JPS63274016A - Oxide superconductor and its manufacture - Google Patents

Oxide superconductor and its manufacture

Info

Publication number
JPS63274016A
JPS63274016A JP62107744A JP10774487A JPS63274016A JP S63274016 A JPS63274016 A JP S63274016A JP 62107744 A JP62107744 A JP 62107744A JP 10774487 A JP10774487 A JP 10774487A JP S63274016 A JPS63274016 A JP S63274016A
Authority
JP
Japan
Prior art keywords
silver
superconducting
oxide superconductor
core
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62107744A
Other languages
Japanese (ja)
Other versions
JP2571574B2 (en
Inventor
Masahiro Kiyofuji
雅宏 清藤
Shuji Sakai
修二 酒井
Shinichi Nishiyama
西山 進一
Yuichi Kamo
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62107744A priority Critical patent/JP2571574B2/en
Publication of JPS63274016A publication Critical patent/JPS63274016A/en
Application granted granted Critical
Publication of JP2571574B2 publication Critical patent/JP2571574B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the critical temperature and the critical current density by using an oxide superconductor as a core, and covering its periphery with silver or a silver alloy. CONSTITUTION:As the material of a sheath 2 for an oxide superconductor 1, silver or a silver alloy is used. Since oxygen is fed suffeciently to the oxide superconductor for a core when it is in a sintering heat-treatment, the deterioration of the property after the sintering heat-treatment is not generated even though it is used as covered with the sheath. Since the electric conductibility and thermal conductibility of silver itself is good, an oxide superconductor with a stabilized silver or silver alloy can be provided, and the critical temperature and the critical current density are improved extensively. The melting point of silver or the silver alloy is below 960 deg.C, and the sintering temperature is made also below 920 to 930 deg.C. In this case, as the oxide superconductor, an oxide superconductor including a layer-form perovskite structure or a perovskite structure ceramics of such as Y-Ba-Cu-O, Er-Ba-Cu-O, or Yb-Ba-Cu-O is used. In such a composition, it can be used as a superconductor even under the liquid nitrogen condition.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超電導導体、特に高温酸化物超電導導体に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to superconducting conductors, particularly high temperature oxide superconducting conductors.

[従来技術とその問題点] La−Ba、−Cu−0系、La−8n−Cu−0系、
Y−Ba−Cu−0系等の層状ペロブスカイト型、或は
、ペロブスカイト型酸化物セラミックスにおいて、臨界
温度Tcが40〜125にといった高温超電導体が発見
されているが、その導体化は、未だ十分になされておら
ず、当然臨界電流密度Jcも低いレベルの状態にある。
[Prior art and its problems] La-Ba, -Cu-0 system, La-8n-Cu-0 system,
In layered perovskite type or perovskite type oxide ceramics such as Y-Ba-Cu-0 series, high-temperature superconductors with critical temperatures Tc of 40 to 125 have been discovered, but their development as conductors is still insufficient. Therefore, the critical current density Jc is naturally at a low level.

線材化した例としては、第1に余材研での事例があり、
Cu−Ni管中にLa−8n−Cu−0系粉末を入れ、
伸線し、線材化するもので、臨界温度35に1臨界電流
は4.2に、IOT中で100 OA/cjが出ている
。ただし、これは線材化後外周のCu−Niシースを除
去し、その後熱処理をしてから特性測定したもので、ク
ラッド線材としての特性ではない。
The first example of making wire rods is at Yozai Research Institute.
Put La-8n-Cu-0 powder into a Cu-Ni tube,
It is drawn and made into wire, and the critical temperature is 35, the critical current is 4.2, and 100 OA/cj is produced in IOT. However, this property was measured after removing the Cu-Ni sheath on the outer periphery after forming the wire into a wire, and then heat-treating the wire, and not the characteristics as a clad wire.

