JP3154239B2 - Manufacturing method of ceramic superconducting conductor - Google Patents

Manufacturing method of ceramic superconducting conductor

Info

Publication number
JP3154239B2
JP3154239B2 JP23558190A JP23558190A JP3154239B2 JP 3154239 B2 JP3154239 B2 JP 3154239B2 JP 23558190 A JP23558190 A JP 23558190A JP 23558190 A JP23558190 A JP 23558190A JP 3154239 B2 JP3154239 B2 JP 3154239B2
Authority
JP
Japan
Prior art keywords
superconducting conductor
ceramic
width direction
metal pipe
ceramic superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23558190A
Other languages
Japanese (ja)
Other versions
JPH04118816A (en
Inventor
祐行 菊地
直樹 宇野
築志 原
雅彦 中出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP23558190A priority Critical patent/JP3154239B2/en
Publication of JPH04118816A publication Critical patent/JPH04118816A/en
Application granted granted Critical
Publication of JP3154239B2 publication Critical patent/JP3154239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明はケーブル、マグネット、電流リード等の導体
に適用可能なテープ状のセラミックス超電導導体、特
に、圧延加工によって得られるテープ状のセラミックス
超電導導体の製造方法に関するものである。
The present invention relates to a tape-shaped ceramic superconducting conductor applicable to conductors such as cables, magnets and current leads, and more particularly to a method for producing a tape-shaped ceramic superconducting conductor obtained by rolling.

【従来の技術】 超電導体としては、YBaCuO系、BiSrCaCuO系、TlBaCaC
uO系等のように、液体窒素温度を越える臨界温度Tcのセ
ラミックス超電導体が知られている。 このようなセラミックス超電導体を線状体に成形する
方法としては、一般に金属シース法が用いられている。
これはセラミックス超電導体となる元素を含む原料セラ
ミックス粉末を金属パイプの内部空間に充填してビレッ
トを得、それを縮径加工して所望形状、寸法の複合線状
体とし、その後、所定の熱処理を行なってセラミックス
超電導導体とするものである。 この場合、前記ビレットの形状は断面が略円形、或は
四角形のものが一般的であり、前記縮径加工は押し出
し、スエージング、圧延、引き抜き等の組成加工の中か
ら、線状体の形状に応じて選定されている。 前記原料セラミックス粉末は例えば超電導体を構成す
る元素を含む酸化物、炭酸塩などの一次原料粉を所定の
組成となるように配合、混合し、これを仮焼成してその
まま用いたり、或はその仮焼粉をCIP成形した後、また
はそれを焼結してから用いている。更に、このような原
料粉末を加熱溶融した後、その融液を予め機械加工され
ている金属パイプ内に鋳込んでビレットを構成すること
も行なわれている。 線状体としては各種のものがあり、断面形状が丸型、
楕円形、四角形、テープ状、帯状のもの、これらを複数
本束ね金属シースを施した多芯状のもの、或は金属の内
部にセラミックス超電導体を長さ方向に連続して複数配
列したもの等が施作検討されている。この場合、前記金
属パイプの材質としては電気伝導性、熱伝導性に優れた
材料、例えばAg、Cu或はその合金が用いられており、中
でも酸素透過性の点でAg、Ag合金を用いる例が多い。 このようなッセラミックス超電導導体は、近年比較的
長尺な線状体が得られるようになってきた。
[Prior art] Superconductors include YBaCuO, BiSrCaCuO, TlBaCaC
Ceramic superconductors having a critical temperature Tc exceeding the temperature of liquid nitrogen, such as a uO type, are known. As a method of forming such a ceramic superconductor into a linear body, a metal sheath method is generally used.
In this method, a raw ceramic powder containing an element to be a ceramic superconductor is filled into an inner space of a metal pipe to obtain a billet, which is reduced in diameter to obtain a composite linear body having a desired shape and dimensions. To obtain a ceramic superconducting conductor. In this case, the shape of the billet is generally one having a substantially circular or square cross section, and the diameter reducing process is performed by extruding, swaging, rolling, drawing, etc. It is selected according to. The raw material ceramic powder is, for example, an oxide containing an element constituting a superconductor, a primary raw material powder such as carbonate is blended and mixed so as to have a predetermined composition, and this is calcined and used as it is, or The calcined powder is used after CIP molding or after sintering it. Further, after such a raw material powder is heated and melted, a billet is also formed by casting the melt into a metal pipe which has been machined in advance. There are various types of linear bodies, the cross-sectional shape is round,
Oval, square, tape-shaped, strip-shaped, multi-core with multiple bundled metal sheaths, or multiple ceramic superconductors continuously arranged in the length direction inside metal Is being studied. In this case, as the material of the metal pipe, a material having excellent electric conductivity and heat conductivity, for example, Ag, Cu or an alloy thereof is used, and in particular, an example using Ag or Ag alloy in terms of oxygen permeability is used. There are many. Such a ceramics superconducting conductor has recently been able to obtain a relatively long linear body.

【発明が解決しようとする課題】[Problems to be solved by the invention]

セラミックス超電導体となる元素を含む原料セラミッ
クス粉末を金属パイプ内に充填する前記方法では、圧延
時に、金属パイプの内部空間の幅方向両端部の原料は外
側に延び易いが、幅方向中央部の原料は幅方向両側の原
料よりも外側に延びにくいので、得られる帯状或はテー
プ状のセラミックス超電導導体の断面形状は、第3図に
示すように幅方向中央部Aが厚く、幅方向両端部Bにな
る程薄くなり易い。このような形状のセラミックス超電
導導体の場合、電流密度が幅方向で異なり、肉の厚い幅
方向中央部Aほど小さく、肉の薄い幅方向両端部B程大
きくなる。従って幅方向両端部からクエンチすることに
なり、その結果、通常の場合よりも臨海電流Jcが小さく
なる。
In the above method of filling a raw material ceramic powder containing an element to be a ceramic superconductor into a metal pipe, during rolling, the raw material at both ends in the width direction of the internal space of the metal pipe easily extends outward, but the raw material at the central part in the width direction is Is less likely to extend outward than the raw material on both sides in the width direction. Therefore, the cross-sectional shape of the strip-shaped or tape-shaped ceramic superconducting conductor obtained is thicker at the center portion A in the width direction as shown in FIG. It becomes easy to become thin as it becomes. In the case of the ceramic superconducting conductor having such a shape, the current density differs in the width direction, and the current density becomes smaller at the thicker width direction central portion A and becomes larger at the thinner width direction end portions B. Therefore, quenching occurs from both ends in the width direction, and as a result, the critical current Jc becomes smaller than in the normal case.

【発明の目的】[Object of the invention]

本発明の目的は肉厚が幅方向全般にほぼ一定なテープ
状のセラミックス超電導導体が得られるようにした、セ
ラミックス超電導導体の製造方法を提供することにあ
る。
An object of the present invention is to provide a method of manufacturing a ceramic superconductor in which a tape-shaped ceramic superconductor having a substantially constant thickness throughout the width direction can be obtained.

【課題を解決するための手段】[Means for Solving the Problems]

本発明のセラミックス超電導導体の製造方法は、超電
導体となる元素を含む原料セラミックス粉末を金属パイ
プの内部空間内に充填し、この金属パイプを縮径加工し
た後に熱処理するようにしたセラミックス超電導導体の
製造方法において、前記金属パイプ1として第1図、第
2図のように前記内部空間2が幅方向両端部2aよりも幅
方向中央部2bになる程狭いものを用いるようにしたもの
である。第1図に示す金属パイプ1は外側形状が角形で
あり、第2図に示す金属パイプ1は外側形状が円形であ
る。いずれの金属パイプ1も内部空間2の形状が幅方向
両端部2aより幅方向中央部2bに向けて次第に小さくなっ
ている。 そして本発明ではこの金属パイプ1に超電導体となる
元素を含む原料セラミックス粉末を充填する。該原料セ
ラミックス粉末としては、例えば、超電導体を構成する
元素を含む酸化物、炭酸塩などの一次原料粉を所定の組
成となるように配合、混合し、これを仮焼成してそのま
ま用いたり、或はその仮焼粉をCIP成形した後、または
それを焼結して使用する。 このようにして得られた原料セラミックス粉末を前記
金属パイプ1の内部空間2に充填したり、前記原料粉末
を加熱溶融した後、その融液を前記金属パイプ1の内部
空間2に鋳込んだりして複合ビレットを構成する。 このようにして得られた複合ビレットを圧延加工して
所定形状、寸法に仕上げる。得られた複合線状体に所定
の熱処理を施してセラミックス超電導導体とする。 本発明の製造方法で得られた単芯状の線状体を複数本
束ねるか或は積層しその外側に金属シースを施して多芯
化し、必要に応じて縮径加工して所望の寸法、形状に仕
上げ、これを熱処理することによって多芯線を得ること
もできる。
The method for producing a ceramic superconducting conductor according to the present invention is directed to a method for filling a ceramic superconducting conductor in which a raw material ceramic powder containing an element to be a superconductor is filled in an inner space of a metal pipe, and the metal pipe is subjected to a heat treatment after being reduced in diameter. In the manufacturing method, as shown in FIGS. 1 and 2, the metal pipe 1 is such that the internal space 2 is narrower so as to be closer to the center 2b in the width direction than to both ends 2a in the width direction. The outer shape of the metal pipe 1 shown in FIG. 1 is square, and the outer shape of the metal pipe 1 shown in FIG. 2 is circular. In any of the metal pipes 1, the shape of the internal space 2 is gradually reduced from the both ends 2a in the width direction toward the center 2b in the width direction. In the present invention, the metal pipe 1 is filled with a raw ceramic powder containing an element to be a superconductor. As the raw material ceramic powder, for example, an oxide containing an element constituting a superconductor, a primary raw material powder such as a carbonate is blended and mixed so as to have a predetermined composition, and this is calcined and used as it is, Alternatively, the calcined powder is used after CIP molding or after sintering. The raw material ceramic powder thus obtained is filled in the internal space 2 of the metal pipe 1 or the raw material powder is heated and melted, and then the melt is cast into the internal space 2 of the metal pipe 1. To form a composite billet. The composite billet thus obtained is rolled and finished to a predetermined shape and dimensions. A predetermined heat treatment is applied to the obtained composite linear body to obtain a ceramic superconductor. Bundling or laminating a plurality of single-core linear bodies obtained by the production method of the present invention, applying a metal sheath to the outside thereof to form a multi-core, reducing the diameter if necessary, to obtain desired dimensions, A multifilamentary wire can also be obtained by finishing the shape and heat-treating it.

【作用】[Action]

本発明のセラミックス超電導導体の製造方法では、超
電導導体となる超電導体を構成する元素を含むセラミッ
クス粉末を充填する金属パイプ1として、内部空間2の
形状が幅方向両端部2aより幅方向中央部2bが次第に小さ
なっているものを用いるので、その内部空間2に原料セ
ラミックス粉末を充填してから圧延すると、原料の充填
量が多い幅方向両端部2bの原料の延びが大きく、原料の
充填量が少ない幅方向中央部2aの延びが少ないので、こ
の金属パイプ1を用いて得られるテープ状或は帯状のセ
ラミックス超電導導体は、幅方向全長にほぼ均一厚とな
る。
In the method for manufacturing a ceramic superconducting conductor according to the present invention, as a metal pipe 1 filled with a ceramic powder containing an element constituting the superconducting conductor serving as a superconducting conductor, the shape of the internal space 2 has a widthwise center portion 2b rather than both widthwise end portions 2a. When raw material ceramic powder is filled into its internal space 2 and then rolled, the raw material at the both end portions 2b in the width direction where the raw material is charged is large, and the raw material is charged. Since the central portion 2a in the width direction is little extended, the tape-shaped or band-shaped ceramic superconducting conductor obtained by using the metal pipe 1 has a substantially uniform thickness over the entire length in the width direction.

【実施例1】 Bi2O3、SrCo3、CaCO3、CuOの一次原料粉を、モル比で
2:2:1:2となるように配合、混合した後、800℃×20Hr大
気中で仮焼成した。 一方、第1図に示したように、外形寸法が10×20mm、
内部空間2の幅方向中央部2bの寸法t1が4mm、幅方向両
端部2aの寸法がt2が7mm、内部空間2の幅Lが16mmのAg
製角型パイプ1を作製した。 この角型パイプ1の内部空間23に前記仮焼粉を充填し
て複合ビレットとした。 このビレットを圧延加工して厚さ0.15mmの複合線状体
に仕上げた。 続いて850℃×50Hr大気中で熱処理してセラミックス
超電導導体とした。 得られたテープ状のセラミックス超電導導体につい
て、液体窒素中、0磁場における臨界電流Jcを測定し
た。この場合、電圧端子間距離は10mm一定とした。この
結果、臨海電流Jcは109000(A/cm2)の優れた特性が得
られた。また得られたテープ状のセラミックス超電導導
体の断面形状は幅方向に均一厚であった。
Example 1 Primary raw material powders of Bi 2 O 3 , SrCo 3 , CaCO 3 and CuO were mixed in a molar ratio.
After blending and mixing in a ratio of 2: 2: 1: 2, the mixture was calcined at 800 ° C. × 20 Hr atmosphere. On the other hand, as shown in FIG.
Dimension t 1 is 4mm width direction central portion 2b of the inner space 2, Ag dimension t 2 is 7 mm, the width L of the inner space 2 of 16mm in the width direction end portions 2a
A square pipe 1 was produced. The calcined powder was filled in the internal space 23 of the square pipe 1 to form a composite billet. This billet was rolled and finished into a composite linear body having a thickness of 0.15 mm. Subsequently, heat treatment was performed at 850 ° C. × 50 Hr atmosphere to obtain a ceramic superconductor. The critical current Jc of the obtained tape-shaped ceramic superconducting conductor in liquid nitrogen at zero magnetic field was measured. In this case, the distance between the voltage terminals was fixed at 10 mm. As a result, excellent characteristics with a critical current Jc of 109,000 (A / cm 2 ) were obtained. The cross-sectional shape of the obtained tape-shaped ceramic superconducting conductor was uniform in the width direction.

【比較例1】 実施例1との比較のため、外形寸法が10×20mm、内部
空間の寸法が7mm×16mmのAg製角型パイプを用いて、テ
ープ状のセラミックス超電導導体を得た。 そのセラミックス超電導導体について実施例1と同一
実験を行なった。その結果、臨海電流Jcは49200(A/c
m2)に留まり、セラミックス超電導導体の断面形状は幅
方向中央部が厚く、両端ほど薄くなり、不均一であっ
た。
Comparative Example 1 For comparison with Example 1, a tape-shaped ceramic superconducting conductor was obtained using an Ag square pipe having an outer dimension of 10 × 20 mm and an inner space dimension of 7 mm × 16 mm. The same experiment as in Example 1 was performed on the ceramic superconducting conductor. As a result, the coastal current Jc is 49200 (A / c
m 2 ), and the cross-sectional shape of the ceramic superconducting conductor was thick at the center in the width direction, thinner at both ends, and was non-uniform.

【実施例2】 第2図に示したように、外径Lが12mmφ、内部空間2
の幅方向中央部2bの寸法t3が6mm、内部空間2の幅方向
両端部2aの寸法t4が8mmのAgパイプ1を用意し、その内
部空間2に実施例1で得られた仮焼粉を充填して複合ビ
レットを作製した。この複合ビレットを圧延加工して厚
さ0.1mmtのテープ状に仕上げた。続いて、同一条件で熱
処理してセラミックス超電導導体とした。 得られたテープ状のセラミックス超電導導体につい
て、液体窒素中、0磁場における臨海電流Jcを測定し
た。この場合も電圧端子間距離は10mm一定とした。この
結果、臨海電流Jcは98900(A/cm2)の優れた特性が得ら
れた。また同セラミックス超電導導体の断面形状も実施
例1と同様に、幅方向に均一厚であった。
Embodiment 2 As shown in FIG. 2, the outer diameter L is 12 mmφ, the inner space 2
Dimension t 3 is 6mm in width direction central portion 2b, the dimension t 4 is prepared Ag pipe 1 of 8mm in the widthwise end portions 2a of the inner space 2, calcined obtained in Example 1 in the inner space 2 The powder was filled to produce a composite billet. This composite billet was rolled and finished into a tape shape having a thickness of 0.1 mmt. Subsequently, heat treatment was performed under the same conditions to obtain a ceramic superconductor. The critical current Jc of the obtained tape-shaped ceramic superconducting conductor in liquid nitrogen at zero magnetic field was measured. Also in this case, the distance between the voltage terminals was fixed at 10 mm. As a result, excellent characteristics with a critical current Jc of 98900 (A / cm 2 ) were obtained. The cross-sectional shape of the ceramic superconducting conductor was also uniform in the width direction as in Example 1.

【発明の効果】【The invention's effect】

本発明のセラミックス超電導導体の製造方法によれ
ば、幅方向全長の厚さがほぼ均一であり、幅方向に超電
導特性の変動が少ないセラミックス超電導導体が得られ
る。
According to the method for producing a ceramic superconducting conductor of the present invention, a ceramic superconducting conductor having a substantially uniform overall thickness in the width direction and a small variation in superconducting characteristics in the width direction can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図は本発明のセラミックス超電導導体の製
造方法に使用される金属パイプの説明図、第3図は従来
のセラミックス超電導導体の製造方法の説明図である。 1は金属パイプ 2は内部空間
1 and 2 are explanatory views of a metal pipe used in the method for producing a ceramic superconducting conductor of the present invention, and FIG. 3 is an explanatory view of a conventional method for producing a ceramic superconducting conductor. 1 is a metal pipe 2 is an internal space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 築志 東京都調布市西つつじケ丘2丁目4番1 号 東京電力株式会社技術研究所内 (72)発明者 中出 雅彦 東京都調布市西つつじケ丘2丁目4番1 号 東京電力株式会社技術研究所内 (58)調査した分野(Int.Cl.7,DB名) H01B 13/00 565 H01B 12/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsushi Hara 2-4-1 Nishi-Atsujigaoka, Chofu-shi, Tokyo Tokyo Electric Power Company R & D Laboratory (72) Inventor Masahiko Nakade 2-4-2, Nishi-Atsujigaoka, Chofu-shi, Tokyo No. 1 Tokyo Electric Power Company R & D Center (58) Fields investigated (Int. Cl. 7 , DB name) H01B 13/00 565 H01B 12/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導体となる元素を含む原料セラミック
ス粉末を金属パイプの内部空間内に充填し、この金属パ
イプを縮径加工した後に熱処理するようにしたセラミッ
クス超電導導体の製造方法において、前記金属パイプ1
としてその内部空間2が幅方向両端部2aよりも幅方向中
央部2bになる程狭いものを用いるようにしたことを特徴
とするセラミックス超電導導体の製造方法。
1. A method for manufacturing a ceramic superconducting conductor, wherein a raw ceramic powder containing an element to be a superconductor is filled in an inner space of a metal pipe, and the metal pipe is reduced in diameter and then heat-treated. Pipe 1
A method for manufacturing a ceramic superconducting conductor, characterized in that the inner space 2 is narrower so as to be closer to the center 2b in the width direction than both ends 2a in the width direction.
JP23558190A 1990-09-07 1990-09-07 Manufacturing method of ceramic superconducting conductor Expired - Fee Related JP3154239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23558190A JP3154239B2 (en) 1990-09-07 1990-09-07 Manufacturing method of ceramic superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23558190A JP3154239B2 (en) 1990-09-07 1990-09-07 Manufacturing method of ceramic superconducting conductor

Publications (2)

Publication Number Publication Date
JPH04118816A JPH04118816A (en) 1992-04-20
JP3154239B2 true JP3154239B2 (en) 2001-04-09

Family

ID=16988117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23558190A Expired - Fee Related JP3154239B2 (en) 1990-09-07 1990-09-07 Manufacturing method of ceramic superconducting conductor

Country Status (1)

Country Link
JP (1) JP3154239B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145220A1 (en) * 2008-05-27 2009-12-03 学校法人中部大学 Superconducting tape wire material and method of manufacturing the same

Also Published As

Publication number Publication date
JPH04118816A (en) 1992-04-20

Similar Documents

Publication Publication Date Title
JP2685751B2 (en) Compound superconducting wire and method for producing compound superconducting wire
US7162287B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JP2571574B2 (en) Oxide superconductor and method of manufacturing the same
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH05211013A (en) Oxide superconductor and manufacture thereof
JPH05334921A (en) Ceramic superconductor
JP2951423B2 (en) Manufacturing method of ceramic superconducting conductor
JP2547209B2 (en) Superconducting wire manufacturing method
JP3042558B2 (en) Ceramic superconducting conductor
JP3078765B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JPH04277410A (en) Tape-like multi-core ceramic superconductor and cable using it
JPH0554731A (en) Multicore ceramics superconducting wire rod and manufacture thereof
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JP2834525B2 (en) Method for manufacturing superconductor microcircuit
JPS63225410A (en) Compound superconductive wire and its manufacture
JP3052309B2 (en) Method for producing multi-core oxide superconducting wire
JP2735534B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JPH05114320A (en) Manufacture of ceramics superconductive conductor
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JPH05151836A (en) Ceramic superconductive conductor
JPH04118815A (en) Manufacture of ceramic superconductor
JPH04259203A (en) Manufacture of ceramic superconductor coil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees