JPH05151837A - Ceramic superconductive conductor - Google Patents

Ceramic superconductive conductor

Info

Publication number
JPH05151837A
JPH05151837A JP3340172A JP34017291A JPH05151837A JP H05151837 A JPH05151837 A JP H05151837A JP 3340172 A JP3340172 A JP 3340172A JP 34017291 A JP34017291 A JP 34017291A JP H05151837 A JPH05151837 A JP H05151837A
Authority
JP
Japan
Prior art keywords
tape
shaped composite
ceramic
superconducting conductor
composite body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3340172A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
祐行 菊地
Kiyoshi Nemoto
清 根本
Chikushi Hara
築志 原
Hideo Ishii
英雄 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP3340172A priority Critical patent/JPH05151837A/en
Publication of JPH05151837A publication Critical patent/JPH05151837A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a ceramic superconductive conductor of high Ic which has simple structure and is hard to deteriorate its superconductive characteristic even when repeatedly bent. CONSTITUTION:A tape-like composite body 4 which has a ceramic superconductive layer 2 within a metal later 1 and is lengthwise provided with the desired number of slits 3 each having a predetermined length, are wrapped in the desired number of sheets around the circumference of a core member 5 such as a metal pipe and a round bar.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力ケーブル等のような
高圧の電力輸送に適用可能なセラミックス超電導導体に
関するもので、特に導体の構成が簡潔で曲げ歪に対して
も超電導特性の劣化が少ない高Icのセラミックス超電
導導体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramics superconducting conductor applicable to high-voltage electric power transportation such as electric power cables, etc., and in particular, the structure of the conductor is simple and the superconducting characteristic is less deteriorated even against bending strain. The present invention relates to a ceramic superconducting conductor having high Ic.

【0002】[0002]

【従来の技術】Y系、Bi系、Tl系等のように液体窒
素温度を越えるTcを有するセラミックス超電導体が知
られている。このようなセラミックス超電導体は各分野
への利用を目指して種々の形状に成形することが検討さ
れている。例えば、線材に成型する場合には一般に金属
シース法が用いられている。これは超電導体となり得る
セラミックスの原料を金属パイプ内に充填して複合ビレ
ットとし、これを断面減少加工して所望形状・寸法の複
合線材に仕上げ、然る後、熱処理を行なってセラミック
ス超電導導体とするものである。
2. Description of the Related Art Ceramic superconductors having a Tc exceeding the temperature of liquid nitrogen, such as Y type, Bi type and Tl type, are known. It has been studied to form such ceramic superconductors into various shapes for the purpose of utilization in various fields. For example, a metal sheath method is generally used when molding into a wire rod. This is to fill a metal pipe with ceramic raw material that can be a superconductor to form a composite billet, and then reduce the cross-section of the composite billet to finish it into a composite wire rod with a desired shape and size. To do.

【0003】この方法で得られる線材の形状としては、
断面形状が例えば丸型、楕円形、四角形、テープ状のも
のが有る。また、これらの線材を複数本束ねた多芯線材
や、金属層内にセラミックス超電導体層が同芯円筒状ま
たは渦巻状に配置された構造の多層線材等も種々試作検
討されている。
The shape of the wire obtained by this method is
For example, there are round, elliptical, quadrangular, and tape-shaped cross sections. In addition, various prototypes of multi-core wire rods obtained by bundling a plurality of these wire rods, multi-layer wire rods having a ceramic superconductor layer arranged in a metal layer in a concentric cylindrical shape or in a spiral shape, and the like have been studied.

【0004】この場合使用される金属の材質としては熱
伝導性、電気伝導性に優れた材料、例えばAg、Ag合
金、Cu、Cu合金等が適するが、酸素透過性、耐酸化
性の点でAg、Ag合金を用いる例が多い。また、断面
減少加工法としては、得られる線材の形状に応じて押し
出し、圧延、引き抜き、スウェージング等の従来の塑性
加工法がそのまま適用される。
In this case, as the material of the metal used, a material having excellent thermal conductivity and electrical conductivity, such as Ag, Ag alloy, Cu, Cu alloy, etc., is suitable, but in view of oxygen permeability and oxidation resistance. In many cases, Ag and Ag alloys are used. Further, as the cross-section reduction working method, the conventional plastic working method such as extrusion, rolling, drawing, swaging, etc. is applied as it is according to the shape of the obtained wire.