第2の線材化例としては、東北大金属材料研の例があり
、La−5r−Cu−0系の酸素を除いた金属成分のみ
を、溶湯急冷法によりアモルファス合金テープと、その
後酸素雰囲気中で加熱処理し、高温超電導セラミックス
・テープとするもので、40にの臨界温度を示したとの
報告があるが、臨界電流値は明記されていない。
As a second example of wire rod production, there is an example by Tohoku University's Institute of Materials Research, in which only the metal components of the La-5r-Cu-0 system excluding oxygen are made into an amorphous alloy tape by a molten metal rapid cooling method and then placed in an oxygen atmosphere. There is a report that the material is heat-treated to form a high-temperature superconducting ceramic tape, and that it has a critical temperature of 40°C, but the critical current value is not specified.

臨界温度の高いY−Ba−Cu−0系においても、導体
化され、臨界温度が87に1臨界電流値が6 A/cd
 (a t 77. 3 K)との報告もあるが、その
導体構造は明らかにされていない。
Even in the Y-Ba-Cu-0 system, which has a high critical temperature, it is made into a conductor, with a critical temperature of 87 and a critical current value of 6 A/cd.
(at 77.3 K), but its conductor structure has not been clarified.

なお、Y−Ba−Cu−0系を線材化せず、粉末焼結し
た例としては、ATTの事例があり、液体窒素の沸点温
度(77,3K)にて、1100A/c−の高臨界電流
密度を示したとの報告がある。
Incidentally, an example of powder sintering of the Y-Ba-Cu-0 system without forming it into a wire is the case of ATT, which has a high criticality of 1100 A/c- at the boiling point temperature of liquid nitrogen (77.3 K). There are reports that the current density was shown.

先に示した酸化物系超電導材の場合、金属管中にかかる
粉体を封入し、引抜き、スェージャ−等により減面加工
を行えば、容易に線材化は可能であるが、そのままでは
超電導状態で電流を流すことは殆んど出来ず、高臨界温
度、高臨界電流密度は望めない。
In the case of the oxide-based superconducting material shown above, it is possible to easily make it into a wire by enclosing the powder in a metal tube and reducing the area by drawing, swaging, etc., but it is not in a superconducting state as it is. It is almost impossible to flow current at this temperature, and high critical temperatures and high critical current densities cannot be expected.

塑性加工による線材化状態で、特性が出ない理由は、超
電導微粉末の変形による特性の劣化と加工工程の圧粉効
果による単なる物理的接触のみでは異方性の強い超電導
微粉末の超電導接続は不可能であるため、と考える。酸
化物系超電導材の場合、近接化によるトンネル効果を期
待するには、10〜20にのオーダーまで近ずける必要
があると言われており、圧粉のみでは特性がでない理由
と考える。
The reason why properties are not obtained when the wire is formed by plastic working is that the properties deteriorate due to the deformation of the superconducting fine powder, and the compacting effect of the processing process makes it difficult to connect the highly anisotropic superconducting fine powder with mere physical contact. I think it's because it's impossible. In the case of oxide-based superconducting materials, it is said that in order to expect a tunnel effect due to close proximity, it is necessary to get close to the order of 10 to 20, and this is thought to be the reason why the characteristics are not obtained with compacted powder alone.

それを解釈するには、線材化後、焼結熱処理をすること
が条件となるが、酸化物系超電導材の場合、酸素雰囲気
、少なくとも大気中で高温熱処理する必要があり、Cu
−Ni或はCuの金属管中に入れたのでは、超電導粉末
に酸素が入っていない。更には、超電導粉と金属シース
が拡散反応し、組成が変化する等でやはり超電導特性は
出ない。
In order to interpret this, it is necessary to perform sintering heat treatment after making wire rods, but in the case of oxide-based superconducting materials, it is necessary to heat treat them at high temperatures in an oxygen atmosphere, at least in the air, and Cu
- When placed in a Ni or Cu metal tube, the superconducting powder does not contain oxygen. Furthermore, the superconducting powder and the metal sheath undergo a diffusion reaction and the composition changes, so superconducting properties are still not achieved.

[発明の目的] 本発明の目的は、前記した従来技術の欠点を解消し、臨
界温度、臨界電流密度の高い、新規な酸化物超電導線材
を提供することにある。
[Object of the Invention] An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a novel oxide superconducting wire having a high critical temperature and high critical current density.

[発明の要点] 本発明の要旨は、酸化物超電導線材のシース材質として
、銀または銀合金材を用いたことにあり、これにより、
焼結熱処理時にコアの酸化物超電導部に酸素が十分供給
され、シースを被覆したままでも焼結熱処理後の特性が
劣化しないようにした点にある。
[Summary of the Invention] The gist of the present invention is that silver or a silver alloy material is used as the sheath material of the oxide superconducting wire.
The main feature is that sufficient oxygen is supplied to the oxide superconducting portion of the core during the sintering heat treatment, so that the characteristics after the sintering heat treatment do not deteriorate even if the sheath remains covered.

銀白体の導電性、熱伝導性は良好であり、これにより、
銀または銀合金安定化の酸化物超電導線材が提供でき、
臨界温度、臨界電流密度を大幅に向上することができた
Silver-white bodies have good electrical conductivity and thermal conductivity, and as a result,
We can provide silver or silver alloy stabilized oxide superconducting wire,
We were able to significantly improve the critical temperature and critical current density.

銀また銀合金の融点は、960℃以下であり、これによ
り焼結温度も920〜930℃以下に限定されることに
なる。
The melting point of silver or a silver alloy is 960°C or lower, which means that the sintering temperature is also limited to 920-930°C or lower.

Y−Ba−Cu−0系を例にとると、超電導粉の製造法
には、粉末混合法、共沈混練法等があり、粉末の製法、
粒度により、その最適焼結温度は異なる。粉末混合法の
場合、その最適温度は950〜1000℃であるのに対
し、共沈混練法の場合、最適温度はそれより約50〜6
0℃低下でき、900〜950℃となる。銀シース材の
融点との関係から、共沈混練法の方が適した粉末製造法
である。
Taking the Y-Ba-Cu-0 system as an example, methods for producing superconducting powder include a powder mixing method, a coprecipitation kneading method, etc.
The optimum sintering temperature varies depending on the particle size. In the case of the powder mixing method, the optimum temperature is 950-1000°C, while in the case of the coprecipitation kneading method, the optimum temperature is about 50-60°C.
The temperature can be lowered by 0°C to 900-950°C. Due to the relationship with the melting point of the silver sheath material, the coprecipitation kneading method is a more suitable powder manufacturing method.

ここでの酸化物超電導材どは、Y−Ba−Cu−O,E
r−6Ba−Cu−0,Yb−Ba−Cu−0,La−
Ba−Cu−0,La−5n−Cu−0等の層状ペロブ
スカイト型、或はペロブスカイト型セラミックスを含む
酸化物超電導材を意味する。
The oxide superconducting materials used here are Y-Ba-Cu-O, E
r-6Ba-Cu-0, Yb-Ba-Cu-0, La-
It means an oxide superconducting material containing layered perovskite type ceramics such as Ba-Cu-0, La-5n-Cu-0, or perovskite type ceramics.

[実施例] 本発明を実施した製造工程例を第1図に示す。[Example] An example of a manufacturing process in which the present invention is implemented is shown in FIG.

使用した高温超電導性酸化物微粉末は (Y    Ba O,330,87)8 Cu307−δで・共沈混練法
と粉末混合法の2種で、共沈混練法は、900〜950
℃で焼成し、粉末混合法は950〜1000℃で焼成し
たものを、粉砕し、微粉化したものである。
The high-temperature superconducting oxide fine powder used was (YBaO,330,87)8Cu307-δ. Two types were used: a coprecipitation kneading method and a powder mixing method.
℃, and the powder mixing method is to pulverize and finely powder the calcined material at 950 to 1000℃.

超電導微粉末は、圧粉成形し、銀シース管に組込み、シ
ース管と共に、減面塑性加工を施して、さらに引抜き、
圧延により線状またはテープ状の断面形状とした後、8
50〜950℃の温度範囲で02雰囲気または大気中で
焼結熱処理を゛行った。
The superconducting fine powder is compacted, assembled into a silver sheath tube, subjected to surface reduction plastic processing together with the sheath tube, and then drawn out.
After rolling into a linear or tape-like cross-sectional shape, 8
The sintering heat treatment was carried out in the temperature range of 50 to 950°C in 02 atmosphere or air.

その後、必要に応じ、500〜800℃にて、アニーリ
ング熱処理をして、特性の向上化をし、所要の超電導線
材を完成させた。第2図には、その断面形状を示す。
Thereafter, if necessary, an annealing heat treatment was performed at 500 to 800°C to improve the characteristics and complete the required superconducting wire. FIG. 2 shows its cross-sectional shape.

ここで、銀または銀合金管をシース材とすることのメリ
ットを述べておく。シース材に要求される条件は、第1
に延性があること、コアの超電導粉を、保護し、減面加
工するにはシース管材の延性が重要であり、その点銀ま
たは銀合金材は適している。第2に酸素雰囲気中の焼結
熱処理時に、超電導材及びシース材の特性を劣化させず
、良好な超電導特性を発揮させること。この第2の条件
に関しては三つの要因があり、その1はシース材質と超
電導粉末が拡散反応し、組成を変化させる特性劣化で、
この点銀は貴金属でありその心配は少ない。さらに、L
a−Ba−Cu−0系の場合、Ag元素の添加は、臨界
温度を向上させる効果があることが知られており、Y−
Ba−Cu−0系の場合にも悪くはならないと期待でき
る。その2の要因は、酸素雰囲気中でシース材が酸化し
、使用できなくなる点、この点銀貴金属で問題となる第
3の要因は、シース材の存在により焼結熱処理時、アニ
ール熱処理時、超電導材への酸素の出入りを遮断してし
まい、酸化物超電導体の超電導メカニズム上重要な役割
りをしている酸素欠損が適性でなくなり、特性を劣化さ
せる問題であるが、この点銀または銀合金材は他の金属
と比較し、酸素の拡散が容易であり、酸素欠損上の問題
は生じない。表1には、焼結温度付近の値として、90
0℃における金属中への酸素の拡散係数の値を示すが、
銀は他の金属と比較し、桁違いに拡散係数が大きい。鋼
材も比較的大きいが、鋼材は超電導材中の銅成分比率を
変えてしまう酸素中の加熱でボロボロになってしまい鋼
材は使用できない。
Here, we will discuss the advantages of using silver or silver alloy tubes as the sheath material. The first condition required for the sheath material is
It is important that the sheath tube material has ductility in order to protect and reduce the area of the superconducting powder in the core, and silver or silver alloy materials are suitable for this purpose. Second, during sintering heat treatment in an oxygen atmosphere, the properties of the superconducting material and sheath material should not be deteriorated, and good superconducting properties should be exhibited. There are three factors regarding this second condition, one of which is a diffusion reaction between the sheath material and the superconducting powder, resulting in property deterioration that changes the composition.
Since silver is a precious metal, there is little need to worry about this. Furthermore, L
In the case of the a-Ba-Cu-0 system, it is known that the addition of Ag element has the effect of increasing the critical temperature;
It can be expected that it will not become worse in the case of Ba-Cu-0 system. The second factor is that the sheath material oxidizes in an oxygen atmosphere, making it unusable.The third factor that poses a problem with silver precious metals is that the sheath material oxidizes in an oxygen atmosphere, making it unusable. The problem is that oxygen vacancies, which play an important role in the superconducting mechanism of oxide superconductors, are blocked by blocking oxygen in and out of the material, and the properties deteriorate. The material allows oxygen to diffuse more easily than other metals, and there are no problems with oxygen vacancies. Table 1 shows 90 as a value near the sintering temperature.
It shows the value of the diffusion coefficient of oxygen into metal at 0°C,
Silver has an order of magnitude higher diffusion coefficient than other metals. Steel is also relatively large, but steel cannot be used because it becomes crumbly when heated in oxygen, which changes the copper content in the superconducting material.

シース材に要求される第3の条件は、超電導の安定化材
としての効果であるが、伝導性、熱伝導性とともに良好
であり問題ない。
The third condition required of the sheath material is its effectiveness as a superconductor stabilizing material, and it has good conductivity and thermal conductivity, so there is no problem.

第1図のようにして製作した線材、銀径φ1.6、コア
超電導部径φ1.0の低温電気特性を比較例とともに示
したのが表2である。測定は、4端子法を用い、外周の
シース材は、硝酸にて除去し、コアの超電導部のみの抵
抗変化から求めている。臨界電流密度値Jcは、77.
3に、OTにおいてのn1定値である。
Table 2 shows the low-temperature electrical properties of the wire produced as shown in FIG. 1, with a silver diameter of 1.6 and a core superconducting portion diameter of 1.0, together with comparative examples. The measurement uses a four-terminal method, the outer sheath material is removed with nitric acid, and the resistance change is determined from only the superconducting portion of the core. The critical current density value Jc is 77.
3 is the constant value of n1 in OT.

銀をシース材質とした実施例1,2において、超電導状
態が達成されており、他の金属を用いた比較例では超電
状態は得られていない。実施例1の場合、共沈混練法に
よる超電導微粉末を用いており、焼結温度も低くできる
ことから、線材の焼結温度900℃で臨界温度(fln
al ) Tc−89に、液体窒素の沸点温度(77,
3K)での臨界電流密度はJc=565A/c−となっ
ている。
In Examples 1 and 2 in which silver was used as the sheath material, a superconducting state was achieved, and in comparative examples using other metals, a superconducting state was not achieved. In the case of Example 1, superconducting fine powder produced by the coprecipitation kneading method is used, and the sintering temperature can be lowered, so the critical temperature (fln
al) Tc-89 has the boiling point temperature of liquid nitrogen (77,
3K), the critical current density is Jc=565A/c-.

実施例2の場合、粉末混合法による超電導微粉末を用い
ており、線材の焼結温度900℃で臨界温度(1’1n
al ) Tc−82に、  77. 3にでの臨界電
流密度はJc−2A/c−と低目であるが、超電導状態
を達成している。
In the case of Example 2, superconducting fine powder was used by the powder mixing method, and the critical temperature (1'1n
al) to Tc-82, 77. Although the critical current density at No. 3 is low at Jc-2A/c-, a superconducting state is achieved.

比較例1は共沈混練法による超電導微粉末を用い、シー
ス材として、Cu−30%Niを用いた事例で、減面塑
性加工のみで熱処理をしていない場合であるが、4端子
法で測定すると、超電導特性は示すことはなかった。こ
のサンプルは別途インダクタンス、法により、磁化率の
変化から特性を測定したところ、臨界温度(onset
 ) 92 Kで超電導特性を示すことが判った。すな
わち、これはすでに超電導特性を示す酸化物原料粉を使
用していることが減面塑性加工後もすべては劣化してお
らず、一部超電導性を示したことでインダクタンス法で
はその現象が認められたが、酸化物粉末同志は、超電導
状態で接続しておらず、4端子法では超電導特性は示さ
なかったものと解釈できる。
Comparative Example 1 is an example in which superconducting fine powder produced by the coprecipitation kneading method was used, and Cu-30%Ni was used as the sheath material, and only surface reduction plastic processing was performed without heat treatment. When measured, it did not show any superconducting properties. The characteristics of this sample were measured separately from changes in magnetic susceptibility using an inductance method, and it was found that the critical temperature (onset
) It was found that it exhibits superconducting properties at 92 K. In other words, this means that the oxide raw material powder, which already exhibits superconducting properties, has not deteriorated even after surface-reducing plastic processing, and some of the powders have shown superconductivity, which is a phenomenon recognized by the inductance method. However, it can be interpreted that the oxide powders were not connected in a superconducting state and did not exhibit superconducting properties in the four-terminal method.

比較例2は、比較例1の線材を900℃で焼結熱処理し
たものであるが、コアの酸化物粉末とシース材とが反応
してしまい、超電導特性は示さなかった。
In Comparative Example 2, the wire of Comparative Example 1 was sintered and heat-treated at 900° C., but the oxide powder of the core and the sheath material reacted, and the wire did not exhibit superconducting properties.

比較例3はシース材質とし、銅を使用したもので、やは
りコアの酸化物粉末とシース材とが反応し、超電導特性
は示さない。さらにこの場合はシ−ス材がボロボロに酸
化し、シース材としての役目を果さない。
Comparative Example 3 uses copper as the sheath material, and the oxide powder of the core reacts with the sheath material, so it does not exhibit superconducting properties. Furthermore, in this case, the sheath material becomes crumbly and oxidized and does not function as a sheath material.

比較例4はシース材質として、白金を使用したものでこ
の場合は外観は良好であるが、酸素欠損が適切でなくな
ったせいか、超電導特性は示さなかった。
Comparative Example 4 used platinum as the sheath material, and although the appearance was good in this case, superconducting properties were not exhibited, probably because oxygen vacancies were not adequate.

表  1 第1.2図においては、単心構造のAg/Y−Ba−C
u−0線材例を示したが、シース組込時、或は減面加工
した線材を再度束ねシース中に組込むことで第3図に示
すような多心構造にすることが可能である。。具体的に
7本組みで、φ41,6の線材を製作し、焼結熱処理を
施したところ、やはり77.3に以上で、超電導特性を
示すことを確認した。マルチ化すれば、線材の安定特性
は増し、臨界電流値は大きくなることが期待できる。
Table 1 In Figure 1.2, single-core structure Ag/Y-Ba-C
Although the example of the u-0 wire rod is shown, it is possible to create a multicore structure as shown in FIG. 3 when the wire rod is assembled into the sheath, or by re-bundling the wire rods whose area has been reduced and incorporating them into the sheath. . Specifically, when a set of 7 wires with a diameter of 41.6 mm was manufactured and subjected to sintering heat treatment, it was confirmed that the wire rod had a value of 77.3 or higher and exhibited superconducting properties. By using multiple wires, it is expected that the stability characteristics of the wire will increase and the critical current value will increase.

[発明の効果] 本発明により、酸化物超電導体の線材化が可能となり、
また酸化物系超電導体の欠点であった、安定性の問題も
解決でき、高い臨界電流値を示すようになる。
[Effects of the invention] According to the present invention, it is possible to make an oxide superconductor into a wire,
In addition, the problem of stability, which was a drawback of oxide-based superconductors, can be solved, and the superconductor exhibits a high critical current value.

これにより、液体窒素下でも、超電導導体として使用で
きる線材が製造できるようになる。
This makes it possible to manufacture wires that can be used as superconducting conductors even under liquid nitrogen.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の酸化物超電導導材の製造工程の一実
施例を示す。 第2図は、本発明の単心線材、リボン状の超電導体の断
面構成図を示す。 第3図は、本発明のマルチ線材、マルチリボン状の超電
導体の断面構成図を示す。 1:酸化物超電導材、 2:シース材(銀)。
FIG. 1 shows an example of the manufacturing process of the oxide superconducting material of the present invention. FIG. 2 shows a cross-sectional configuration diagram of the single-core wire rod and ribbon-shaped superconductor of the present invention. FIG. 3 shows a cross-sectional configuration diagram of a multi-wire, multi-ribbon superconductor of the present invention. 1: Oxide superconducting material, 2: Sheath material (silver).

Claims (4)

【特許請求の範囲】[Claims] (1)酸化物超電導材をコアとし、その周囲に銀または
銀合金を被覆した構造の単心酸化物超電導導体。
(1) A single-core oxide superconductor having a structure in which an oxide superconducting material is used as a core and silver or a silver alloy is coated around the core.
(2)銀または銀合金の安定化材からなるマトリックス
中に、多数の酸化物超電導材のコアを分散させたマルチ
酸化物超電導導体。
(2) A multi-oxide superconducting conductor in which a number of cores of oxide superconducting materials are dispersed in a matrix consisting of a stabilizing material of silver or silver alloy.
(3)上記(1)、(2)の酸化物超電導材の製造方法
として、すでに超電導特性を示す酸化物超電導微粉末を
銀または銀合金からなる管材中に単心またはマルチ状に
封入し、その後塑性加工により、減面加工し、さらに焼
結熱処理を施す方法。
(3) As a method for manufacturing the oxide superconducting material in (1) and (2) above, oxide superconducting fine powder that already exhibits superconducting properties is sealed in a tube material made of silver or a silver alloy in a single core or in a multi-core form, After that, the area is reduced by plastic working, and then sintering heat treatment is applied.
(4)上記3の製造方法における酸化物超電導微粉末と
して、共沈混練法により製造した粉末を用いる方法。
(4) A method in which a powder produced by a coprecipitation kneading method is used as the oxide superconducting fine powder in the production method of 3 above.
JP62107744A 1987-04-30 1987-04-30 Oxide superconductor and method of manufacturing the same Expired - Lifetime JP2571574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62107744A JP2571574B2 (en) 1987-04-30 1987-04-30 Oxide superconductor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62107744A JP2571574B2 (en) 1987-04-30 1987-04-30 Oxide superconductor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63274016A true JPS63274016A (en) 1988-11-11
JP2571574B2 JP2571574B2 (en) 1997-01-16

Family

ID=14466859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62107744A Expired - Lifetime JP2571574B2 (en) 1987-04-30 1987-04-30 Oxide superconductor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2571574B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318023A (en) * 1987-06-19 1988-12-26 Toshiba Corp Manufacture of compound superconductive wire
JPH01134822A (en) * 1987-11-19 1989-05-26 Fujikura Ltd Manufacture of oxide superconductive wire
JPH01134810A (en) * 1987-11-19 1989-05-26 Fujikura Ltd Oxide superconductor and its manufacture
JPH02247906A (en) * 1989-03-17 1990-10-03 Hitachi Cable Ltd Manufacture of oxide superconducting wire
JPH02250219A (en) * 1989-03-23 1990-10-08 Hitachi Cable Ltd Multi-conductor oxide superconducting wire and manufacture thereof
GB2576933A (en) * 2018-09-07 2020-03-11 Tokamak Energy Ltd Flexible HTS current leads

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326167A (en) * 1986-07-18 1988-02-03 Mitsubishi Electric Corp Picture quality correction circuit
JPS63261616A (en) * 1987-04-18 1988-10-28 Sumitomo Electric Ind Ltd Sintered wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326167A (en) * 1986-07-18 1988-02-03 Mitsubishi Electric Corp Picture quality correction circuit
JPS63261616A (en) * 1987-04-18 1988-10-28 Sumitomo Electric Ind Ltd Sintered wire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318023A (en) * 1987-06-19 1988-12-26 Toshiba Corp Manufacture of compound superconductive wire
JPH01134822A (en) * 1987-11-19 1989-05-26 Fujikura Ltd Manufacture of oxide superconductive wire
JPH01134810A (en) * 1987-11-19 1989-05-26 Fujikura Ltd Oxide superconductor and its manufacture
JPH02247906A (en) * 1989-03-17 1990-10-03 Hitachi Cable Ltd Manufacture of oxide superconducting wire
JPH02250219A (en) * 1989-03-23 1990-10-08 Hitachi Cable Ltd Multi-conductor oxide superconducting wire and manufacture thereof
GB2576933A (en) * 2018-09-07 2020-03-11 Tokamak Energy Ltd Flexible HTS current leads

Also Published As

Publication number Publication date
JP2571574B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
EP0505015B1 (en) Superconducting wire and method of manufacturing the same
JP2815091B2 (en) Manufacturing method of slender superconductor
JP3042551B2 (en) Superconducting wire manufacturing method
JPS63274016A (en) Oxide superconductor and its manufacture
JPH11312420A (en) High-temperature oxide superconducting wire and its manufacture
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
JP2633868B2 (en) Oxide superconducting wire
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JP3357404B2 (en) Manufacturing method of oxide superconductor
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JP3858830B2 (en) Manufacturing method of oxide superconducting wire
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JP2569413B2 (en) Method for producing Bi-based oxide superconducting wire
JPH04262308A (en) Oxide superconductive wire rod
JP2727565B2 (en) Superconductor manufacturing method
JPS63225413A (en) Manufacture of compound superconductive wire
JP2593520B2 (en) Method for producing oxide-based superconducting wire
JP3086237B2 (en) Manufacturing method of oxide superconducting wire
CN1490825A (en) High temperature bismuth system superconductive bands and manufacture thereof
JP3450488B2 (en) Boron-containing metal oxide superconducting wire
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JP2003173721A (en) Oxide superconductive cable for ac and its manufacturing method
JPH0465034A (en) Manufacture of oxide superconducting wire
JPH01320710A (en) Manufacture of superconductive cable in multicore type oxide line

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11