JP2951423B2 - Manufacturing method of ceramic superconducting conductor - Google Patents

Manufacturing method of ceramic superconducting conductor

Info

Publication number
JP2951423B2
JP2951423B2 JP3053351A JP5335191A JP2951423B2 JP 2951423 B2 JP2951423 B2 JP 2951423B2 JP 3053351 A JP3053351 A JP 3053351A JP 5335191 A JP5335191 A JP 5335191A JP 2951423 B2 JP2951423 B2 JP 2951423B2
Authority
JP
Japan
Prior art keywords
ceramic
superconductor
composite
tape
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3053351A
Other languages
Japanese (ja)
Other versions
JPH04269407A (en
Inventor
祐行 菊地
正直 三村
清 根本
直樹 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3053351A priority Critical patent/JP2951423B2/en
Publication of JPH04269407A publication Critical patent/JPH04269407A/en
Application granted granted Critical
Publication of JP2951423B2 publication Critical patent/JP2951423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Wire Processing (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はケ−ブル、マグネット、
電流リ−ドなどに使用可能なセラミックス超電導導体の
製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a cable, a magnet,
The present invention relates to a method for manufacturing a ceramic superconducting conductor that can be used for a current lead or the like.

【0002】[0002]

【従来の技術】近年、Y−Ba−Cu−O系、Bi−S
r−Ca−Cu−O系、Tl−Ba−Ca−Cu系など
のように、液体窒素温度を越えるTcのセラミックス超
電導体が知られている。このようなセラミックス超電導
導体は各種分野での利用、応用を目指して、種々の形状
に成型することが検討されている。その一つとして例え
ば線状体に成型する方法がある。その場合、従来は一般
に金属シ−ス法が用いられている。これは超電導体とな
るセラミックス原料を金属のパイプ内に充填し、それを
所望形状、寸法に縮径加工して仕上げた後、所定の熱処
理を行って前記セラミックス原料をセラミックス超電導
体とするものである。線状体の形状としては断面が丸
型、楕円形、多角形のもの、或はこれらを複数本束ねた
多芯形状のもの、更には金属の内部にセラミックス超電
導体を同芯円筒状や渦巻状に設けた多層形状のもの等が
試作検討されている。前記縮径加工の方法としては、得
られる線状体の形状に応じて押し出し、圧延、スウェ−
ジング、引き抜き等の従来の塑性加工法がそのまま適用
されている。前記金属としては熱伝導性、電気伝導性に
優れた材料、例えばAg、Ag合金、Cu、Cu合金な
どが使用できるが、酸素透過性の点でAg、Ag合金を
用いる例が多い。
2. Description of the Related Art In recent years, Y-Ba-Cu-O, Bi-S
Ceramic superconductors of Tc exceeding liquid nitrogen temperature, such as r-Ca-Cu-O and Tl-Ba-Ca-Cu, are known. It has been studied to mold such ceramic superconducting conductors into various shapes for the purpose of application and application in various fields. For example, there is a method of molding into a linear body. In that case, conventionally, a metal sheathing method is generally used. This is a method in which a ceramic material to be a superconductor is filled in a metal pipe, which is reduced in diameter and processed to a desired shape and dimensions, and then subjected to a predetermined heat treatment to make the ceramic material a ceramic superconductor. is there. The linear body may have a round, elliptical, or polygonal cross section, or a multi-core shape formed by bundling a plurality of these, or a ceramic superconductor in a metal having a concentric cylindrical or spiral shape. Prototyping of a multi-layered one provided in a shape is being studied. As the method of the diameter reduction processing, extrusion, rolling, and swaging are performed according to the shape of the obtained linear body.
Conventional plastic working methods such as jing and drawing are applied as they are. As the metal, a material having excellent heat conductivity and electric conductivity, for example, Ag, Ag alloy, Cu, Cu alloy, etc. can be used. In many cases, Ag and Ag alloy are used in terms of oxygen permeability.