【0005】近年、このようにして得られたテープ状複
合体を金属パイプ、丸棒等の芯材の外周に所望枚数巻き
付け包被させたセラミックス超電導導体を電力ケーブル
等のような電力輸送用導体に適用することが検討されて
いる。具体的には図4(a)に示すような幅の狭いテー
プ状複合体Dを1層当たり多数本を使用して螺旋状に巻
き付け包被し、これを多層状に積層したものや、同図
(b)のように幅の広いテープ状複合体Dを1層当たり
1、2枚程度使用して螺旋状に巻き付け包被し、これを
多層状に積層したものがある。
In recent years, a ceramic superconducting conductor obtained by winding a desired number of the thus obtained tape-shaped composite material around a core material such as a metal pipe or a round bar is wrapped around the core material such as a power cable. It is considered to be applied to. Specifically, as shown in FIG. 4 (a), a tape-shaped composite D having a narrow width is spirally wrapped and wrapped using a large number of tapes per layer, and the tape-shaped composite D is laminated in a multilayer form. As shown in FIG. 3B, one or two tape-shaped composites D each having a wide width are spirally wound and wrapped by using about one or two layers, and the tape-shaped composite D is laminated in multiple layers.

【0006】図4(b)のセラミックス超電導導体は芯
材Aに巻き付け包被するテープ状複合体Dの幅が広く内
部のセラミックス超伝導体Cの断面積が増大するため、
Icの向上が図れること、また、構成が容易になること
等の利点がある。
In the ceramic superconducting conductor shown in FIG. 4 (b), since the tape-shaped composite body D wrapped around the core material A has a wide width, the cross-sectional area of the ceramic superconductor C inside increases.
There are advantages that the Ic can be improved and that the configuration is easy.

【0007】[0007]

【発明が解決しようとする課題】図4に示すセラミック
ス超電導導体を実際に電力輸送用のケーブルとして使用
する場合、製造、運搬、布設の作業性の面から、セラミ
ックス超電導導体をドラムに巻き取る必要がある。この
ためドラムへの巻き付け、巻き戻しによる曲げ、施工作
業時の曲げ等を考慮すると、セラミックス超電導導体を
数回繰り返して曲げても超電導特性が劣化しないことが
望ましい。
When the ceramics superconducting conductor shown in FIG. 4 is actually used as a cable for electric power transportation, it is necessary to wind the ceramics superconducting conductor around a drum in terms of workability in manufacturing, transportation and installation. There is. Therefore, it is desirable that the superconducting characteristics do not deteriorate even if the ceramic superconducting conductor is repeatedly bent several times in consideration of winding on a drum, bending by rewinding, bending during construction work, and the like.

【0008】しかし、図4(b)のセラミックス超電導
導体ではテープ状複合体Dの幅が広いため、Icは高い
が可撓性に乏く、曲げを付与した時に効果的に歪みを分
散させることができず、局部的に変形したり破断したり
してIcが低下するという問題があった。
However, in the ceramic superconducting conductor shown in FIG. 4 (b), since the tape-shaped composite D has a wide width, it has a high Ic but is poor in flexibility and can effectively disperse strain when bending is applied. However, there was a problem that Ic was lowered due to local deformation or breakage.

【0009】本発明の目的は構造が簡潔で、繰り返し曲
げられても超電導特性が劣化しにくい高Icのセラミッ
クス超電導導体を提供することにある。
An object of the present invention is to provide a ceramic superconducting conductor having a high Ic, which has a simple structure and is hardly deteriorated in superconducting characteristics even if it is repeatedly bent.

【0010】[0010]

【課題を解決するための手段】本発明は前記欠点を改善
するために種々実験検討した結果得られたもので、図1
(a)〜(d)に示すように、金属層1内にセラミック
ス超電導体層2を持ち、長手方向に所定の長さのスリッ
ト3を所望の本数設けたテープ状複合体4を、金属製パ
イプ、丸棒等の芯材5の外周に所望枚数包被させて配置
したことを特徴とするものである。
The present invention was obtained as a result of various experimental studies for improving the above-mentioned drawbacks.
As shown in (a) to (d), a tape-shaped composite body 4 having a ceramics superconductor layer 2 in a metal layer 1 and provided with a desired number of slits 3 of a predetermined length in the longitudinal direction is formed of a metal. It is characterized in that a desired number of cores 5 such as pipes and round bars are wrapped around the core 5 and arranged.

【0011】図1(a)は前記テープ状複合体4に同複
合体4とほぼ同じ長さのスリット3を所定の間隔で複数
本設け、このテープ状複合体4を1層ずつ螺旋状となる
ように巻き付け包被し、これを多層状に積層配置した
例、同図(b)は前記のような長いスリット3を複数本
設けたテープ状複合体4を2枚で1層となるように巻き
付け包被し、これを多層状に積層配置した例、同図
(c)は同図(a)のテープ状複合体4に短いスリット
3を所定の間隔で複数本設けたものを用いた例、同図
(d)は同図(b)のテープ状複合体4に短いスリット
3を所定の間隔で複数本設けたものを用いた例である。
In FIG. 1 (a), a plurality of slits 3 having substantially the same length as the tape-shaped composite 4 are provided at a predetermined interval in the tape-shaped composite 4, and the tape-shaped composite 4 is spirally formed one layer at a time. An example in which the tape-shaped composite body 4 is wrapped and wrapped in such a manner that it is laminated and arranged in multiple layers, and FIG. 2B shows that two tape-shaped composite bodies 4 provided with a plurality of the long slits 3 as described above become one layer. An example in which the tape-shaped composite body 4 is wrapped around and wrapped in a multi-layered manner, and the tape-shaped composite body 4 in FIG. 3A is provided with a plurality of short slits 3 at predetermined intervals is used. For example, FIG. 3D is an example in which the tape-shaped composite body 4 of FIG. 1B is provided with a plurality of short slits 3 at predetermined intervals.

【0012】前記芯材5は金属パイプの他、例えば金属
製の丸棒、或は金属パイプに波付け加工を施して可撓性
を持たせたものを用いてもよい。同芯材5の外周に螺旋
状に配置するテープ状複合体4の巻き付けピッチについ
ても制約はなく、最大曲げ歪み、セラミックス超電導導
体の外径等を考慮して選定できる。また、1層当たりの
枚数、積層する層数に特に制約は無く、電流容量に応じ
て種々選定できる。本発明のセラミックス超電導導体は
テープ状複合体4の幅が広く、1層当たりの巻き数が
1、2枚程度のものを用いるのに特に適するものであ
る。
In addition to the metal pipe, the core material 5 may be, for example, a metal round bar or a metal pipe which is corrugated to have flexibility. There is no restriction on the winding pitch of the tape-shaped composite body 4 which is spirally arranged on the outer periphery of the core material 5, and can be selected in consideration of the maximum bending strain, the outer diameter of the ceramic superconducting conductor, and the like. Further, the number of sheets per layer and the number of layers to be laminated are not particularly limited, and various selections can be made according to the current capacity. The ceramic superconducting conductor of the present invention is particularly suitable for use when the width of the tape-shaped composite 4 is wide and the number of windings per layer is about 1 or 2.

【0013】前記テープ状複合体4に形成するスリット
3の長さ、幅、本数、位置には特に制約は無く、同複合
体3のサイズ、使用条件等によって種々決定できる。し
かし、テープ状複合体4の長手方向どの位置において
も、その幅方向に少なくとも1本以上のスリット3があ
ることが望ましい。例えば図2(a)に示すように、テ
ープ状複合体4の長手方向に連続するスリット3を複数
本平行に設けたもの、同図(b)、(c)に示すように
所定の長さのスリット3を縦方向及び横方向に所定の間
隔でちどり配列にして複数本設けたもの等がある。な
お、スリット3の幅があまり広いと、多量のセラミック
ス超電導体層2が削り取られ、この損失によるIcの低
下も無視できなくなり、この結果、超電導特性が低下す
るので極力狭い方が望ましい。
The length, width, number, and position of the slits 3 formed in the tape-shaped composite body 4 are not particularly limited, and can be variously determined according to the size of the composite body 3 and the use conditions. However, it is desirable that there is at least one slit 3 in the width direction at any position in the longitudinal direction of the tape-shaped composite body 4. For example, as shown in FIG. 2 (a), a plurality of slits 3 continuous in the longitudinal direction of a tape-shaped composite body 4 are provided in parallel, and a predetermined length as shown in FIGS. 2 (b) and 2 (c). There are a plurality of slits 3 arranged in a staggered arrangement at predetermined intervals in the vertical and horizontal directions. If the width of the slit 3 is too wide, a large amount of the ceramic superconductor layer 2 is scraped off, and the decrease in Ic due to this loss cannot be ignored. As a result, the superconducting property is deteriorated, so that it is desirable to be as narrow as possible.

【0014】本発明のセラミックス超電導導体の製造方
法の一例を説明する。テープ状複合体4の製造には従来
の方法がそのまま適用できる。例えば金属製のパイプ状
ビレット内にセラミックス超電導体となしうる原料を充
填して複合ビレツトとし、これを断面減少加工して所定
の形状・寸法のテープ状複合体4を作製する。テープ状
複合体4の幅が比較的広い場合には断面形状が角型の複
合ビレットを用いるとよい。そして、この方法で得られ
たテープ状複合体4に所望の長さのスリット3を長手方
向に平行に形成する。この場合、例えば歯車状のカッタ
ーを用いたり、あるいは打ち抜き等によって行うことが
できる。
An example of the method for manufacturing the ceramic superconducting conductor of the present invention will be described. The conventional method can be directly applied to the production of the tape-shaped composite body 4. For example, a metal pipe-shaped billet is filled with a raw material capable of forming a ceramics superconductor to form a composite billet, which is subjected to cross-section reduction processing to produce a tape-shaped composite body 4 having a predetermined shape and size. When the width of the tape-shaped composite body 4 is relatively wide, it is preferable to use a composite billet having a rectangular cross section. Then, the slit 3 having a desired length is formed in the tape-shaped composite body 4 obtained by this method in parallel with the longitudinal direction. In this case, for example, a gear-shaped cutter may be used, or punching or the like may be performed.

【0015】このようにしてスリット3が形成されたテ
ープ状複合体4を図1(a)〜(d)のように芯材5の
外周に所望枚数巻き付け包被し、これを所望層数積層す
る。さらに必要に応じてその上に金属テープを押え巻き
しても差し支えない。しかる後、所定の条件で熱処理を
行ってセラミックス超電導導体とするものである(W&
R法)。或は前記テープ状複合体4を芯材5に巻き付け
る前に熱処理し、これを芯材5の外周に配置してセラミ
ックス超電導導体を作製することもできる(R&W
法)。更にこのセラミックス超電導導体を保護するた
め、それを例えばFe、SUS、Cu等の波付け管内に
挿入することも本発明の範囲内である。
As shown in FIGS. 1 (a) to 1 (d), the tape-shaped composite body 4 having the slits 3 thus formed is wrapped around the core material 5 by a desired number of layers and laminated by a desired number of layers. To do. Further, if necessary, a metal tape may be pressed and wound on it. Then, heat treatment is performed under predetermined conditions to obtain a ceramics superconducting conductor (W &
R method). Alternatively, the tape-shaped composite body 4 may be heat-treated before being wound around the core material 5 and placed on the outer periphery of the core material 5 to produce a ceramics superconducting conductor (R & W).
Law). Further, in order to protect the ceramic superconducting conductor, it is also within the scope of the present invention to insert it into a corrugated tube of Fe, SUS, Cu or the like.

【0016】[0016]

【作用】本発明のセラミックス超電導導体では、図1に
示すようにテープ状複合体4を芯材5に巻き付け包被さ
せた時に、セラミックス超電導導体の外周面に多数のス
リット3が形成されるため、各層に幅の狭いテープ状複
合体4を多数枚配置した場合のように可撓性が良くな
り、得られたセラミックス超電導導体に曲げ歪みが付与
されても超電導特性の低下が少ない。しかもスリット3
を形成する時に削り取られるセラミックス超電導体層2
の量的損失によるIcの低下は幅の狭いテープ状複合体
4を多数枚配置した時ほど大きくないので高Icであ
る。
In the ceramic superconducting conductor of the present invention, when the tape-shaped composite body 4 is wrapped around the core material 5 as shown in FIG. 1, a large number of slits 3 are formed on the outer peripheral surface of the ceramic superconducting conductor. As in the case where a large number of tape-shaped composite bodies 4 each having a narrow width are arranged in each layer, the flexibility is improved, and the superconducting characteristics are not significantly deteriorated even when bending distortion is applied to the obtained ceramic superconducting conductor. Moreover, slit 3
Ceramic superconductor layer 2 that is scraped off when forming
The decrease in Ic due to the quantitative loss of is not so large as when a large number of tape-shaped composite bodies 4 having a narrow width are arranged, and thus has a high Ic.

【0017】[0017]

【実施例1】本発明のセラミックス超電導導体の一実施
例を説明する。先ず、Bi23 、PbO、SrCO
3 、CaCO3 、CuO等の一次原料粉をモル比でB
i:Pb:Sr:Ca:Cu=1.6:0.4:2:
2:3となるように配合し、混合した後、大気中800
℃×100h仮焼成し、更に粉砕して仮焼粉を作製し
た。これをCIP成形した後、断面形状が角型のAg製
パイプ内に挿入して複合ビレットとし、断面減少加工及
び圧延加工を行なって幅約60mm(セラミックス超電
導体層2の幅56mm)、厚さ0.25mmのテープ状
複合体4を作製した。このテープ状複合体4の長手方向
に図3(a)に示すように連続するスリット3を5本形
成した。この時、テープ状複合体4の両端部の長さa=
10mm、隣接するスリット3間の間隔b=10mm、
各スリット3の幅c=0.1mmとする。
Example 1 An example of the ceramic superconducting conductor of the present invention will be described. First, Bi 2 O 3 , PbO, SrCO
Primary raw material powders such as 3 , CaCO 3 and CuO in a molar ratio of B
i: Pb: Sr: Ca: Cu = 1.6: 0.4: 2:
Mix in a ratio of 2: 3, mix, and then in air 800
It was calcined at 100 ° C. for 100 hours and further pulverized to prepare a calcined powder. After this was CIP molded, it was inserted into an Ag pipe with a square cross-section to form a composite billet, which was subjected to cross-section reduction processing and rolling processing to a width of about 60 mm (width 56 mm of the ceramic superconductor layer 2) and thickness. A 0.25 mm tape-shaped composite 4 was prepared. Five continuous slits 3 were formed in the tape-shaped composite body 4 in the longitudinal direction as shown in FIG. At this time, the length a of both ends of the tape-shaped composite 4 is
10 mm, the distance b between adjacent slits 3 = 10 mm,
The width c of each slit 3 is 0.1 mm.

【0018】一方、外径20mmφ、内径16mmφの
Ag製パイプ(芯材5)を作製し、これに波付け加工を
施した。この芯材5の外周に前記テープ状複合体4をピ
ッチ1mの螺旋状に巻き付け包被し、これを合計10層
積層構成した。これに大気中、840℃×100h熱処
理を行いセラミックス超電導導体を作成した。この超電
導導体を曲率半径1mとなるように曲げた状態で液体窒
素中、0磁場の環境下でIcを測定した結果、268
(A)の優れた特性が得られた。ちなみに、このセラミ
ックス超電導導体に曲げを付与しなかった場合のIcは
270(A)であり、本実施例では曲げ歪に対して優れ
た超電導特性を維持していることが分かった。
On the other hand, an Ag pipe (core material 5) having an outer diameter of 20 mmφ and an inner diameter of 16 mmφ was produced, and was corrugated. The tape-shaped composite body 4 was wrapped around the outer periphery of the core material 5 in a spiral shape with a pitch of 1 m, and a total of 10 layers were laminated. This was heat-treated in air at 840 ° C. for 100 hours to prepare a ceramics superconducting conductor. As a result of measuring Ic in liquid nitrogen under an environment of 0 magnetic field in a state where this superconducting conductor was bent to have a radius of curvature of 1 m, 268
The excellent characteristics of (A) were obtained. Incidentally, Ic was 270 (A) when no bending was applied to this ceramic superconducting conductor, and it was found that the present example maintains excellent superconducting characteristics against bending strain.

【0019】[0019]

【実施例2】実施例1の仮焼粉及びAg製パイプと同じ
それらを用いて複合ビレットを作製し、断面減少加工及
び圧延加工を行なって幅約30mm(超電導体の幅26
mm)、厚さ0.25mmのテープ状複合体4を作製し
た。このテープ状複合体4に図3(b)に示すように適
当長のスリット3を幅方向に5列にし且つ隣接する列の
スリット3を長手方向に多少ずらしてちどり配列に形成
した。この時、テープ状複合体4の両端部の長さa=1
0mm、スリット3の列間の間隔b=5mm、スリット
3の幅c=0.1mm、各スリット3の長さd=20m
m、同じ列のスリット3の間隔e=5mmとする。
Example 2 A composite billet was produced by using the same calcined powder and Ag pipe as those of Example 1, and was subjected to a cross-section reduction process and a rolling process to obtain a width of about 30 mm (width 26 of the superconductor).
mm), and a tape-shaped composite body 4 having a thickness of 0.25 mm was produced. As shown in FIG. 3B, slits 3 of appropriate length were formed in five rows in the width direction, and slits 3 in adjacent rows were slightly shifted in the longitudinal direction to form a taper array on the tape-shaped composite body 4. At this time, the length a of both ends of the tape-shaped composite 4 is 1
0 mm, spacing b between rows of slits 3 = 5 mm, width c of slits 3 = 0.1 mm, length d of each slit 3 = 20 m
m, the distance e between the slits 3 in the same row is 5 mm.

【0020】実施例1の芯材5の外周に前記テープ状複
合体4を1層当たり2枚使用してピッチ80cmの螺旋
状に巻き付け包被し、これを合計10層積層構成した。
これに大気中、840℃×100h熱処理を行なってセ
ラミックス超電導導体を作製した。この超電導導体を曲
率半径1mとなるように曲げた状態で液体窒素中、0磁
場の環境下でIcを測定した結果、285(A)の優れ
た特性が得られた。ちなみに、このセラミックス超電導
導体に曲げを付与しなかった場合のIcは288(A)
であり、本実施例でも曲げ歪に対して優れた超電導特性
を維持していることが分かった。
The tape-shaped composite 4 was wrapped around the outer periphery of the core material 5 of Example 1 in a spiral shape with a pitch of 80 cm using two sheets per layer, and a total of 10 layers were laminated.
This was heat-treated in the air at 840 ° C. for 100 hours to produce a ceramics superconducting conductor. As a result of measuring Ic in an environment of 0 magnetic field in liquid nitrogen with the superconducting conductor bent to have a radius of curvature of 1 m, excellent characteristics of 285 (A) were obtained. By the way, Ic is 288 (A) when this ceramic superconducting conductor is not bent.
Therefore, it was found that the present example also maintains excellent superconducting characteristics against bending strain.

【0021】[0021]

【比較例1】比較のためテープ状複合体4にスリット3
を設けないものを用いて実施例1と同様にしてセラミッ
クス超電導導体を得、これについて実施例1と同じ実験
を繰り返した結果、Icは215(A)となり、実施例
1の270(A)に比べ特性の劣化が著しい。
[Comparative Example 1] For comparison, a slit 3 is formed in the tape-shaped composite body 4.
A ceramic superconducting conductor was obtained in the same manner as in Example 1 by using the material without the element, and the same experiment as in Example 1 was repeated. As a result, Ic was 215 (A), which was 270 (A) in Example 1. In comparison, the characteristics are significantly deteriorated.

【0022】[0022]

【比較例2】比較のためテープ状複合体4にスリット3
を設けないものを用いて実施例2と同様にしてセラミッ
クス超電導導体を得、これについて実施例2と同じ実験
を繰り返した結果、Icは212(A)となり、この例
でも実施例2の285(A)に比べ特性の劣化が著し
い。
[Comparative Example 2] For comparison, a slit 3 is formed in the tape-shaped composite body 4.
A ceramic superconducting conductor was obtained in the same manner as in Example 2 by using a material not provided with, and the same experiment as in Example 2 was repeated. As a result, Ic was 212 (A). The deterioration of the characteristics is remarkable as compared with A).

【0023】[0023]

【発明の効果】本発明のセラミックス超電導導体はテー
プ状複合体4の長手方向にスリット3を設けたため可撓
性が良く、曲げ歪を与えても特性の劣化がほとんど無
く、しかも幅広のテープ状複合体4を使用することがで
きるので構成が簡潔で製造しやすく、また高Icであ
る。
The ceramic superconducting conductor of the present invention has good flexibility because the slits 3 are provided in the longitudinal direction of the tape-shaped composite body 4, the characteristics are hardly deteriorated even when bending strain is applied, and the tape shape is wide. Since the complex 4 can be used, the structure is simple and easy to manufacture, and the high Ic is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)(c)(d)は本発明のセラミッ
クス超電導導体の各種例を示す斜視図。
1A, 1B, 1C and 1D are perspective views showing various examples of a ceramics superconducting conductor of the present invention.

【図2】(a)(b)(c)は本発明のセラミックス超
電導導体に使用されるテープ状複合体の各種例を示す平
面図。
2 (a), (b) and (c) are plan views showing various examples of a tape-shaped composite used in the ceramics superconducting conductor of the present invention.

【図3】(a)は本発明のセラミックス超電導導体にお
けるテープ状複合体のスリットの一例を示す詳細な説明
図、(b)はテープ状複合体のスリットの他例を示す詳
細な説明図。
3A is a detailed explanatory view showing an example of a slit of the tape-shaped composite body in the ceramics superconducting conductor of the present invention, and FIG. 3B is a detailed explanatory view showing another example of the slit of the tape-shaped composite body.

【図4】(a)は従来のセラミックス超電導導体の一例
を示す斜視図、(b)は従来のセラミックス超電導導体
の他の例を示す斜視図。
FIG. 4A is a perspective view showing an example of a conventional ceramics superconducting conductor, and FIG. 4B is a perspective view showing another example of a conventional ceramics superconducting conductor.

【符号の説明】[Explanation of symbols]

1 金属層 2 セラミックス超電導体層 3 スリット 4 テープ状複合体 5 芯材 1 Metal Layer 2 Ceramics Superconductor Layer 3 Slit 4 Tape-shaped Composite 5 Core Material

フロントページの続き (72)発明者 原 築志 東京都調布市西つつじケ丘2丁目4番1号 東京電力株式会社技術研究所内 (72)発明者 石井 英雄 東京都調布市西つつじケ丘2丁目4番1号 東京電力株式会社技術研究所内Front page continuation (72) Inventor Tsukushi Hara 2-4-1 Nishitsujigaoka, Chofu-shi, Tokyo Inside TEPCO Ltd. Technical Research Institute (72) Hideo Ishii 2-4-1 Nishitsujigaoka, Chofu-shi, Tokyo TEPCO Technical Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属層1内にセラミックス超電導体層2
を持ち、長手方向に所定の長さのスリット3を所望の本
数設けたテープ状複合体4を、金属製パイプ、丸棒等の
芯材5の外周に所望枚数包被させて配置したことを特徴
とするセラミックス超電導導体。
1. A ceramic superconductor layer 2 in a metal layer 1.
And a tape-shaped composite body 4 having a desired number of slits 3 having a predetermined length in the longitudinal direction is arranged on the outer periphery of a core material 5 such as a metal pipe or a round bar so as to cover the outer periphery of the core material 5. Characteristic ceramic superconducting conductor.
JP3340172A 1991-11-29 1991-11-29 Ceramic superconductive conductor Pending JPH05151837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3340172A JPH05151837A (en) 1991-11-29 1991-11-29 Ceramic superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3340172A JPH05151837A (en) 1991-11-29 1991-11-29 Ceramic superconductive conductor

Publications (1)

Publication Number Publication Date
JPH05151837A true JPH05151837A (en) 1993-06-18

Family

ID=18334424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3340172A Pending JPH05151837A (en) 1991-11-29 1991-11-29 Ceramic superconductive conductor

Country Status (1)

Country Link
JP (1) JPH05151837A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215072B1 (en) * 1993-10-21 2001-04-10 Sumitomo Electric Industries, Ltd. Method of preparing an oxide superconducting conductor
WO2008013043A1 (en) * 2006-07-24 2008-01-31 The Furukawa Electric Co., Ltd. Superconducting wire, superconducting conductor and superconducting cable
JP2009176524A (en) * 2008-01-23 2009-08-06 Furukawa Electric Co Ltd:The Superconductive wire rod, superconductive conductor, and superconductive cable
JP2010192116A (en) * 2009-02-13 2010-09-02 Sumitomo Electric Ind Ltd Superconductive wire rod, and superconductive cable using the same
US8798696B2 (en) * 2008-06-05 2014-08-05 Nexans Superconducting wire with low AC losses

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215072B1 (en) * 1993-10-21 2001-04-10 Sumitomo Electric Industries, Ltd. Method of preparing an oxide superconducting conductor
WO2008013043A1 (en) * 2006-07-24 2008-01-31 The Furukawa Electric Co., Ltd. Superconducting wire, superconducting conductor and superconducting cable
JP2008053215A (en) * 2006-07-24 2008-03-06 Furukawa Electric Co Ltd:The Superconducting wire rod, superconductor, and superconductive cable
US8290555B2 (en) 2006-07-24 2012-10-16 The Furukawa Electric Co., Ltd. Superconducting wire, superconducting conductor, and superconducting cable
JP2009176524A (en) * 2008-01-23 2009-08-06 Furukawa Electric Co Ltd:The Superconductive wire rod, superconductive conductor, and superconductive cable
US8798696B2 (en) * 2008-06-05 2014-08-05 Nexans Superconducting wire with low AC losses
JP2010192116A (en) * 2009-02-13 2010-09-02 Sumitomo Electric Ind Ltd Superconductive wire rod, and superconductive cable using the same

Similar Documents

Publication Publication Date Title
US5932523A (en) Superconducting cable conductor
EP0472333B1 (en) Elongate superconductor elements comprising oxide superconductors and superconducting coils
JPH09259660A (en) Oxide superconducting wire, manufacture thereof, oxide superconductive stranded wire and conductor using the oxide superconducting wire
US7162287B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JPH05151837A (en) Ceramic superconductive conductor
JP3108486B2 (en) Ceramic superconducting conductor
JP3033624B2 (en) Ceramic superconducting conductor
JP3345834B2 (en) Ceramic superconducting conductor
JPH0773757A (en) Manufacture of oxide superconductor
JPH0644834A (en) Ceramics superconductive conductor
JPH05334921A (en) Ceramic superconductor
JPH05144332A (en) Ceramic superconductor
JPH06325634A (en) Multi-core oxide superconducting wire
JP2989932B2 (en) Manufacturing method of multilayer ceramic superconducting conductor
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JPH0644833A (en) Ceramics superconductive conductor
JP3042558B2 (en) Ceramic superconducting conductor
JPH0581941A (en) Ceramic superconductor
JPH0745136A (en) Oxide superconductor
JP3657397B2 (en) Oxide superconducting wire and method for producing the same
JPH0528847A (en) Ceramic superconductor
JPH05114320A (en) Manufacture of ceramics superconductive conductor
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JP3042548B2 (en) Manufacturing method of ceramic superconducting conductor
JPH0528850A (en) Ceramic superconductor