsushi Hara 2-4-1, Nishi-Atsujigaoka, Chofu-shi, Tokyo Tokyo Electric Power Company R & D Laboratory (72) Inventor Hideo Ishii 2-4-1, Nishi-Atsujigaoka, Chofu-shi, Tokyo No. Tokyo Electric Power Company Technical Research Institute (56) References JP-A-64-65716 (JP, A) JP-A-1-204313 (JP, A) JP-A-2-92807 (JP, A) JP-A-2 −21512 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 12/00-13/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属層1内にセラミックス超電導体層2
を設けたテープ状複合体3の幅方向両端縁部に、その幅
方向に長いスリット4をテープ状複合体3の長手方向に
所定間隔で設け、このテープ状複合体3を金属製パイ
プ、棒等の芯材5の外周に所望枚数、所望層数縦添え包
被して配置したことを特徴とするセラミックス超電導導
体。
1. A ceramic superconductor layer 2 in a metal layer 1.
Are provided at both ends in the width direction of the tape-shaped composite 3 provided with slits 4 at predetermined intervals in the longitudinal direction of the tape-shaped composite 3, and the tape-shaped composite 3 is provided with a metal pipe or rod. A ceramic superconducting conductor characterized in that a desired number of layers and a desired number of layers are vertically wrapped around an outer periphery of a core material 5 and the like.
JP3340171A 1991-11-29 1991-11-29 Ceramic superconducting conductor Expired - Lifetime JP3033624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3340171A JP3033624B2 (en) 1991-11-29 1991-11-29 Ceramic superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3340171A JP3033624B2 (en) 1991-11-29 1991-11-29 Ceramic superconducting conductor

Publications (2)

Publication Number Publication Date
JPH05151836A JPH05151836A (en) 1993-06-18
JP3033624B2 true JP3033624B2 (en) 2000-04-17

Family

ID=18334415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3340171A Expired - Lifetime JP3033624B2 (en) 1991-11-29 1991-11-29 Ceramic superconducting conductor

Country Status (1)

Country Link
JP (1) JP3033624B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271146B1 (en) * 2019-03-25 2021-06-30 박규완 Cheese ddeokgalbi and preparing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104753A1 (en) 2015-12-18 2017-06-22 古河電気工業株式会社 Superconducting wire rod and superconducting coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271146B1 (en) * 2019-03-25 2021-06-30 박규완 Cheese ddeokgalbi and preparing method thereof

Also Published As

Publication number Publication date
JPH05151836A (en) 1993-06-18

Similar Documents

Publication Publication Date Title
US5932523A (en) Superconducting cable conductor
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JP3033624B2 (en) Ceramic superconducting conductor
JPH05151837A (en) Ceramic superconductive conductor
JP3108486B2 (en) Ceramic superconducting conductor
JP3345834B2 (en) Ceramic superconducting conductor
JP3042558B2 (en) Ceramic superconducting conductor
JPH0773757A (en) Manufacture of oxide superconductor
JPH06325634A (en) Multi-core oxide superconducting wire
JPH05144332A (en) Ceramic superconductor
JP2989932B2 (en) Manufacturing method of multilayer ceramic superconducting conductor
JPH05334921A (en) Ceramic superconductor
JP3657367B2 (en) Bismuth-based oxide multicore superconducting wire and method for producing the same
JP3657397B2 (en) Oxide superconducting wire and method for producing the same
JP3529925B2 (en) Oxide superconducting cable conductor for AC
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JPH0644834A (en) Ceramics superconductive conductor
JPH0745136A (en) Oxide superconductor
JPH0528847A (en) Ceramic superconductor
JP3445308B2 (en) Oxide superconducting conductor for power transport and method for producing the same
JP3042548B2 (en) Manufacturing method of ceramic superconducting conductor
JP3568767B2 (en) Superconducting cable and manufacturing method thereof
JP2951423B2 (en) Manufacturing method of ceramic superconducting conductor
JPH06325633A (en) Multi-core oxide superconducting wire