JPH04337213A - Manufacture of multi-layer ceramic superconductor - Google Patents

Manufacture of multi-layer ceramic superconductor

Info

Publication number
JPH04337213A
JPH04337213A JP3138683A JP13868391A JPH04337213A JP H04337213 A JPH04337213 A JP H04337213A JP 3138683 A JP3138683 A JP 3138683A JP 13868391 A JP13868391 A JP 13868391A JP H04337213 A JPH04337213 A JP H04337213A
Authority
JP
Japan
Prior art keywords
composite
superconductor
ceramic superconductor
cross
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3138683A
Other languages
Japanese (ja)
Other versions
JP2989932B2 (en
Inventor
Sukeyuki Kikuchi
菊地 祐行
Kiyoshi Nemoto
清 根本
Masanao Mimura
三村 正直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3138683A priority Critical patent/JP2989932B2/en
Publication of JPH04337213A publication Critical patent/JPH04337213A/en
Application granted granted Critical
Publication of JP2989932B2 publication Critical patent/JP2989932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To manufacture a wiry multi-core multi-layer ceramic superconductor with excellent superconductor characteristic, particularly high critical current density, by applying the cross section reduction machining for each layer of a composite tape on a metal core material. CONSTITUTION:Butt sections of both edge sections of a composite tape with the width about 32mm are seam-welded on a round bar made of Ag with the outer diameter 4mm, for example, to form a composite body. This composite body is heated for a preset period at the preset temperature in the atmosphere, and swage machining is applied by roll machining to reduce the cross section until the outer diameter of the composite body becomes 10mm, for example. This process is repeated multiple times, and the outer diameter of the composite body is made 5mm, for example, by the final swaging machining. The heat treatment under the same condition is then applied to obtain a ceramic superconductor with eight-layer ceramic superconductor layer, for example. A wiry multi-core multi-layer ceramic superconductor with more excellent superconductor characteristic, particularly high critical current density, as compared with the multi-core multi-layer ceramic superconductor manufactured in the conventional method is manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、金属の内部にセラミッ
クス超電導体が多芯状、または同芯円筒状に多層配置さ
れた多層セラミックス超電導導体、特にマグネット、ケ
ーブル等に使用可能な多層セラミックス超電導体の製造
方法に関するものである。
[Industrial Application Field] The present invention relates to a multilayer ceramic superconducting conductor in which ceramic superconductors are arranged in multicore or concentric cylindrical layers inside a metal, and in particular, a multilayer ceramic superconductor that can be used for magnets, cables, etc. The present invention relates to a method of manufacturing a body.

【0002】0002

【従来の技術】臨界温度(Tc)が液体窒素温度を越え
る所謂高温超電導体として、Y− BaCu− O系、
Bi− (Pb)− Sr− Ca− Cu− O系、
Tl− Ba− Ca− Cu− O系等のセラミック
ス超電導体が開発されている。このようなセラミックス
超電導体の実用化を図るためにセラミックス超電導体を
種々の形状に成形する方法が研究されて来た。例えば線
材化する場合には、一般に金属シース法が用いられてい
る。この方法は、セラミックス超電導体または超電導体
となし得る原料を金属のパイプ内に充填し、断面減少加
工を施して所望の形状及び寸法に仕上げた後、熱処理を
行ってセラミックス超電導導線とするものである。断面
減少加工方法として、所望の線材の形状に応じて押し出
し、圧延、スウェージング、引抜き等従来の塑性加工法
が適用されている。金属パイプの材質としては熱伝導性
、電気伝導性に優れた材料、例えばAg、Ag合金、C
u、Cu合金等を使用できるが、良好な酸素透過性の点
からAg、Ag合金を用いる例が多い。
[Prior Art] As so-called high-temperature superconductors whose critical temperature (Tc) exceeds liquid nitrogen temperature, Y-BaCu-O system,
Bi-(Pb)-Sr-Ca-Cu-O system,
Ceramic superconductors such as those based on Tl-Ba-Ca-Cu-O have been developed. In order to put such ceramic superconductors into practical use, methods for molding ceramic superconductors into various shapes have been studied. For example, when making wire rods, a metal sheath method is generally used. In this method, a ceramic superconductor or a raw material that can be made into a superconductor is filled into a metal pipe, processed to reduce its cross section to obtain the desired shape and dimensions, and then heat treated to form a ceramic superconducting wire. be. As the cross-section reduction processing method, conventional plastic processing methods such as extrusion, rolling, swaging, and drawing are applied depending on the desired shape of the wire rod. Materials for metal pipes include materials with excellent thermal conductivity and electrical conductivity, such as Ag, Ag alloy, and C.
U, Cu alloys, etc. can be used, but Ag and Ag alloys are often used because of their good oxygen permeability.

【0003】セラミックス超電導導体の断面形状は、断
面が丸型、楕円形、四角形、テープ状等が一般的である
。超電導体の配列は、長手方向に直交する断面で見て、
超電導体線状体を複数本束ねたような線束が複数配置さ
れている多芯線、さらに金属の内部にセラミックス超電
導体が同芯円筒状、渦巻状に配列した多層状線材なども
試作或いは提案されている。本発明者は、既に次のよう
な多芯多層超電導体の製造方法を提案している。それは
、例えば図1(a)、(b)に示したような多芯多層状
超電導導体を作製する場合、あらかじめ図2(a)及び
(b)にそれぞれ示したような断面形状の複合テープを
作製し、複合テープを必要に応じて金属芯材の外周上に
渦巻状、または同芯円筒状に巻き付け、巻き付けたもの
を金属パイプ内に挿入して複合ビレットを形成する。更
に、この複合ビレットに断面減少加工及び超電導体とな
すための熱処理を施してセラミックス超電導導体とする
方法である。
Ceramic superconducting conductors generally have a round, elliptical, square, or tape-shaped cross section. The arrangement of superconductors is seen in a cross section perpendicular to the longitudinal direction,
Multicore wires in which multiple wire bundles of superconducting wire bodies are arranged, and multilayer wires in which ceramic superconductors are arranged inside a metal in a concentric cylindrical or spiral shape have also been prototyped or proposed. ing. The present inventor has already proposed the following method for manufacturing a multicore multilayer superconductor. For example, when producing a multicore multilayer superconductor as shown in Figures 1(a) and (b), a composite tape with a cross-sectional shape as shown in Figures 2(a) and (b), respectively, is prepared in advance. The composite tape is then wound around the outer periphery of a metal core material in a spiral or concentric cylindrical shape as required, and the wound tape is inserted into a metal pipe to form a composite billet. Furthermore, this composite billet is subjected to cross-section reduction processing and heat treatment to form a superconductor, thereby forming a ceramic superconductor.

【0004】0004

【発明が解決しようとする課題】ところで、超電導導体
の特性評価の尺度の一つは臨界電流密度であって、超電
導導体の実用化にはその値を大きくすることが必要であ
る。セラミックス超電導体等の酸化物系超電導導体の高
臨界電流密度(Jc)化を図るためには、一般に超電導
体の結晶の配向性を高めることが重要である。その手段
としては、加圧、すなわち超電導体に圧力を加えること
が効果的で、特にBi− Pb− Sr− Ca− C
u− O系超電導体の場合に有効である。しかしながら
従来の方法で、例えばBi− Pb− Sr− Ca−
 Cu− O系多層超電導導体を作製する場合、複合ビ
レットに押圧加工を施しても複合ビレットの中心部付近
には十分に圧力は作用しない。すなわち表面付近の極く
一部分にしか圧力が作用しないため、超電導体の結晶の
配向化が内部まで進行しない欠点があった。従って、高
Jc化の程度は低かった。本発明の目的は、高い臨界電
流密度を有する多芯多層セラミックス超電導導体の製造
方法、特にBi− Pb− Sr− Ca− Cu− 
O系多芯多層超電導体に最適な製造方法を提供すること
にある。
[Problems to be Solved by the Invention] Incidentally, one of the measures for evaluating the characteristics of superconducting conductors is the critical current density, and it is necessary to increase its value in order to put superconducting conductors into practical use. In order to achieve a high critical current density (Jc) of an oxide superconductor such as a ceramic superconductor, it is generally important to improve the crystal orientation of the superconductor. As a means for this, pressurization, that is, applying pressure to the superconductor, is effective, especially for Bi-Pb-Sr-Ca-C.
This is effective in the case of u-O based superconductors. However, conventional methods, such as Bi-Pb-Sr-Ca-
When producing a Cu-O based multilayer superconducting conductor, even if a composite billet is subjected to pressing, pressure is not sufficiently applied near the center of the composite billet. That is, since pressure is applied only to a very small portion near the surface, there is a drawback that orientation of the crystals of the superconductor does not proceed to the inside. Therefore, the degree of increase in Jc was low. The purpose of the present invention is to provide a method for manufacturing a multicore multilayer ceramic superconducting conductor having a high critical current density, particularly a method for manufacturing a multicore multilayer ceramic superconducting conductor having a high critical current density.
The object of the present invention is to provide an optimal manufacturing method for O-based multicore multilayer superconductors.

【0005】[0005]

【課題を解決するための手段】本発明者は、前述の従来
方法の問題点を改善するために種々実験検討した結果、
次の特徴を有する本発明に係る超電導体の製造方法によ
り上記目的を達成することができた。その特徴とは、(
a)セラミックス超電導体又はその原料層と金属層とか
らなる複合テープを金属芯材の周囲に層状に巻き付けシ
ーム溶接して、複合体を形成し、(b)前記複合体に超
電導体となすための熱処理を施し、(c)次いで、断面
減少加工を行い、更に(d)セラミックス超電導体又は
その原料層と金属層とからなる別の複合テープを前記熱
処理した複合体の周囲に層状に巻き付けシーム溶接して
、積層された複合テープ層を備える複合体を形成し、(
e)前記積層された複合テープ層を備える複合体に超電
導体となすための熱処理を施し、(f)次いで、断面減
少加工を行い、以上所望に応じて前記(d)から(f)
の工程を所望回繰り返して所定層数の超電導体層を形成
し、最後に超電導体となすための熱処理を施すことであ
る。
[Means for Solving the Problems] As a result of various experimental studies to improve the problems of the conventional method described above, the present inventor found that
The above object could be achieved by the method for manufacturing a superconductor according to the present invention having the following characteristics. Its characteristics are (
a) forming a composite by wrapping a composite tape consisting of a ceramic superconductor or its raw material layer and a metal layer around a metal core material in a layered manner and seam welding; (b) forming a superconductor in the composite; (c) Next, a cross-section reduction process is performed, and (d) another composite tape consisting of a ceramic superconductor or its raw material layer and a metal layer is wrapped around the heat-treated composite in a layered manner to form a seam. welded to form a composite comprising laminated composite tape layers;
e) heat-treating the composite comprising the laminated composite tape layers to make it a superconductor; (f) then subjecting it to cross-section reduction processing; and performing steps (d) to (f) as desired.
This process is repeated as many times as desired to form a predetermined number of superconductor layers, and finally heat treatment is performed to form a superconductor.

