JP2571574B2 - Oxide superconductor and method of manufacturing the same - Google Patents

Oxide superconductor and method of manufacturing the same

Info

Publication number
JP2571574B2
JP2571574B2 JP62107744A JP10774487A JP2571574B2 JP 2571574 B2 JP2571574 B2 JP 2571574B2 JP 62107744 A JP62107744 A JP 62107744A JP 10774487 A JP10774487 A JP 10774487A JP 2571574 B2 JP2571574 B2 JP 2571574B2
Authority
JP
Japan
Prior art keywords
superconducting
silver
powder
oxide
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62107744A
Other languages
Japanese (ja)
Other versions
JPS63274016A (en
Inventor
雅宏 清藤
修二 酒井
進一 西山
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP62107744A priority Critical patent/JP2571574B2/en
Publication of JPS63274016A publication Critical patent/JPS63274016A/en
Application granted granted Critical
Publication of JP2571574B2 publication Critical patent/JP2571574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超電導導体、特に高温酸化物超電導導体に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a superconductor, particularly to a high-temperature oxide superconductor.

[従来技術とその問題点] La−Ba−Cu−O系、La−Sr−Cu−O系、Y−Ba−Cu−
O系等の層状ペロブスカイト型、或は、ペロブスカイト
型酸化物セラミックスにおいて、臨界温度Tcが40〜125K
といった高温超電導体が発見されているが、その導体化
は、未だ十分になされておらず、当然臨界電流密度Jcも
低いレベルの状態にある。
[Prior art and its problems] La-Ba-Cu-O system, La-Sr-Cu-O system, Y-Ba-Cu-
In a layered perovskite-type oxide ceramic such as an O-based or perovskite-type oxide ceramic, the critical temperature Tc is 40 to 125K.
Such high-temperature superconductors have been discovered, but their conversion into conductors has not yet been sufficiently performed, and the critical current density Jc is naturally at a low level.

線材化した例としては、第1に金材研での事例があ
り、Cu−Ni管中にLa−Sr−Cu−O系粉末を入れ、伸線
し、線材化するもので、臨界温度35K、臨界電流は4.2
K、10T中で1000A/cm2が出ている。ただし、これは線材
化後外周のCu−Niシースを除去し、その後熱処理をして
から特性測定したもので、クラッド線材としての特性で
はない。
As an example of a wire rod, there is a case of the first institute of metallurgy, in which La-Sr-Cu-O-based powder is put into a Cu-Ni tube, drawn, and made into a wire rod. , The critical current is 4.2
1000A / cm 2 is emitted in K and 10T. However, this is a property measured after removing the Cu-Ni sheath on the outer periphery after forming the wire and then performing a heat treatment, and is not a property as a clad wire.

第2の線材化例としては、東北大金属材料研の例があ
り、La−Sr−Cu−O系の酸素を除いた金属成分のみを、
溶湯急冷法によりアモルファス合金テープとし、その後
酸素雰囲気中で加熱処理し、高温超電導セラミックス・
テープとするもので、40Kの臨界温度を示したとの報告
があるが、臨界電流値は明記されていない。
As an example of the second wire rod, there is an example of Tohoku University Research Institute of Metals, where only the metal component excluding La-Sr-Cu-O-based oxygen is used.
Amorphous alloy tape was formed by quenching the molten metal, and then heat-treated in an oxygen atmosphere.
It was reported that the tape was used, and showed a critical temperature of 40K, but the critical current value was not specified.

臨界温度の高いY−Ba−Cu−O系においても、導体化
され、臨界温度が87K、臨界電流値が6A/cm2(at77.3K)
との報告もあるが、その導体構造は明らかにされていな
い。
Even in the Y-Ba-Cu-O system with a high critical temperature, it is converted into a conductor and has a critical temperature of 87K and a critical current value of 6A / cm 2 (at 77.3K).
However, the conductor structure has not been clarified.

なお、Y−Ba−Cu−O系を線材化せず、粉末焼結した
例としては、ATTの事例があり、液体窒素の沸点温度(7
7.3K)にて、1100A/cm2の高臨界電流密度を示したとの
報告がある。
As an example in which the Y—Ba—Cu—O system is not made into a wire material but powder-sintered, there is an ATT case, and the boiling point temperature of liquid nitrogen (7
At 7.3K), a high critical current density of 1100 A / cm 2 was reported.

先に示した参加物系超電導材の場合、金属管中にかか
る粉体を封入し、引抜き、スエージャー等により減面加
工を行えば、容易に線材化は可能であるが、そのままで
は超電導状態で電流を流すことは殆ど出来ず、高臨界温
度、高臨界電流密度は臨めない。
In the case of the participant-based superconducting material shown above, if the powder is sealed in a metal tube and subjected to surface reduction processing by drawing, swaging, etc., it is possible to easily turn it into a wire, but as it is in the superconducting state Current can hardly be passed, and high critical temperature and high critical current density cannot be achieved.

塑性加工による線材化状態で、特性が出ない理由は、
超電導微粉末の変形による特性の劣化と加工工程の圧粉
効果による単なる物理的接触のみでは異方性の強い超電
導微粉末の超電導接続は不可能であるためと考える。酸
化物系超電導材の場合、近接化によるトンネル効果を期
待するには、10〜20Åのオーダーまで近ずける必要があ
ると言われており、圧粉のみでは特性がでない理由と考
える。
The reason why the properties do not appear in the wire rod state by plastic working is
It is considered that the superconducting connection of the superconducting fine powder with strong anisotropy is impossible only by physical contact due to the deterioration of the characteristics due to the deformation of the superconducting fine powder and the compacting effect of the processing step. It is said that in the case of an oxide-based superconducting material, it is necessary to approach the order of 10 to 20 ° in order to expect a tunnel effect due to proximity, which is considered to be the reason that the properties are not obtained only with the powder compact.

それを解決するには、線材化後、焼結熱処理をするこ
とが条件となるが、参加物系超電導材の場合、酸素雰囲
気、少なくとも大気中で高温熱処理する必要があり、Cu
−Ni或はCuの金属管中に入れたのでは、超電導粉末に酸
素が入っていない。更には、超電導粉と金属シースが拡
散反応し、組成が変化する等でやはり超電導特性は出な
い。
In order to solve this, it is necessary to perform a sintering heat treatment after forming the wire, but in the case of the participant-based superconducting material, it is necessary to perform a high-temperature heat treatment in an oxygen atmosphere, at least in the atmosphere, and Cu
-The superconducting powder contained no oxygen when placed in a Ni or Cu metal tube. Furthermore, the superconducting powder and the metal sheath undergo a diffusion reaction, and the composition changes, etc., so that the superconducting properties are not exhibited.

[発明の目的] 本発明の目的は、前記した従来技術の欠点を解消し、
臨界温度、臨界電流密度の高い、新規な酸化物超電導材
を提供することにある。
[Object of the Invention] The object of the present invention is to eliminate the above-mentioned disadvantages of the prior art,
An object of the present invention is to provide a novel oxide superconducting material having a high critical temperature and a high critical current density.

[発明の要点] 本発明の要旨は、酸化物超電導材のシース材質とし
て、銀または銀合金材を用いたことにあり、これによ
り、焼結熱処理時にコアの酸化物超電導部に酸素が十分
供給され、シースを被覆したままでも焼結熱処理後の特
性が劣化しないようにした点にある。
[Summary of the Invention] The gist of the present invention resides in that silver or a silver alloy material is used as a sheath material of the oxide superconducting material, whereby oxygen is sufficiently supplied to the oxide superconducting portion of the core during sintering heat treatment. Thus, even after the sheath is covered, the characteristics after the sintering heat treatment are prevented from deteriorating.

銀自体の導電性、熱伝導性は良好であり、これによ
り、銀または銀合金安定化の酸化物超電導線材が提供で
き、臨界温度、臨界電流密度を大幅に向上することがで
きた。
Silver itself has good electrical conductivity and thermal conductivity, whereby an oxide superconducting wire stabilized with silver or a silver alloy can be provided, and the critical temperature and critical current density can be greatly improved.

銀または銀合金の融点は、960℃以下であり、これに
より焼結温度も920〜930℃以下に限定されることにな
る。
The melting point of silver or a silver alloy is 960 ° C. or less, which limits the sintering temperature to 920 to 930 ° C. or less.

Y−Ba−Cu−O系を例にとると、超電導粉の製造法に
は、粉末混合法、共沈混練法等があり、粉末の製法、粒
度により、その最適焼結温度は異なる。粉末混合法の場
合、その最適温度は950〜1000℃であるのに対し、共沈
混練法の場合、最適温度はそれより約50〜60℃低下で
き、900〜950℃となる。銀シース材の融点との関係か
ら、共沈混練法の方が適した粉末製造法である。
Taking the Y-Ba-Cu-O system as an example, methods for producing superconducting powder include a powder mixing method and a coprecipitation kneading method, and the optimum sintering temperature differs depending on the powder production method and particle size. In the case of the powder mixing method, the optimum temperature is 950 to 1000 ° C, whereas in the case of the coprecipitation kneading method, the optimum temperature can be lowered by about 50 to 60 ° C, and becomes 900 to 950 ° C. From the relation with the melting point of the silver sheath material, the coprecipitation kneading method is a more suitable powder production method.

ここでの酸化物超電導材とは、Y−Ba−Cu−O,Er−Ba
−Cu−O,Yb−Ba−Cu−O,La−Ba−Cu−O,La−Sr−Cu−O
等の層状ペロブスカイト型、或はペロブスカイト型セラ
ミックスを含む酸化物超電導材を意味する。
The oxide superconducting material here is Y-Ba-Cu-O, Er-Ba
-Cu-O, Yb-Ba-Cu-O, La-Ba-Cu-O, La-Sr-Cu-O
Etc. means a layered perovskite type or an oxide superconducting material containing a perovskite type ceramic.

[実施例] 本発明を実施した製造工程例を第1図に示す。[Example] Fig. 1 shows an example of a manufacturing process for implementing the present invention.

使用した高温超電導性酸化物微粉末は(Y0.33B
a0.673Cu3O7−δで、共沈混練法と粉末混合法の2種
で、共沈混練法は、900〜950℃で焼成し、粉末混合法は
950〜1000℃で焼成したものを、粉砕し、微粉化したも
のである。
The high-temperature superconducting oxide fine powder used was (Y 0.33 B
a 0.67 ) 3 Cu 3 O 7 -δ, coprecipitation kneading method and powder mixing method. Coprecipitation kneading method is firing at 900-950 ° C.
What was calcined at 950 to 1000 ° C. was pulverized and pulverized.

超電導微粉末は、圧粉成形し、銀シース管に組込
み、、シース管と共に、減面塑性加工を施して、さらに
引抜き、圧延により線状またはテープ状の断面形状とし
た後、850〜950℃の温度範囲でO2雰囲気または大気中で
焼結熱処理を行った。その後、必要に応じ、500〜800℃
にて、アニーリング熱処理をして、特性の向上化をし、
所要の超電導線材を完成させた。第2図には、その断面
形状を示す。
The superconducting fine powder is compacted, assembled into a silver sheath tube, subjected to surface-reduction plastic working together with the sheath tube, and further drawn and rolled to form a linear or tape-shaped cross section, and then 850 to 950 ° C. The sintering heat treatment was performed in the O 2 atmosphere or the air in the above temperature range. Then, if necessary, 500 ~ 800 ℃
In, annealing heat treatment to improve the characteristics,
The required superconducting wires were completed. FIG. 2 shows the cross-sectional shape.

ここで、銀または銀合金管をシース材とすることのメ
リットを述べておく。シース材に要求される条件は、第
1に延性があること、コアの超電導粉を、保護し、減面
加工するにはシース管材の延性が重要であり、その点銀
または銀合金材は適している。第2に酸素雰囲気中の焼
結熱処理時に、超電導材及びシース材の特性を劣化させ
ず、良好な超電導特性を発揮させること。この第2の条
件に関しては三つの要因があり、その1はシース材質と
超電導粉末が拡散反応し、組成を変化させる特性劣化
で、この点線は貴金属でありその心配は少ない。さら
に、La−Ba−Cu−O系の場合、Ag元素の添加は、臨界温
度を向上させる効果があることが知られており、Y−Ba
−Cu−O系の場合にも悪くはならないと期待できる。そ
の2の要因は、酸素雰囲気中でシース材が酸化し、使用
できなくなる点、この点銀は貴金属で問題はない。第3
の要因は、シース材の存在により焼結熱処理時、アニー
ル熱処理時、超電導材への酸素の出入りを遮断してしま
い、酸化物超電導体の超電導メカニズム上重要な役割り
をしている酸素欠損が適性でなくなり、特性を劣化させ
る問題であるが、この点銀または銀合金材は他の金属と
比較し、酸素の拡散が容易であり、酸素欠損上の問題は
生じない。表1には、焼結温度付近の値として、900℃
における金属中への酸素の拡散係数の値を示すが、銀は
他の金属と比較し、桁違いに拡散係数が大きい。銅材も
比較的大きいが、銅材は超電導材中の銅成分比率を変え
てしまう酸素中の加熱でボロボロになってしまい銅材は
使用できない。
Here, the merits of using a silver or silver alloy tube as the sheath material will be described. The first requirement for the sheath material is that it has ductility, ductility of the sheath tube material is important for protecting and reducing the superconducting powder of the core, and silver or silver alloy material is suitable. ing. Second, during superficial sintering in an oxygen atmosphere, good superconducting properties are exhibited without deteriorating the properties of the superconducting material and the sheath material. There are three factors relating to the second condition, one of which is a characteristic deterioration that changes the composition due to a diffusion reaction between the sheath material and the superconducting powder, and the dotted line is a noble metal, and there is little concern about this. Further, in the case of a La-Ba-Cu-O system, it is known that the addition of an Ag element has an effect of improving the critical temperature.
It can be expected that it will not be bad in the case of -Cu-O system. The second factor is that the sheath material is oxidized in an oxygen atmosphere and can no longer be used. This silver dot is a noble metal and has no problem. Third
This is because oxygen deficiency, which plays an important role in the superconducting mechanism of the oxide superconductor, interrupts the flow of oxygen into and out of the superconducting material during sintering heat treatment and annealing heat treatment due to the presence of the sheath material. This is problematic in that it is not suitable and deteriorates the characteristics. However, compared to other metals, the silver or silver alloy material can easily diffuse oxygen and does not cause a problem of oxygen deficiency. Table 1 shows 900 ° C as a value near the sintering temperature.
Shows the value of the diffusion coefficient of oxygen in the metal in the case of silver. However, silver has an order of magnitude higher diffusion coefficient than other metals. The copper material is also relatively large, but the copper material becomes tattered by heating in oxygen, which changes the copper component ratio in the superconducting material, and the copper material cannot be used.

シース材に要求される第3の条件は、超電導の安定化
材としての効果であるが、伝導性、熱伝導性とともに良
好であり問題ない。
The third condition required for the sheath material is an effect as a stabilizing material for superconductivity, but it is satisfactory as well as conductivity and heat conductivity, and there is no problem.

第1図のようにして製作した外径1.6mm、コア部径1.0
mmの線材の低温電気特性を比較例とともに示したのが表
2である。測定は、4端子法を用い、外周のシース材
は、硝酸にて除去し、コアの超電導部のみの抵抗変化か
ら求めている。臨界電流密度値Jcは、77.3K、OTにおい
ての測定値である。
Outer diameter 1.6mm, core diameter 1.0 manufactured as shown in Fig.1.
Table 2 shows the low-temperature electrical characteristics of the mm-diameter wire together with the comparative examples. The measurement was performed using a four-terminal method, and the outer sheath material was removed with nitric acid, and the sheath material was determined from the change in resistance of only the superconducting portion of the core. The critical current density value Jc is a measured value at 77.3K and OT.

銀をシース材質とした実施例と比較例1において、超
電導状態が達成されており、他の金属を用いた比較例で
は超電状態は得られていない。実施例の場合、共沈混練
法による超電導微粉末を用いており、焼結温度も低くで
きることから、線材の焼結温度900℃で臨界温度(fina
l)Tc=89K、液体窒素の沸点温度(77.3K)での臨界電
流密度はJc=565A/cm2となっている。
A superconducting state was achieved in the example using silver as the sheath material and in comparative example 1, and no superconducting state was obtained in the comparative example using another metal. In the case of the embodiment, the superconducting fine powder by the coprecipitation kneading method is used, and the sintering temperature can be lowered.
l) The critical current density at Tc = 89K and the boiling point temperature of liquid nitrogen (77.3K) is Jc = 565A / cm 2 .

比較例1の場合、粉末混合法による超電導微粉末を用
いており、線材の焼結温度900℃で臨界温度(final)Tc
=82K,77.3Kでの臨界電流密度はJc=2A/cm2と低目であ
るが、超電導状態を達成している。
In the case of Comparative Example 1, the superconducting fine powder by the powder mixing method was used, and the sintering temperature of the wire was 900 ° C and the critical temperature (final) Tc
At 82 K and 77.3 K, the critical current density is as low as Jc = 2 A / cm 2 , but the superconducting state is achieved.

比較例2は共沈混練法による超電導微粉末を用い、シ
ース材として、Cu−30%Niを用いた事例で、減面塑性加
工のみで熱処理をしていない場合であるが、4端子法で
測定すると、超電導特性は示すことはなかった。このサ
ンプルは別途インダクタンス法により、磁化率の変化か
ら特性を測定したところ、臨界温度(onset)92Kで超電
導特性を示すことが判った。すなわち、これはすでに超
電導特性を示す酸化物原料粉を使用していることで減面
塑性加工後もすべては劣化しておらず、一部超電導性を
示したことでインダクタンス法ではその現象が認められ
たが、酸化物粉末同志は、超電導状態で接続さておら
ず、4端子法では超電導特性を示さなかったものと解釈
できる。
Comparative Example 2 is a case where Cu-30% Ni was used as a sheath material using a superconducting fine powder by a coprecipitation kneading method, and a case where no heat treatment was performed only by surface-reduction plastic working. When measured, no superconducting properties were shown. When the characteristics of this sample were separately measured from a change in magnetic susceptibility by an inductance method, it was found that the sample exhibited superconductivity at a critical temperature (onset) of 92K. In other words, this is because the oxide raw material powder that has superconductivity has already been used, so that all has not deteriorated even after surface-reduction plastic working. However, the oxide powders were not connected in a superconducting state, and it can be interpreted that they did not show superconductivity in the four-terminal method.

比較例3は比較例2の線材を900℃で焼結熱処理した
ものであるが、コアの酸化物粉末とシース材とが反応し
てしまい、超電導特性を示さなかった。
In Comparative Example 3, the wire rod of Comparative Example 2 was subjected to a sintering heat treatment at 900 ° C., but the oxide powder of the core and the sheath material reacted with each other, and did not show superconductivity.

比較例4はシース材質として、銅を使用したもので、
やはりコアの酸化物粉末とシース材とが反応し、超電導
特性を示さない。さらにこの場合はシース材がボロボロ
に酸化し、シース材としての役目を果さない。
Comparative Example 4 uses copper as a sheath material.
Again, the core oxide powder reacts with the sheath material and does not exhibit superconducting properties. Further, in this case, the sheath material is oxidized tattered and does not serve as the sheath material.

比較例5はシース材質として、白金を使用したもので
この場合は外観は良好であるが、酸素欠損が適切でなく
なったせいか、超電導特性を示さなかった。
Comparative Example 5 used platinum as the sheath material. In this case, the appearance was good, but the superconductivity was not exhibited, probably because oxygen deficiency was no longer appropriate.

第1,2図においては、単心構造のAg/Y−Ba−Cu−O線
材例を示したが、シース組込時、或は減面加工とした線
材を再度束ねシース中に組込むことで、第3図に示すよ
うな多心構造にすることが可能である。具体的に7本組
みで、外径1.4mmの線材を製作し、焼結熱処理を施した
ところ、やはり77.3K以上で、超電導特性を示すことを
確認した。マルチ化すれば、線材の安定性が増し、臨界
電流値は大きくなることが期待できる。
FIGS. 1 and 2 show examples of Ag / Y-Ba-Cu-O wires having a single core structure, but when assembling the sheath, or by re-bundling the wire with the reduced surface area and assembling it into the sheath. , A multi-core structure as shown in FIG. Specifically, when a wire rod having an outer diameter of 1.4 mm was manufactured in a set of seven wires and subjected to a sintering heat treatment, it was confirmed that the wire exhibited superconductivity at 77.3 K or more. With the use of multiple wires, it is expected that the stability of the wire will increase and the critical current value will increase.

[発明の効果] 本発明により、酸化物超電導体の線材化が可能とな
り、また酸化物系超電導体の欠点であった、安定性の問
題も解決でき、高い臨界電流値を示すようになる。
[Effects of the Invention] According to the present invention, an oxide superconductor can be made into a wire, and the problem of stability, which is a disadvantage of the oxide superconductor, can be solved, and a high critical current value can be obtained.

これにより、液体窒素下でも、超電導導体として使用
できる線材が製造できるようになる。
Accordingly, a wire that can be used as a superconducting conductor can be manufactured even under liquid nitrogen.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の酸化物超電導導体の製造工程の一実
施例を示す。 第2図は、本発明の単心線材、リボン状の超画導体の断
面構成図を示す。 第3図は、発明のマルチ線材、マルチリボン状の超電導
体の断面構成図を示す。 1:酸化物超電導材、 2:シース材(銀)。
FIG. 1 shows an embodiment of the manufacturing process of the oxide superconducting conductor of the present invention. FIG. 2 is a cross-sectional view of a single-core wire and ribbon-shaped superconductor according to the present invention. FIG. 3 shows a cross-sectional view of a multi-wire, multi-ribbon superconductor of the present invention. 1: oxide superconducting material, 2: sheath material (silver).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 進一 土浦市木田余町3550番地 日立電線株式 会社金属研究所内 (72)発明者 加茂 友一 日立市久慈町4026番地 株式会社日立製 作所日立研究所内 (56)参考文献 特開 昭63−26167(JP,A) 特開 昭63−261616(JP,A) Appl Phys Lett.vo l.50,No.9,PP 543−544 Matter hett vol. 5,No.4 PP 165−169 Phys Rev B vol.35, No.16 PP8705−8708 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Shinichi Nishiyama 3550 Kida Yomachi, Tsuchiura City Inside of Metal Research Laboratory, Hitachi Cable Co., Ltd. (72) Inventor Tomokazu Kamo 4026 Kujimachi, Hitachi City Hitachi, Ltd. (56) References JP-A-63-26167 (JP, A) JP-A-63-261616 (JP, A) Appl Phys Lett. vol. 50, No. 9, PP 543-544 Matter hott vol. 4 PP 165-169 Phys Rev B vol. 35, No. 16 PP8705-8708

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】共沈混錬法を用いて製造された酸化物超伝
導材をコアとし、その周囲に銀または銀合金が被覆さ
れ、その被覆が施された状態で前記コアに焼結熱処理が
施されていることを特徴とする酸化物超電導導体。
1. A core comprising an oxide superconducting material produced by a co-precipitation kneading method, and silver or a silver alloy coated around the core. An oxide superconducting conductor, characterized by being subjected to the following.
【請求項2】共沈混錬法を用いて製造された酸化物超電
導微粉末を銀または銀合金からなる管材中に封入し、そ
の後塑性加工により減面加工し、さらに焼結熱処理を施
すことを特徴とする酸化物超電導導体の製造方法。
2. An oxide superconducting fine powder produced by a coprecipitation kneading method is sealed in a tube made of silver or a silver alloy, and then the surface is reduced by plastic working, followed by sintering heat treatment. A method for producing an oxide superconducting conductor, comprising:
JP62107744A 1987-04-30 1987-04-30 Oxide superconductor and method of manufacturing the same Expired - Lifetime JP2571574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62107744A JP2571574B2 (en) 1987-04-30 1987-04-30 Oxide superconductor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62107744A JP2571574B2 (en) 1987-04-30 1987-04-30 Oxide superconductor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63274016A JPS63274016A (en) 1988-11-11
JP2571574B2 true JP2571574B2 (en) 1997-01-16

Family

ID=14466859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62107744A Expired - Lifetime JP2571574B2 (en) 1987-04-30 1987-04-30 Oxide superconductor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2571574B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2904348B2 (en) * 1987-06-19 1999-06-14 株式会社東芝 Method for manufacturing compound superconducting wire
JPH01134810A (en) * 1987-11-19 1989-05-26 Fujikura Ltd Oxide superconductor and its manufacture
JP2583538B2 (en) * 1987-11-19 1997-02-19 株式会社フジクラ Method for producing oxide-based superconducting wire
JPH02247906A (en) * 1989-03-17 1990-10-03 Hitachi Cable Ltd Manufacture of oxide superconducting wire
JPH02250219A (en) * 1989-03-23 1990-10-08 Hitachi Cable Ltd Multi-conductor oxide superconducting wire and manufacture thereof
GB2576933A (en) * 2018-09-07 2020-03-11 Tokamak Energy Ltd Flexible HTS current leads

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326167A (en) * 1986-07-18 1988-02-03 Mitsubishi Electric Corp Picture quality correction circuit
JPS63261616A (en) * 1987-04-18 1988-10-28 Sumitomo Electric Ind Ltd Sintered wire

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Appl Phys Lett.vol.50,No.9,PP 543−544
Matter hett vol.5,No.4 PP 165−169
Phys Rev B vol.35,No.16 PP8705−8708

Also Published As

Publication number Publication date
JPS63274016A (en) 1988-11-11

Similar Documents

Publication Publication Date Title
JP2754564B2 (en) Method for producing superconducting composite
EP0412527A2 (en) Ceramic superconductor wire and method of manufacturing the same
JP2685751B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JP2571574B2 (en) Oxide superconductor and method of manufacturing the same
CN1400612A (en) Preparation method of ultrafine high-temp. superconducting wire material
JP3885358B2 (en) Oxide high-temperature superconducting wire and method for producing the same
JPH08171822A (en) Oxide superconductor wire and manufacture thereof
JP2633868B2 (en) Oxide superconducting wire
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JP3848449B2 (en) Manufacturing method of oxide superconducting wire
Yoo et al. Fabrication of twisted multifilamentary BSCCO 2223 tapes by using high resistive sheath for AC application
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
JP2727565B2 (en) Superconductor manufacturing method
JP3667028B2 (en) Oxide superconducting wire for alternating current and method for producing the same
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JP2637427B2 (en) Superconducting wire manufacturing method
JP3078765B2 (en) Compound superconducting wire and method for producing compound superconducting wire
CN1490825A (en) High temperature bismuth system superconductive bands and manufacture thereof
JP2735534B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JP2599138B2 (en) Method for producing oxide-based superconducting wire
RU2089974C1 (en) Method for producing lengthy parts from high-temperature superconducting materials
JPS63313416A (en) Superconductive wire rod and its manufacture
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JPH06119829A (en) Superconductive wire and manufacture thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11