【0003】近年、このようなテ−プ多芯状セラミック
ス超電導体を図5に示したようなケ−ブルに使用するこ
とが検討されている。図5に示すケ−ブルは金属製の棒
或はパイプAの周囲に、前記テ−プ多芯状セラミックス
超電導体Bを複数本配置したものである。この場合、高
いJcを持つテ−プ多芯状セラミックス超電導体Bが望
まれるが、高いJcを持つセラミックスの超電導体を得
るためにはセラミックス超電導体の結晶配向が必要であ
り、その達成には超電導体の厚さを極力薄くする必要が
ある。従来、圧延加工したテ−プ状導体で比較的高い超
電導特性が得られているが、Jc値が104 (A/cm
2 )程度が限界であった。その超電導特性の改善のため
本件出願人は図8に示したようなセラミックス超電導導
体の製造方法を先に出願(特願昭64−1099)し
た。しかし、図8に示したセラミックス超電導導体の製
造方法は、超電導体となるセラミックス原料と金属との
棒状複合体Dを、その肉厚方向(図の上下方向)から図
8a〜cのように加圧型E、Fにより加圧し、以下、図
8dのように棒状複合体Dの長手方向に順次連続的に加
圧するようにした方法である。
In recent years, it has been studied to use such a tape multi-core ceramic superconductor for a cable as shown in FIG. The cable shown in FIG. 5 has a plurality of tape multi-core ceramic superconductors B arranged around a metal rod or pipe A. In this case, a tape multi-core ceramic superconductor B having a high Jc is desired. However, in order to obtain a ceramic superconductor having a high Jc, the crystal orientation of the ceramic superconductor is required. It is necessary to make the thickness of the superconductor as thin as possible. Conventionally, a relatively high superconducting property has been obtained with a rolled tape-shaped conductor, but the Jc value is 10 4 (A / cm).
2 ) The extent was the limit. In order to improve the superconducting characteristics, the present applicant has previously filed a method for manufacturing a ceramic superconducting conductor as shown in FIG. 8 (Japanese Patent Application No. 64-1099). However, in the method of manufacturing a ceramic superconductor shown in FIG. 8, a rod-shaped composite D of a ceramic raw material and a metal to be a superconductor is applied from its thickness direction (vertical direction in the figure) as shown in FIGS. This is a method in which the pressure is applied by the pressing dies E and F, and the pressure is sequentially and continuously applied in the longitudinal direction of the rod-shaped composite D as shown in FIG.

【0004】[0004]

【発明が解決するための課題】しかし、図8に示したセ
ラミックス超電導導体の製造方法は、棒状複合体Dをそ
の肉厚方向に加圧型E、Fにより加圧するが、そのと
き、棒状複合体Dの幅方向両側面は開放されているた
め、加圧された棒状複合体Dが図7に示すように局部的
に幅方向に拡がってしまい、得られたテ−プ状超電導導
体Gの形状が図7に示すようにテ−プ幅が一定になりに
くいという課題があった。このテ−プ幅が不均一なテ−
プ状超電導導体Gを、例えば図5に示したようなケ−ブ
ルHのテ−プ多芯状セラミックス超電導体Bとして使用
したり、図6に示したように渦巻き状に巻いてマグネッ
トIに利用すると、整列巻きが困難になって形状が悪化
するとか、テ−プ状超電導導体G同士が重なってその応
力により超電導特性が低下するという課題があった。
However, in the method of manufacturing a ceramic superconducting conductor shown in FIG. 8, the rod-shaped composite D is pressed in the direction of its thickness by pressing dies E and F. Since both side surfaces in the width direction of D are open, the pressurized rod-shaped composite D locally spreads in the width direction as shown in FIG. 7, and the shape of the obtained tape-shaped superconductor G is obtained. However, there is a problem that the tape width is difficult to be constant as shown in FIG. Tapes with uneven tape width
For example, the tape-shaped superconductor G may be used as a tape multi-core ceramic superconductor B of a cable H as shown in FIG. 5 or may be spirally wound as shown in FIG. If it is used, there is a problem that the winding becomes difficult and the shape is deteriorated, or the tape-shaped superconducting conductors G are overlapped with each other and the superconductivity is deteriorated by the stress.