【0006】以下に本発明に係る超電導体の製造方法の
各工程の詳細及び実施について説明する。あらかじめ、
図2(a)に示すようなセラミックス超電導体又はその
原料層6と金属層8とからなる複合テープ10を作製す
る。複合テープの作製には従来の手段がそのまま適用で
きる。例えばセラミックス超電導体又はその原料粉を金
属のパイプ内に充填し、セラミックス超電導体又はその
原料粉が充填された金属パイプに断面減少加工を施して
テープ状複合ビレット、即ち複合テープを形成する。そ
のビレット形状としては丸型、角形等いずれとしてもよ
い。複合テープ10の作製において、複数の幅の異なる
複合テープを作製し、後述する複合体の形成工程におい
て幅の狭い複合テープを先ず金属芯材に層状に巻付け、
シーム溶接した後順次幅の広い複合テープを巻き付けシ
ーム溶接を行うようにする。幅の異なる複合テープの作
製方法の1例として、先ず比較的幅の広いテープを作製
し、それを所定幅で長手方向にスリット加工して幅の異
なる複合テープを得る方法を挙げる。複合テープのセラ
ミックス超電導体又はその原料及び金属材質としては、
双方とも特に制約は無く既知のセラミックス超電導体又
はその原料及び金属を使用できる。
[0006] The details and implementation of each step of the method for manufacturing a superconductor according to the present invention will be explained below. in advance,
A composite tape 10 made of a ceramic superconductor or its raw material layer 6 and a metal layer 8 as shown in FIG. 2(a) is produced. Conventional means can be applied as is to produce the composite tape. For example, a ceramic superconductor or its raw material powder is filled into a metal pipe, and the metal pipe filled with the ceramic superconductor or its raw material powder is subjected to cross-sectional reduction processing to form a tape-shaped composite billet, that is, a composite tape. The billet shape may be either round or square. In the production of the composite tape 10, a plurality of composite tapes with different widths are produced, and in the composite formation process described below, the narrow composite tape is first wrapped around a metal core material in a layered manner.
After seam welding, wide composite tapes are sequentially wrapped to perform seam welding. An example of a method for producing composite tapes with different widths is a method in which a comparatively wide tape is first produced and then slitted in the longitudinal direction to a predetermined width to obtain composite tapes with different widths. Ceramic superconductors or their raw materials and metal materials for composite tapes include:
There are no particular restrictions for both, and known ceramic superconductors or their raw materials and metals can be used.

【0007】上述のように従来の方法により作製した複
合テープを図1(a)に示したように金属芯材12、例
えば金属の丸棒、あるいは金属パイプ12の周囲に層状
に巻き付けシーム溶接して複合体14を形成する。図1
は、金属芯材12の長手方向に複合テープ10の長手方
向を沿わせた縦添えの方法により形成された複合体を示
しているが、これに限ることはなく、大きなピッチで螺
旋状に複合テープ10を金属芯材12に巻いて複合体を
形成してもよい。複合体を長尺化しても複合テープが剥
離しないように、好ましくは図1に示すように複合テー
プの長手縁部の突き合わせ部を溶接する。溶接方法とし
てはシーム溶接などを適用する。金属芯材12の材質は
、複合テープの形成に使用する種類の金属を使用する。 好適には、複合テープの金属と同一の材質の金属芯材を
使用する。金属芯材12の形状は、特に円形断面である
必要はなく、次の断面減少加工の作業性に応じた形状と
することができる。
The composite tape produced by the conventional method as described above is wrapped in layers around a metal core 12, such as a metal round bar or metal pipe 12, as shown in FIG. 1(a), and seam welded. A composite body 14 is formed. Figure 1
1 shows a composite formed by a longitudinal attachment method in which the longitudinal direction of the composite tape 10 is aligned with the longitudinal direction of the metal core material 12, but the present invention is not limited to this method. Tape 10 may be wrapped around metal core 12 to form a composite. In order to prevent the composite tape from peeling off even when the composite is lengthened, preferably the abutting portions of the longitudinal edges of the composite tape are welded as shown in FIG. Seam welding or the like is applied as the welding method. The metal core material 12 is made of the same metal used for forming the composite tape. Preferably, a metal core material made of the same material as the metal of the composite tape is used. The shape of the metal core material 12 does not need to be particularly circular in cross section, and can be shaped in accordance with the workability of the subsequent cross-section reduction process.

【0008】複合体14に従来から既知の方法と条件で
超電導体となすための熱処理を施す。次に、熱処理を施
した複合体14に断面減少加工を施す。断面の形状は、
特に制限はないが、好適には断面減少加工の前の形状と
相似の形状に加工する。断面減少加工方法も特に制約は
無く、従来からの方法が使用できる。好適には、例えば
スウェージング、ローラーダイス等のような圧縮加工を
使用する。また減面率に対する制約は特にないが、減面
率をあまり高くする必要はなく、好適には10〜20%
程度である。このようにして施した断面減少加工により
、セラミックス超電導体層では加圧されて結晶の配向性
が向上する。続いて、再度複合テープ10と同じ材料、
同じ構造で幅がやや広い複合テープ16を図1(b)の
ように断面減少加工した複合体14の周囲に層状に巻き
付けシーム溶接して、積層された複合テープを備えた複
合体14を形成する。この場合も最初に複合テープ10
を金属芯材12に巻いた時と同様に好適には、複合テー
プ16の長手方向縁部の突き合わせ部を溶接する。次い
で、前回と同様の方法と条件で超電導体となすための熱
処理を施した後、前回と同様な断面減少加工を行い、2
層目のセラミックス超電導体の結晶の配向性を高める。 この場合、1層目のセラミックス超電導体の結晶の配向
性は維持されている。このような工程を複数回所要回数
繰り返して所定層数の超電導体層を備えた複合体を形成
し、最終的な超電導体となすための熱処理を行えば、本
発明に係る多層セラミックス超電導導体が得られる。
[0008] The composite body 14 is subjected to heat treatment to form a superconductor using a conventionally known method and conditions. Next, the heat-treated composite 14 is subjected to cross-section reduction processing. The cross-sectional shape is
Although there are no particular limitations, it is preferable to process the shape into a shape similar to the shape before the cross-section reduction process. There are no particular restrictions on the cross-section reduction processing method, and conventional methods can be used. Preferably, compression processes such as swaging, roller dies, etc. are used. Although there are no particular restrictions on the area reduction rate, it is not necessary to make the area reduction rate too high, preferably 10 to 20%.
That's about it. Due to the cross-sectional reduction process performed in this way, the ceramic superconductor layer is pressurized and the orientation of the crystals is improved. Next, use the same material as composite tape 10 again.
A composite tape 16 having the same structure but slightly wider is wrapped in layers around the composite 14 whose cross section has been reduced as shown in FIG. 1(b) and seam welded to form a composite 14 with laminated composite tapes. do. In this case as well, the composite tape 10
Preferably, the abutting portions of the longitudinal edges of the composite tape 16 are welded in the same manner as when the composite tape 16 is wound around the metal core material 12. Next, heat treatment was performed to form a superconductor using the same method and conditions as before, and then cross-section reduction processing was performed in the same way as before.
Improve the crystal orientation of the ceramic superconductor layer. In this case, the crystal orientation of the first layer of ceramic superconductor is maintained. The multilayer ceramic superconducting conductor according to the present invention can be obtained by repeating such steps a plurality of times as required to form a composite body with a predetermined number of superconductor layers, and then performing heat treatment to form the final superconductor. can get.

【0009】これまで金属層の内部にセラミックス超電
導体又はその原料層が配置された複合テープを用いた例
について説明したが、これに限るものではない。例えば
金属テープ18の片側にセラミックス超電導体又はその
原料層20を被着させた図3(a)に示す複合テープ2
2を用いることもできる。金属テープ上にセラミックス
超電導体又はその原料粉末を溶射、コーティング等によ
って被着させることにより、或いはセラミックス超電導
体又はその原料とバインダーとを混練して調製したペー
ストを金属テープの上に被着させることにより、このよ
うな複合テープを作製することができる。尚、セラミッ
クス超電導体又はその原料とバインダーとの混練による
ペーストを金属テープの上に被着して複合テープを形成
する場合には、複合テープを金属芯材に巻いて形成した
複合体を加熱処理してバインダー成分を揮発させる既知
の脱バインダー処理が必要である。
[0009] Up to now, an example has been described in which a composite tape is used in which a ceramic superconductor or its raw material layer is arranged inside a metal layer, but the present invention is not limited to this. For example, a composite tape 2 shown in FIG. 3(a) in which a ceramic superconductor or its raw material layer 20 is adhered to one side of a metal tape 18.
2 can also be used. Applying a ceramic superconductor or its raw material powder onto a metal tape by thermal spraying, coating, etc., or applying a paste prepared by kneading a ceramic superconductor or its raw material and a binder onto a metal tape. Thus, such a composite tape can be produced. In addition, when a composite tape is formed by applying a paste made by kneading a ceramic superconductor or its raw material and a binder onto a metal tape, the composite formed by wrapping the composite tape around a metal core material is heat-treated. A known debinding treatment is required to volatilize the binder component.

【0010】一方、本発明により多芯多層セラミックス
超電導導体を製造する場合には、例えば図2(b)、又
は図3(b)に示したような多芯状複合テープを用いる
ことによって超電導体の多芯化、多層化を行う。また、
この実施例では断面が丸型の多層、多芯セラミックス超
電導導体の製造方法について述べてきが、例えば断面が
楕円形、四角形等のセラミックス超電導導体の製造にも
適用が可能であることは言うまでもない。上述のように
本発明方法によれば、断面減少加工における押圧力がセ
ラミックス超電導導体の半径方向の中心部にまで作用す
るので、セラミックス超電導体の中心部においてもセラ
ミックス超電導体の結晶の配向性が向上する。そのため
、従来法に比較してJc特性が大幅に向上する。本発明
方法に好適なセラミックス超電導体としては、圧力によ
る結晶の配向が著しいセラミックス超電導体、例えばB
i− Pb− Sr− Ca−Cu− O系超電導体等
を挙げることができる。
On the other hand, when producing a multicore multilayer ceramic superconductor according to the present invention, a multicore composite tape as shown in FIG. 2(b) or FIG. 3(b) is used to produce a superconductor. Multi-core and multi-layered. Also,
In this example, a method for manufacturing a multilayer, multicore ceramic superconducting conductor with a round cross section has been described, but it goes without saying that the method can also be applied to manufacturing a ceramic superconducting conductor having an elliptical or square cross section, for example. As described above, according to the method of the present invention, the pressing force in the cross-section reduction process is applied to the radial center of the ceramic superconductor, so that the orientation of the crystals of the ceramic superconductor is maintained even in the center of the ceramic superconductor. improves. Therefore, the Jc characteristic is significantly improved compared to the conventional method. Ceramic superconductors suitable for the method of the present invention include ceramic superconductors whose crystals are significantly oriented by pressure, such as B
Examples include i-Pb-Sr-Ca-Cu-O-based superconductors.

【0011】[0011]

【実施例】次に本発明を実施例に基づいてさらに具体的
に説明する。実施例1Bi2 O3 、PbO、SrC
O3 、CaCO3 、CuOのセラミックス超電導体
一次原料粉をモル比で1.6 :0.4 :2:2:3
となるように配合し混合した後、大気中で温度800℃
で100時間仮焼成し、次いで得られた仮焼成体を粉砕
して平均粒径約5μm の仮焼粉を作製した。得た仮焼
粉を圧粉成形して縦5mm、横5mmの断面で長さ40
mmの棒状試料を多数作製した。これら棒状試料をAg
製角型パイプの中に直列に配置し、棒状試料の端部と端
部の接続部を電子ビーム溶接して複合ビレットとして形
成した。Ag製角型パイプの寸法は、パイプ壁の外側が
高さ10mm、幅50mmで、長さ100mm、壁の内
側が高さ約5mm、幅40mmで、長さ90mmであっ
た。以上のようにして形成した複合ビレットに圧延加工
による断面減少加工を施し幅約70mm、厚さ0.3m
m程度の複合テープとした。この複合テープに長手方向
にスリット加工を施して幅約32mmの複合テープとし
た。
EXAMPLES Next, the present invention will be explained in more detail based on examples. Example 1 Bi2O3, PbO, SrC
Ceramic superconductor primary raw material powders of O3, CaCO3, and CuO in a molar ratio of 1.6:0.4:2:2:3
After blending and mixing so that
The resulting calcined body was then pulverized to produce calcined powder with an average particle size of about 5 μm. The obtained calcined powder is compacted into a cross section with a length of 5 mm and a width of 5 mm and a length of 40 mm.
A large number of rod-shaped samples with a diameter of mm were prepared. Ag
They were placed in series in a rectangular pipe, and the ends of the rod-shaped samples were welded with electron beams to form a composite billet. The dimensions of the Ag square pipe were as follows: the outside of the pipe wall was 10 mm high, 50 mm wide, and 100 mm long; the inside of the wall was approximately 5 mm high, 40 mm wide, and 90 mm long. The composite billet formed as described above was subjected to cross-sectional reduction processing by rolling to a width of approximately 70 mm and a thickness of 0.3 m.
The composite tape was made into a composite tape with a thickness of approximately 1. This composite tape was slit in the longitudinal direction to obtain a composite tape with a width of about 32 mm.

【0012】次に、外径10mmのAg製丸棒上に幅約
32mmの複合テープを図1(a)に示すように巻き付
け、複合テープの両縁部の突き合わせ部をシーム溶接し
て複合体を形成した。次いで、得られた複合体を大気中
で温度830℃に50時間維持して熱処理した後、スウ
ージング加工して複合体の外径が10mmになるまで圧
延加工による断面減少加工した。次に先の複合テープと
同じ材料、同じ構造で同様にして形成した別の複合テー
プを図3(b)示したように複合体の周囲に層状に巻付
け、次いで前回と同様の条件で熱処理した後、外径10
mmまでスウェージング加工した。以上の工程を8回繰
り返し、最終のスウェージング加工で複合体の外径を5
mmとした後、前と同じ条件で熱処理して、本発明に係
る実施例品1として8層のセラミックス超電導体層を備
えたセラミックス超電導導体を得た。実施例品1の多層
セラミックス超電導導体について、液体窒素中でO磁場
におけるIcを測定した結果、85(A)の優れた特性
が得られた。
Next, a composite tape with a width of about 32 mm is wrapped around an Ag round bar with an outer diameter of 10 mm as shown in FIG. was formed. Next, the obtained composite was heat treated in the atmosphere at a temperature of 830° C. for 50 hours, and then swooped to reduce the cross section by rolling until the outer diameter of the composite was 10 mm. Next, another composite tape made of the same material and structure as the previous composite tape was wrapped around the composite in a layered manner as shown in Figure 3(b), and then heat treated under the same conditions as before. After that, the outer diameter is 10
Swaging process was performed to mm. Repeat the above process 8 times and use the final swaging process to reduce the outer diameter of the composite to 5
mm, and then heat-treated under the same conditions as before to obtain a ceramic superconductor having eight ceramic superconductor layers as Example Product 1 according to the present invention. As a result of measuring Ic in an O magnetic field in liquid nitrogen for the multilayer ceramic superconducting conductor of Example Product 1, excellent characteristics of 85 (A) were obtained.

【0013】実施例2実施例1で調製したセラミックス
超電導体原料の仮焼粉と同様にして調製したセラミック
ス超電導体原料仮焼粉と、バインダーとを混練してペー
スト状とし、これを幅約32mm、厚さ約0.3mmの
Agシート上に幅2mm、厚さ0.1mmの8本のスト
ライプ状に塗布して複合テープを作製した。こうして得
た複合テープをそのセラミックス超電導体原料層側が内
側となるような配置で、外径10mmのAg製丸棒上に
縦添え状に巻き付け、複合テープの両縁部の突き合わせ
部をシーム溶接して複合体を形成した。次いで、この複
合体を温度500℃で5時間保持してバインダー成分を
揮発させる脱バインダー処理を行った後、更に大気中で
温度830℃で50時間維持して熱処理を施した。続い
て熱処理した複合体をスウェージング加工して外径10
mmに仕上げた。更に外径10mmの複合体の上に先の
複合テープと同様にして得た別の複合テープを巻き付け
、複合テープの両縁部の突き合わせ部をシーム溶接し、
前回と同じ方法で同じ条件で熱処理し、外径10mmま
てスウェージング加工を前回と同様に行った。同様の工
程を8回繰り返し、最終のスウェージング加工で外径5
mmとし、前と同じ方法と条件で熱処理して、本発明に
係る実施例品2として8層のセラミックス超電導体層を
備えた多芯セラミックス超電導導体を作製した。この多
芯多層セラミックス超電導導体について、液体窒素中で
O磁場におけるIcを測定した結果、68(A)の優れ
た特性が得られた。
Example 2 The ceramic superconductor raw material calcined powder prepared in the same manner as the ceramic superconductor raw material calcined powder prepared in Example 1 and a binder were kneaded to form a paste, which was made into a paste having a width of about 32 mm. A composite tape was prepared by coating eight stripes each having a width of 2 mm and a thickness of 0.1 mm on an Ag sheet having a thickness of approximately 0.3 mm. The composite tape thus obtained was wound vertically around an Ag round bar with an outer diameter of 10 mm with the ceramic superconductor raw material layer side facing inside, and the butt portions of both edges of the composite tape were seam welded. A complex was formed. Next, this composite was subjected to a binder removal treatment in which the composite was held at a temperature of 500° C. for 5 hours to volatilize the binder component, and then a heat treatment was performed by maintaining the composite at a temperature of 830° C. for 50 hours in the atmosphere. Subsequently, the heat-treated composite was swaged to an outer diameter of 10
Finished in mm. Furthermore, another composite tape obtained in the same manner as the previous composite tape was wrapped around the composite having an outer diameter of 10 mm, and the butt portions of both edges of the composite tape were seam welded.
Heat treatment was performed in the same manner and under the same conditions as last time, and swaging was performed in the same manner as last time to increase the outer diameter to 10 mm. The same process was repeated 8 times, and the final swaging process resulted in an outer diameter of 5
mm, and heat-treated using the same method and conditions as before to produce a multicore ceramic superconductor having eight ceramic superconductor layers as Example 2 according to the present invention. As a result of measuring the Ic of this multicore multilayer ceramic superconductor in an O magnetic field in liquid nitrogen, an excellent characteristic of 68 (A) was obtained.

【0014】比較例1実施例1で得た複合テープと同様
にして得た複合テープを外径10mmのAg製丸棒上に
8層の渦巻状に巻いて複合体を形成した。この複合体を
内径15.5mm、外径20mmのAg製パイプ内に挿
入して複合ビレットとした。これをスウェージング加工
して外径5mmに仕上げた。これを大気中で温度830
℃で50時間維持して熱処理を施し、比較例品1として
多層セラミックス超電導体を作製した。この多層セラミ
ックス超電導導体について液体窒素中でO磁場における
Icを測定した結果、24(A)であった。比較例2比
較例1と同様にして得た複合体のスウェージング加工の
途中で外径が15mmになったとき、複合体を一旦大気
中で温度830℃で50時間保持して中間熱処理を施し
た以外は、比較例品1と同様にして比較例品2の多層セ
ラミックス超電導体を得た。この多層セラミックス超電
導体について、液体窒素中でO磁場におけるIcを測定
した結果、28(A)であった。比較例3比較例1と同
様にして得た複合体のスウェージング加工の途中で外径
が15mmになったとき、複合体を一旦大気中で830
℃で50時間保持して第1回目の中間熱処理を施し、更
に外径が10mmになったとき複合体に第1回と同じ条
件で第2回目の中間熱処理を施したこと以外は、比較例
品1と同様にして比較例品3の多層セラミックス超電導
体を得た。この多層セラミックス超電導体について、液
体窒素中でO磁場におけるIcを測定した結果、33(
A)であった。
Comparative Example 1 A composite tape obtained in the same manner as the composite tape obtained in Example 1 was spirally wound in eight layers around an Ag round rod having an outer diameter of 10 mm to form a composite. This composite was inserted into an Ag pipe with an inner diameter of 15.5 mm and an outer diameter of 20 mm to form a composite billet. This was swaged and finished to an outer diameter of 5 mm. This is heated in the atmosphere at a temperature of 830°C.
A multilayer ceramic superconductor was produced as Comparative Example Product 1 by heat treatment at a temperature of 50 hours. The Ic of this multilayer ceramic superconducting conductor in an O magnetic field was measured in liquid nitrogen and was found to be 24 (A). Comparative Example 2 When the outer diameter of a composite obtained in the same manner as Comparative Example 1 reached 15 mm during the swaging process, the composite was temporarily held in the atmosphere at a temperature of 830°C for 50 hours and subjected to intermediate heat treatment. A multilayer ceramic superconductor of Comparative Example 2 was obtained in the same manner as Comparative Example 1 except for the following steps. The Ic of this multilayer ceramic superconductor in an O magnetic field was measured in liquid nitrogen and was found to be 28 (A). Comparative Example 3 When the outer diameter of a composite obtained in the same manner as Comparative Example 1 became 15 mm during the swaging process, the composite was once swaged in the atmosphere at 830 mm.
Comparative example except that the composite was held at ℃ for 50 hours and subjected to a first intermediate heat treatment, and when the outer diameter reached 10 mm, the composite was subjected to a second intermediate heat treatment under the same conditions as the first. A multilayer ceramic superconductor of Comparative Example Product 3 was obtained in the same manner as Product 1. As a result of measuring the Ic of this multilayer ceramic superconductor in an O magnetic field in liquid nitrogen, it was found to be 33 (
A).

【0015】実施例品1と比較例品1から3の多層セラ
ミックス超電導導体とを比較すると、実施例品の臨界電
流が大きいことが明確であり、本発明に係る製造方法に
より製造された多層セラミックス超電導体は、従来の方
法により製造された多層セラミックス超電導体より高い
臨界電流密度を有することが確認された。更に、実施例
品2の多芯多層セラミックス超電導導体も、大きい臨界
電流を記録し、従って高い臨界電流密度を有することが
確認された。
Comparing the multilayer ceramic superconducting conductors of Example Product 1 and Comparative Example Products 1 to 3, it is clear that the Example product has a larger critical current, and the multilayer ceramics manufactured by the manufacturing method according to the present invention The superconductor was confirmed to have a higher critical current density than multilayer ceramic superconductors produced by conventional methods. Furthermore, it was confirmed that the multicore multilayer ceramic superconducting conductor of Example Product 2 also recorded a large critical current, and therefore had a high critical current density.

【0016】[0016]

【発明の効果】以上詳細に説明したように、本発明に係
る製造方法は、金属芯材上の複合テープの各層ごとに断
面減少加工を施すことにより、従来の方法により製造さ
れた多芯多層セラミックス超電導体に比べて格段に優れ
た超電導体特性、特に臨界電流密度の高い線材化された
多芯多層セラミックス超電導導体を製造することができ
る。本発明に係る製造方法により線材化されたセラミッ
クス超電導体はマグネット、ケーブル等の導体として適
用が可能であり、本発明はセラミックス超電導体の実用
化を促進する。
Effects of the Invention As explained in detail above, the manufacturing method according to the present invention reduces the cross-section of each layer of the composite tape on the metal core material, thereby reducing the cross-section of the multi-core multi-layered composite tape manufactured by the conventional method. It is possible to produce a multi-core, multi-layered ceramic superconducting conductor made into a wire, which has much superior superconducting properties compared to ceramic superconductors, especially a high critical current density. The ceramic superconductor made into a wire by the manufacturing method according to the present invention can be applied as a conductor for magnets, cables, etc., and the present invention promotes the practical use of the ceramic superconductor.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1(a)は本発明に係るセラミックス超電導
体の製造方法の実施における中途工程で金属芯材に1層
の複合テープを巻き付けて形成された複合体の模式的斜
視図であり、図1(b)は、金属芯材に2層の複合テー
プが層状に巻き付けれて形成された複合体の模式的斜視
図である。
FIG. 1(a) is a schematic perspective view of a composite formed by wrapping one layer of composite tape around a metal core material in an intermediate step in implementing the method for manufacturing a ceramic superconductor according to the present invention. , FIG. 1(b) is a schematic perspective view of a composite body formed by winding two layers of composite tape around a metal core material.

【図2】図2(a)は複合テープの断面図であり、図2
(b)は多芯状複合テープの断面図である。
[Fig. 2] Fig. 2(a) is a cross-sectional view of the composite tape;
(b) is a sectional view of the multi-core composite tape.

【図3】図3(a)は金属テープの片側にセラミックス
超電導体原料粉末とバイダーとの混練ペーストを被着し
て形成した複合テープの断面図であり、図3(b)は同
様にして形成した多芯状複合テープの断面図である。
FIG. 3(a) is a cross-sectional view of a composite tape formed by applying a kneaded paste of ceramic superconductor raw material powder and a binder to one side of a metal tape, and FIG. FIG. 3 is a cross-sectional view of the formed multicore composite tape.

【図4】図4(a)は従来の製造方法により製造された
多層セラミックス超電導体の断面図であり、図4(b)
は、従来の製造方法により製造された多芯多層セラミッ
クス超電導体の断面図である。
FIG. 4(a) is a cross-sectional view of a multilayer ceramic superconductor manufactured by a conventional manufacturing method, and FIG. 4(b) is a cross-sectional view of a multilayer ceramic superconductor manufactured by a conventional manufacturing method.
1 is a cross-sectional view of a multicore multilayer ceramic superconductor manufactured by a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

6  セラミックス超電導体原料層 8  金属層 10  複合テープ 12  金属芯材 14  複合体 16  別の複合テープ 18  セラミックス超電導体原料層 20  金属テープ 22  複合テープ 6 Ceramic superconductor raw material layer 8 Metal layer 10 Composite tape 12 Metal core material 14 Complex 16 Another composite tape 18 Ceramic superconductor raw material layer 20 Metal tape 22 Composite tape

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  (a)セラミックス超電導体又はその
原料層と金属層とからなる複合テープを金属芯材の周囲
に層状に巻き付けシーム溶接して、複合体を形成し、(
b)前記複合体に超電導体となすための熱処理を施し、
(c)次いで、断面減少加工を行い、更に(d)セラミ
ックス超電導体又はその原料層と金属層とからなる別の
複合テープを前記熱処理した複合体の周囲に層状に巻き
付けシーム溶接して、積層された複合テープ層を備える
複合体を形成し、(e)前記積層された複合テープ層を
備える複合体に超電導体となすための熱処理を施し、(
f)次いで、断面減少加工を行い、以上所望に応じて前
記(d)から(f)の工程を所望回繰り返し施して所定
層数の超電導体層を形成し、最後に超電導体となすため
の熱処理を施すことを特徴とする多層セラミックス超電
導導体の製造方法。
Claim 1: (a) A composite tape consisting of a ceramic superconductor or its raw material layer and a metal layer is wrapped in layers around a metal core material and seam welded to form a composite;
b) subjecting the composite to a heat treatment to make it a superconductor;
(c) Next, a cross-section reduction process is performed, and (d) another composite tape consisting of a ceramic superconductor or its raw material layer and a metal layer is wrapped around the heat-treated composite in layers and seam welded to laminate. (e) heat-treating the composite including the laminated composite tape layers to make it a superconductor;
f) Next, perform a cross-section reduction process, repeat the steps (d) to (f) as desired as desired to form a predetermined number of superconductor layers, and finally form a superconductor. A method for producing a multilayer ceramic superconducting conductor characterized by subjecting it to heat treatment.
JP3138683A 1991-05-15 1991-05-15 Manufacturing method of multilayer ceramic superconducting conductor Expired - Lifetime JP2989932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3138683A JP2989932B2 (en) 1991-05-15 1991-05-15 Manufacturing method of multilayer ceramic superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3138683A JP2989932B2 (en) 1991-05-15 1991-05-15 Manufacturing method of multilayer ceramic superconducting conductor

Publications (2)

Publication Number Publication Date
JPH04337213A true JPH04337213A (en) 1992-11-25
JP2989932B2 JP2989932B2 (en) 1999-12-13

Family

ID=15227669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3138683A Expired - Lifetime JP2989932B2 (en) 1991-05-15 1991-05-15 Manufacturing method of multilayer ceramic superconducting conductor

Country Status (1)

Country Link
JP (1) JP2989932B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196604A (en) * 2005-01-12 2006-07-27 Masataka Iwakuma Superconducting coil
JP2008124014A (en) * 2006-10-27 2008-05-29 Nexans Method for producing superconductor
EP2447956A1 (en) * 2010-10-27 2012-05-02 Nexans Conductor for transporting electric power
CN110415886A (en) * 2019-07-09 2019-11-05 上海交通大学 Hyperconductive cable structure and winding method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196604A (en) * 2005-01-12 2006-07-27 Masataka Iwakuma Superconducting coil
JP4558517B2 (en) * 2005-01-12 2010-10-06 成卓 岩熊 Superconducting coil
JP2008124014A (en) * 2006-10-27 2008-05-29 Nexans Method for producing superconductor
EP2447956A1 (en) * 2010-10-27 2012-05-02 Nexans Conductor for transporting electric power
FR2966968A1 (en) * 2010-10-27 2012-05-04 Nexans CONDUCTOR FOR TRANSPORT OF ELECTRIC ENERGY
US20120129701A1 (en) * 2010-10-27 2012-05-24 Christian-Eric Bruzek Conductor for transmitting electrical power
US8712490B2 (en) 2010-10-27 2014-04-29 Nexans Conductor for transmitting electrical power
CN110415886A (en) * 2019-07-09 2019-11-05 上海交通大学 Hyperconductive cable structure and winding method

Also Published As

Publication number Publication date
JP2989932B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JPH06325634A (en) Multi-core oxide superconducting wire
JPH09223418A (en) Oxide superconductive wire rod and manufacture thereof
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JP3042558B2 (en) Ceramic superconducting conductor
JPH0773757A (en) Manufacture of oxide superconductor
JP2775946B2 (en) Manufacturing method of oxide superconducting wire
JPH05144332A (en) Ceramic superconductor
JPH05334921A (en) Ceramic superconductor
JPH05151837A (en) Ceramic superconductive conductor
JP2951423B2 (en) Manufacturing method of ceramic superconducting conductor
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JP2547209B2 (en) Superconducting wire manufacturing method
JP3033624B2 (en) Ceramic superconducting conductor
JPH06325633A (en) Multi-core oxide superconducting wire
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JP2516642B2 (en) Method for producing multi-core oxide superconducting wire
JP3033606B2 (en) Manufacturing method of oxide superconducting wire
JP2834525B2 (en) Method for manufacturing superconductor microcircuit
JPH04277410A (en) Tape-like multi-core ceramic superconductor and cable using it
JPH04264315A (en) Manufacture of large-capacity oxide superconducting conductor
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JPH05114320A (en) Manufacture of ceramics superconductive conductor
JPH0597410A (en) Production of multilayered multi-core ceramic superconductor