【0005】[0005]

【発明の目的】本発明の目的は、図5に示したようなケ
−ブルや図6に示したようなマグネットに使用可能な形
状で、しかも超電導特性に優れたセラミックス超電導導
体の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a ceramic superconducting conductor having a shape which can be used for a cable as shown in FIG. 5 or a magnet as shown in FIG. To provide.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を改善
するために種々実験を重ねた結果開発されたものであ
る。本発明のセラミックス超電導導体の製造方法は、図
1に示すように超電導体となるセラミックス原料1と金
属2との複合体3の任意長を、その幅方向側方を拘束し
ながら厚さ方向に加圧し、この加圧を同複合体3の長さ
方向に順次連続的に行なった後、同複合体3を熱処理し
て前記セラミックス原料1を超電導体となすことを特徴
とするものである。
The present invention has been developed as a result of repeated experiments in order to solve the above-mentioned problems. As shown in FIG. 1, the method for manufacturing a ceramic superconducting conductor of the present invention is to adjust the arbitrary length of a composite 3 of a ceramic raw material 1 and a metal 2 to become a superconductor in a thickness direction while restraining a lateral side of the composite. It is characterized by applying pressure, sequentially and continuously applying the pressure in the longitudinal direction of the composite 3, and then heat-treating the composite 3 to turn the ceramic raw material 1 into a superconductor.

【0007】本発明のセラミックス超電導導体の製造方
法では、はじめに超電導体となるセラミックス原料1を
用意する。その原料1を得る方法は従来の手段がそのま
ま適用できる。例えば超電導体を構成する元素を含む酸
化物・炭酸塩などのような一次原料粉を所望組成となる
ように配合して混合した後、仮焼成し、更に粉砕して得
ることができる。或は前記したような原料粉を加熱・溶
融した後、急冷し、これを粉砕して得ることもできる。
このようにして得られた仮焼粉(超電導体となるセラミ
ックス原料)1を金属製のパイプ内に充填して複合ビレ
ット(複合体)3とする。この場合、前記仮焼粉をその
まま充填したり、或は圧粉成型、CIP成型等により所
望形状に成型してから挿入したり、これを焼結した後に
挿入して複合体3とすることも可能である。この場合、
前記原料1を多芯状となるように、或は多層状となるよ
うに構成することもできる。複合体3のサイズは適宜決
定できる。例えば複合体3のサイズが大きい場合は、そ
れを塑性加工して所定のサイズに仕上げてから、所望の
サイズとなるように加圧治具5を用いて成型を行なう。
次に、前記のようにして作製した複合体3を塑性加工す
る。例えば、図1に示したように例えばプレス型の加圧
治具5を用いて圧縮成型する。この場合、複合体3の任
意長について成型した後、複合体3の長さ方向に順次連
続的に加圧成型する。この圧縮成型の速度は適宜選定で
きる。
In the method for manufacturing a ceramic superconductor according to the present invention, first, a ceramic raw material 1 to be a superconductor is prepared. As a method for obtaining the raw material 1, conventional means can be applied as it is. For example, it can be obtained by blending and mixing primary raw material powders such as oxides and carbonates containing the elements constituting the superconductor so as to have a desired composition, calcining, and further pulverizing. Alternatively, it can be obtained by heating and melting the above-mentioned raw material powder, quenching it, and pulverizing it.
The calcined powder (ceramic raw material to be a superconductor) 1 thus obtained is filled into a metal pipe to form a composite billet (composite) 3. In this case, the calcined powder may be filled as it is, or may be molded into a desired shape by powder compaction, CIP molding or the like and then inserted. It is possible. in this case,
The raw material 1 may be configured to have a multi-core shape or a multilayer shape. The size of the complex 3 can be determined as appropriate. For example, when the size of the composite 3 is large, the composite 3 is subjected to plastic working, finished to a predetermined size, and then molded using the pressing jig 5 so as to have a desired size.
Next, the composite body 3 produced as described above is subjected to plastic working. For example, as shown in FIG. 1, compression molding is performed using, for example, a pressing jig 5 of a press type. In this case, after molding the composite 3 for an arbitrary length, the composite 3 is sequentially and continuously pressure-molded in the length direction. The speed of the compression molding can be appropriately selected.

【0008】加圧治具5はその一部を凹陥させて加圧部
6を形成してある。この加圧部6の幅aは得られるテ−
プ状線材の幅とほぼ同一にする。加圧治具5の加圧部6
の深さbは得られるテ−プ状線材の厚さに応じて決定す
る。この加圧治具5により加圧すると、複合体3の幅方
向両側方が加圧部6の幅方向両側面7、8により拘束さ
れるので、複合体3がその肉厚方向に加圧されても複合
体3の幅方向には突出しない。図示した実施例は得られ
るセラミックス超電導体の形状がテ−プ状線状体の場合
の例であるが、本発明のセラミックス超電導導体の製造
方法で得られるセラミックス超電導導体の形状はこれに
限られるものではなく、例えば図2に示したような縦長
楕円形、図3に示したような横長楕円形、図4に示した
ような多角形などであってもよい。本発明では前記のよ
うにして得られたテ−プ状線状体を熱処理して、複合体
3におけるセラミックス原料1を超電導導体とする。以
上の説明は圧縮加工と熱処理を1回だけ行なう場合であ
るが、本発明では図1に示したような圧縮加工と熱処理
とを2回以上繰り返し行って所望形状、寸法のテ−プ状
線状体とした後、更に熱処理を行なうと一層超電導特性
が向上する。
The pressurizing jig 5 has a pressurizing portion 6 formed by recessing a part thereof. The width a of the pressurizing section 6 is determined by the obtained table.
The width is almost the same as the width of the wire. Pressing part 6 of pressing jig 5
Is determined according to the thickness of the obtained tape-shaped wire. When pressure is applied by the pressing jig 5, both sides in the width direction of the composite 3 are restrained by both side surfaces 7 and 8 of the pressing portion 6 in the width direction, so that the composite 3 is pressed in its thickness direction. However, it does not protrude in the width direction of the composite 3. The illustrated embodiment is an example in which the shape of the obtained ceramic superconductor is a tape-shaped linear body, but the shape of the ceramic superconductor obtained by the method for manufacturing a ceramic superconductor of the present invention is not limited to this. Instead, for example, it may be a vertically long ellipse as shown in FIG. 2, a horizontally long ellipse as shown in FIG. 3, or a polygon as shown in FIG. In the present invention, the tape-shaped linear body obtained as described above is heat-treated, and the ceramic raw material 1 in the composite 3 is used as a superconducting conductor. In the above description, the compression processing and the heat treatment are performed only once. However, in the present invention, the compression processing and the heat treatment as shown in FIG. When the heat treatment is further performed after the formation, the superconducting properties are further improved.

【0009】[0009]

【作用】本発明の製造方法で得られたテ−プ状のセラミ
ックス超電導導体は幅が均一になるため、図5に示した
ように金属製の丸棒やパイプ等(金属製芯材)Aに巻き
付ければ、整列巻きが可能になると共にセラミックス超
電導導体同士が重なることもなく、優れた形状及び超電
導導特性を持ったつケ−ブルやマグネットができる。ま
た、図6のように渦巻き状に巻く場合に、セラミックス
超電導体に加わる曲げ歪が小さくなるので超電導特性が
低下しない。
The tape-shaped ceramic superconductor obtained by the manufacturing method of the present invention has a uniform width. Therefore, as shown in FIG. 5, a metal round bar, a pipe or the like (metal core) is used. In this case, it is possible to form a cable or a magnet having an excellent shape and superconducting characteristics without causing the ceramic superconducting conductors to overlap with each other and without overlapping the ceramic superconducting conductors. Further, in the case of spirally winding as shown in FIG. 6, since the bending strain applied to the ceramic superconductor becomes small, the superconducting characteristics do not deteriorate.

【0010】[0010]

【実施例1】Bi23 、SrCO3 、CaCO3 、C
uOなどの一次原料粉をモル比で2212となるように
配合・混合したのち、酸素気流中で820℃X20h仮
焼成し、さらに粉砕して平均粒径約5μの仮焼粉(セラ
ミックス超電導体となる原料)を作製した。これをCI
P成型して外径15mmφ程度の丸棒とし、あらかじめ
機械加工してある外径25mmφ、内径15mmφのA
gパイプ内に挿入して複合ビレットとした。この複合ビ
レットを外径3mmφまでスウエ−ジング加工し、更に
圧延加工して厚さ1.5mm、幅4mmのテ−プ状の線
材に仕上げた。このテ−プ状の線材を図1に示したよう
な加圧治具でその長手方向に順次連続的にプレス加工
し、厚さ0.2mm、幅約7mmのテ−プ状線材に仕上
げた。得られたテ−プ状の線材を酸素気流中、850℃
X50h熱処理してセラミックス超電導導体とした。こ
のセラミックス超電導導体について液体窒素中、O磁場
におけるJcを測定した結果、14500(A/cm
2 )の優れた特性が得られた。得られたテ−プ状のセラ
ミックス超電導導体を図5に示したように外径5mmφ
の金属製芯材Aに25タ−ン巻つけてコイルを構成し
た。このコイルの液体ヘリウム温度における発生磁場を
測定したところ、1980(G)の優れた特性が得られ
た。
Embodiment 1 Bi 2 O 3 , SrCO 3 , CaCO 3 , C
After mixing and mixing the primary raw material powders such as uO in a molar ratio of 2212, the mixture is calcined at 820 ° C. for 20 hours in an oxygen stream, and further pulverized to obtain a calcined powder having an average particle size of about 5 μm (with ceramic superconductor). Raw material). This is CI
P molded into a round bar with an outer diameter of about 15 mmφ, and A which has been machined in advance and has an outer diameter of 25 mmφ and an inner diameter of 15 mmφ
g Inserted into a pipe to form a composite billet. This composite billet was swaged to an outer diameter of 3 mmφ, and further rolled to finish into a tape-shaped wire rod having a thickness of 1.5 mm and a width of 4 mm. This tape-shaped wire was pressed continuously in the longitudinal direction by a pressing jig as shown in FIG. 1 to finish a tape-shaped wire having a thickness of 0.2 mm and a width of about 7 mm. . The obtained tape-shaped wire is placed in an oxygen stream at 850 ° C.
X50h heat treatment was performed to obtain a ceramic superconducting conductor. As a result of measuring the Jc of this ceramic superconductor in an O magnetic field in liquid nitrogen, it was found that the Jc was 14500 (A / cm).
2 ) Excellent characteristics were obtained. The obtained tape-shaped ceramic superconducting conductor was coated with an outer diameter of 5 mmφ as shown in FIG.
A coil was formed by winding 25 turns around the metal core material A. When the generated magnetic field of the coil at the liquid helium temperature was measured, excellent characteristics of 1980 (G) were obtained.

【0011】[0011]

【実施例2】Bi23 、PbO、SrCO3 、CaC
3 、CuOの一次原料粉をモル比で1.6:0.4:
2:2:3となるように配合し、混合した後、酸素気流
中で800℃X20h仮焼成し、さらに粉砕して平均粒
径約5μの仮焼粒を作製した。これをCIP成型して外
径15mmφ程度の丸棒とし、あらかじめ機械加工して
ある外径25mmφ、内径15mmφのAgパイプ内に
挿入して複合ビレットとした。これを外径3mmφまで
スウエ−ジング加工し、さらに圧延加工して厚さ1.5
mm、幅約4mmのテ−プ状の線材に仕上げた。このテ
−プ状の線材を図1に示した加圧治具で長手方向に所望
長づつ順次連続的にプレス加工し、厚さ0.5mm、幅
約5mmのテ−プ状に仕上げた。得られたテ−プ状の線
材を酸素気流中、840℃X50h熱処理してセラミッ
クス超電導導体とした。このセラミックス超電導導体を
後からの説明の便宜上、サンプルAとする。これを再
度、図1に示した加圧治具で長手方向に所望長づつ順次
連続的にプレス加工し、厚さ0.3mm、幅約5.5m
mのテ−プ状の線材に仕上げた。得られたテ−プ状の線
材を酸素気流中、840℃X50h熱処理してセラミッ
クス超電導導体とした。このセラミックス超電導導体を
後からの説明の便宜上、サンプルBとする。更に図1に
示した加圧治具で前回と同様に加圧し、厚さ0.2m
m、幅約6mmのテ−プ状の線材に仕上げた。得られた
テ−プ状の線材を酸素気流中、840℃X50h熱処理
してセラミックス超電導導体とした。このセラミックス
超電導導体を後からの説明の便宜上、サンプルCとす
る。これを更に図1に示した示した加圧治具で前回と同
様に加圧し、厚さ0.1mm、幅約6.5mmのテ−プ
状の線材に仕上げた。得られたのテ−プ状の線材を酸素
気流中、840℃X50h熱処理してセラミックス超電
導導体とした。このセラミックス超電導導体を後からの
説明の便宜上、サンプルDとする。このようにして得ら
れたサンプルA〜Dのテ−プ状線材について液体窒素
中、O磁場におけるJcを測定した。その結果は次表に
示す通りである。 上記表より明らかなように、前記プレス加工と熱処理
とを繰り返し行なうことにより、特性がより一層向上す
ることが認められた。
Embodiment 2 Bi 2 O 3 , PbO, SrCO 3 , CaC
o 3 , CuO primary raw material powder in molar ratio of 1.6: 0.4:
After mixing and mixing at a ratio of 2: 2: 3, the mixture was calcined at 800 ° C. for 20 hours in an oxygen stream, and further pulverized to produce calcined particles having an average particle size of about 5 μm. This was subjected to CIP molding to form a round bar having an outer diameter of about 15 mmφ, and was inserted into a previously machined Ag pipe having an outer diameter of 25 mmφ and an inner diameter of 15 mmφ to obtain a composite billet. This was swaged to an outer diameter of 3 mmφ, and further rolled to a thickness of 1.5 mm.
It was finished into a tape-shaped wire rod having a width of about 4 mm. The tape-shaped wire rod was continuously and continuously pressed in a desired length in the longitudinal direction by the pressing jig shown in FIG. 1 to finish a tape having a thickness of 0.5 mm and a width of about 5 mm. The obtained tape-shaped wire was heat-treated at 840 ° C. for 50 hours in an oxygen stream to obtain a ceramic superconductor. This ceramic superconducting conductor is referred to as a sample A for the convenience of the description below. This is again pressed continuously in the longitudinal direction by a desired length in the pressing jig shown in FIG. 1 to obtain a thickness of 0.3 mm and a width of about 5.5 m.
m in the shape of a tape. The obtained tape-shaped wire was heat-treated at 840 ° C. for 50 hours in an oxygen stream to obtain a ceramic superconductor. This ceramic superconducting conductor is referred to as a sample B for the convenience of the description below. Further, pressure is applied in the same manner as the previous time using the pressing jig shown in FIG.
m and a tape-shaped wire rod having a width of about 6 mm. The obtained tape-shaped wire was heat-treated at 840 ° C. for 50 hours in an oxygen stream to obtain a ceramic superconductor. This ceramic superconducting conductor is referred to as a sample C for the convenience of the description below. This was further pressed by the pressing jig shown in FIG. 1 in the same manner as the previous time to finish a tape-shaped wire rod having a thickness of 0.1 mm and a width of about 6.5 mm. The obtained tape-shaped wire was heat-treated at 840 ° C. for 50 hours in an oxygen stream to obtain a ceramic superconductor. This ceramic superconducting conductor is referred to as a sample D for the convenience of the description below. Jc of the tape-shaped wires of Samples A to D thus obtained in liquid nitrogen was measured in an O magnetic field. The results are as shown in the following table. As is clear from the above table, it was confirmed that the characteristics were further improved by repeatedly performing the press working and the heat treatment.

【0012】[0012]

【実施例3】実施例2で得られたサンプルCを用いて図
5に示したような外径35mmφのケ−ブルを試作し
た。このケ−ブルの液体窒素温度における超電導特性を
測定した結果、Ic=120(A)、Jc=12400
(A/cm2 )の優れた特性が得られた。
EXAMPLE 3 Using the sample C obtained in Example 2, a cable having an outer diameter of 35 mm as shown in FIG. As a result of measuring the superconducting characteristics of this cable at the temperature of liquid nitrogen, Ic = 120 (A) and Jc = 12400.
Excellent characteristics (A / cm 2 ) were obtained.

【0013】[0013]

【比較例1】実施例1で得られた圧延加工後の厚さ1.
5mm、幅約4mmのテ−プ状の線材を図1に示した方
法で加圧し、厚さ0.2mm、幅約7mmに仕上げた。
得られたテ−プ状の線材を酸素気流中、850℃X50
h熱処理してセラミックス超電導導体とした。このセラ
ミックス超電導導体について液体窒素中、O磁場におけ
るJcを測定した結果、14000(A/cm2 )であ
ったが、幅が図2に示したように6.5〜7.3mmと
波を打った形状であった。
Comparative Example 1 Thickness after rolling obtained in Example 1
A 5 mm tape-shaped wire having a width of about 4 mm was pressed by the method shown in FIG. 1 to finish it to a thickness of 0.2 mm and a width of about 7 mm.
The obtained tape-shaped wire is placed in an oxygen stream at 850 ° C. × 50.
h heat treatment to obtain a ceramic superconducting conductor. As a result of measuring the Jc of this ceramic superconducting conductor in liquid nitrogen in an O magnetic field, it was 14000 (A / cm 2 ), but the width was 6.5 to 7.3 mm as shown in FIG. Shape.

【0014】[0014]

【比較例2】実施例2の圧延加工にて得られた厚さ1.
5mm、幅約4mmのテ−プ状の線材を図1に示した方
法で加圧し、厚さ0.2mm、幅約7mmに仕上げた。
得られた線材を酸素気流中、850℃X50h熱処理し
てセラミックス超電導導体とした。このセラミックス超
電導導体について液体窒素中、O磁場におけるJcを測
定した結果、12000(A/cm2 )であったが、幅
が図2に示したように6.4〜7.4mmと波を打った
形状であった。また、これを用いて図5に示したような
ケ−ブルを試作し、その特性を評価したところIc=8
5(A)、Jc=8500(A/cm2 )であり、本発
明の製造方法によるものと比較して劣るものであった。
これはテ−プ状のセラミックス超電導導体同士が若干重
なった結果である。
Comparative Example 2 Thickness obtained by rolling in Example 2.
A 5 mm tape-shaped wire having a width of about 4 mm was pressed by the method shown in FIG. 1 to finish it to a thickness of 0.2 mm and a width of about 7 mm.
The obtained wire was heat-treated at 850 ° C. for 50 hours in an oxygen stream to obtain a ceramic superconductor. As a result of measuring the Jc of the ceramic superconducting conductor in liquid nitrogen in an O magnetic field, it was 12000 (A / cm 2 ), but the width was 6.4 to 7.4 mm as shown in FIG. Shape. Further, a cable as shown in FIG. 5 was prototyped by using this, and its characteristics were evaluated.
5 (A) and Jc = 8500 (A / cm 2 ), which were inferior to those according to the production method of the present invention.
This is the result of the tape-shaped ceramic superconductors slightly overlapping each other.

【0015】[0015]

【発明の効果】本発明の製造方法によれば形状、超電導
特性に優れ、ケ−ブル、マグネット等に適用できるセラ
ミックス超電導導体が得られる。
According to the manufacturing method of the present invention, a ceramic superconducting conductor having excellent shape and superconducting properties and applicable to cables, magnets and the like can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミックス超電導体の製造方法の説
明図。
FIG. 1 is an explanatory view of a method for manufacturing a ceramic superconductor of the present invention.

【図2】本発明の製造方法に使用される加圧治具の第2
例を示す正面図。
FIG. 2 shows a second example of a pressing jig used in the manufacturing method of the present invention.
The front view which shows an example.

【図3】本発明の製造方法に使用される加圧治具の第3
の例を示す正面図。
FIG. 3 shows a third example of a pressing jig used in the manufacturing method of the present invention.
FIG.

【図4】本発明の製造方法に使用される加圧治具の第4
の例を示す正面図。
FIG. 4 shows a fourth example of a pressing jig used in the manufacturing method of the present invention.
FIG.

【図5】本発明の製造方法で製造されたセラミックス超
電導導体を用いたケ−ブルの斜視図。
FIG. 5 is a perspective view of a cable using a ceramic superconducting conductor manufactured by the manufacturing method of the present invention.

【図6】本発明の製造方法で製造されたセラミックス超
電導導体を用いた渦巻き状マグネットの斜視図。
FIG. 6 is a perspective view of a spiral magnet using a ceramic superconducting conductor manufactured by the manufacturing method of the present invention.

【図7】図8に示す従来の製造方法で製造されたテ−プ
状のセラミックス超電導導体の平面図。
FIG. 7 is a plan view of a tape-shaped ceramic superconducting conductor manufactured by the conventional manufacturing method shown in FIG.

【図8】a,b,c、dは従来のセラミックス超電導導
体製造方法の説明図である。
8 (a), 8 (b), 8 (c) and 8 (d) are explanatory views of a conventional method for manufacturing a ceramic superconductor.

【符号の説明】[Explanation of symbols]

1 セラミックス原料 2 金属 3 複合体 Reference Signs List 1 ceramic raw material 2 metal 3 composite

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇野 直樹 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (56)参考文献 特開 平2−183918(JP,A) 特開 平2−199721(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01B 13/00 H01B 12/04 H01B 12/10 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Naoki Uno 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd. (56) References JP-A-2-183918 (JP, A) JP-A-Hei 2-199721 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01B 13/00 H01B 12/04 H01B 12/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超電導体となるセラミックス原料1と金
属2との複合体3を所望形状まで縮径加工した後、同複
合体3を熱処理して前記セラミックス原料1をセラミッ
クス超電導体となすセラミックス超電導導体の製造方法
において、前記複合体3の任意長を所望の幅となるよう
に拘束しながら厚さ方向に加圧加工し、この加工を同複
合体3の長さ方向に順次行なった後、同複合体3を熱処
理して前記セラミックス原料1を超電導体とすることを
特徴とするセラミックス超電導導体の製造方法。
1. A ceramic superconductor which forms a ceramic superconductor by forming a ceramic superconductor into a ceramic superconductor after subjecting a composite 3 of a ceramic raw material 1 and a metal 2 to be a superconductor to a desired shape and then reducing the diameter of the composite 3 to a desired shape. In the method for producing a conductor, the composite 3 is pressed in the thickness direction while restraining an arbitrary length of the composite 3 to have a desired width, and after the processing is sequentially performed in the length direction of the composite 3, A method for producing a ceramic superconducting conductor, comprising heat-treating the composite 3 to make the ceramic raw material 1 a superconductor.
JP3053351A 1991-02-25 1991-02-25 Manufacturing method of ceramic superconducting conductor Expired - Fee Related JP2951423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053351A JP2951423B2 (en) 1991-02-25 1991-02-25 Manufacturing method of ceramic superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053351A JP2951423B2 (en) 1991-02-25 1991-02-25 Manufacturing method of ceramic superconducting conductor

Publications (2)

Publication Number Publication Date
JPH04269407A JPH04269407A (en) 1992-09-25
JP2951423B2 true JP2951423B2 (en) 1999-09-20

Family

ID=12940363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053351A Expired - Fee Related JP2951423B2 (en) 1991-02-25 1991-02-25 Manufacturing method of ceramic superconducting conductor

Country Status (1)

Country Link
JP (1) JP2951423B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660928B2 (en) * 2001-01-15 2011-03-30 住友電気工業株式会社 Manufacturing method of oxide superconducting wire

Also Published As

Publication number Publication date
JPH04269407A (en) 1992-09-25

Similar Documents

Publication Publication Date Title
JP2951423B2 (en) Manufacturing method of ceramic superconducting conductor
JPH06325634A (en) Multi-core oxide superconducting wire
JP2583538B2 (en) Method for producing oxide-based superconducting wire
JPH09223418A (en) Oxide superconductive wire rod and manufacture thereof
JP2989932B2 (en) Manufacturing method of multilayer ceramic superconducting conductor
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JP2775946B2 (en) Manufacturing method of oxide superconducting wire
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH0773757A (en) Manufacture of oxide superconductor
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JPH05334921A (en) Ceramic superconductor
JP3042558B2 (en) Ceramic superconducting conductor
JP3033624B2 (en) Ceramic superconducting conductor
JP2547209B2 (en) Superconducting wire manufacturing method
JPH05144332A (en) Ceramic superconductor
JP3033606B2 (en) Manufacturing method of oxide superconducting wire
JP3052309B2 (en) Method for producing multi-core oxide superconducting wire
JPH04277410A (en) Tape-like multi-core ceramic superconductor and cable using it
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JP2834525B2 (en) Method for manufacturing superconductor microcircuit
JPH04329218A (en) Superconductive wire material
JPH06325633A (en) Multi-core oxide superconducting wire
JPH0541117A (en) Manufacture of ceramic superconductor
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JP2599138B2 (en) Method for producing oxide-based superconducting wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees