JPH0597410A - Production of multilayered multi-core ceramic superconductor - Google Patents

Production of multilayered multi-core ceramic superconductor

Info

Publication number
JPH0597410A
JPH0597410A JP3260803A JP26080391A JPH0597410A JP H0597410 A JPH0597410 A JP H0597410A JP 3260803 A JP3260803 A JP 3260803A JP 26080391 A JP26080391 A JP 26080391A JP H0597410 A JPH0597410 A JP H0597410A
Authority
JP
Japan
Prior art keywords
rolling
cross
superconductor
raw material
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3260803A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
祐行 菊地
Masanao Mimura
正直 三村
Kiyoshi Nemoto
清 根本
Naoki Uno
直樹 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3260803A priority Critical patent/JPH0597410A/en
Publication of JPH0597410A publication Critical patent/JPH0597410A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce a multilayered multi-core ceramic superconductor having high Ic characteristics and an excellent cross-sectional shape. CONSTITUTION:A combined body 6 consisting of powdery starting material for a ceramic superconductor and a metal is rolled down by repeating a first rolling process 7 in which rolling is carried out from opposite two directions while imparting flowability to the starting material and a second rolling process 8 in which rolling is carried out from opposite two directions perpendicular to the above-mentioned two directions while imparting flowability to the starting material. These processes 7, 8 are repeated at least once or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマグネット、ケーブル等
に適用可能な多層、多芯セラミックス超電導導体の製造
方法に係り、特に、断面形状と超電導特性に優れた多
層、多芯セラミックス超電導体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multi-layered, multi-core ceramics superconducting conductor applicable to magnets, cables, etc., and particularly to the production of a multi-layer, multi-cores ceramics superconductor having an excellent cross-sectional shape and superconducting properties. Regarding the method.

【0002】[0002]

【従来の技術】YBaCuO系、Bi(Pb)SrCa
CuO系、TlBaCaCuO系等のように、Tcが液
体窒素温度を越えるセラミックス超電導体が知られてお
り、このようなセラミックス超電導体の応用を目的に、
種々の形状に成型することが検討されている。例えば、
線材を作製する場合には、一般に金属シース法が用いら
れている。これは、超電導体となるセラミックスの原料
を金属のパイプ内に充填した後、断面減少加工して所望
形状寸法の複合線材とし、しかる後、熱処理を行ってセ
ラミックス超電導導体とするものである。
2. Description of the Related Art YBaCuO system, Bi (Pb) SrCa
Ceramic superconductors such as CuO type and TlBaCaCuO type in which Tc exceeds the liquid nitrogen temperature are known, and for the purpose of applying such ceramic superconductors,
Molding into various shapes has been studied. For example,
A metal sheath method is generally used when producing a wire. This is to fill a metal pipe with a raw material of ceramics to be a superconductor, and then subject it to a cross-section reduction processing to obtain a composite wire having a desired shape and dimension, and then heat-treat it to obtain a ceramics superconducting conductor.

【0003】この金属シース法により得られる線材の形
状としては、断面が丸型、楕円形、四角形、テープ状
等、またはこれらを複数本束ねたような形状の多芯線
材、更には金属の内部にセラミックス超電導体が同芯円
筒状または渦巻状に配置された構造の多層線材等も種々
試作検討されている。断面減少加工としては、得られる
線材の形状に応じて、押し出し、圧延、スウェージン
グ、引き抜き等、従来の塑性加工技術がそのまま適用さ
れている。
The shape of the wire obtained by the metal sheath method is a round, elliptical, quadrangular, tape-shaped cross section, or a multi-core wire having a shape in which a plurality of these are bundled, and further, the inside of metal. In addition, various prototypes of multi-layer wire rods having a structure in which ceramics superconductors are arranged in a concentric cylindrical shape or in a spiral shape have been studied. As the cross-section reduction processing, conventional plastic working techniques such as extrusion, rolling, swaging, and drawing are applied as they are, depending on the shape of the obtained wire.

【0004】金属の材質としては、熱伝導性、電気伝導
性に優れた材料、例えばAg、Ag合金、Cu、Cu合
金等が適用できるが、酸素透過性の点でAg、Ag合金
を用いる例が多い。
As the material of the metal, a material having excellent thermal conductivity and electrical conductivity, for example, Ag, Ag alloy, Cu, Cu alloy or the like can be applied, but Ag and Ag alloys are used in view of oxygen permeability. There are many.

【0005】図4は多層線材の一例を示す断面図であ
る。図4において、(a)は断面が丸型で金属1の内部
にセラミックス超電導体2が同芯円筒状に配置された構
造、(b)は断面が角型で渦巻状に構成したものをそれ
ぞれ示す。このような多層線材をコイル等の導体に適用
することが検討されている。
FIG. 4 is a sectional view showing an example of a multi-layer wire. In FIG. 4, (a) shows a structure in which the ceramics superconductor 2 is arranged in a concentric cylindrical shape inside the metal 1 with a round cross section, and (b) shows a structure in which the cross section is rectangular and has a spiral shape. Show. Applying such a multilayer wire to a conductor such as a coil has been studied.

【0006】図4(a)に示すような多層線材の製造方
法としては、従来、金属パイプの内面、外面の一方また
は両方に、超電導体となるセラミックスの原料を塗布し
たり、あるいは溶射などの方法で付着させ、外径の異な
るこれらを同芯状に構成して複合ビレットとし、しかる
後、このビレットに断面減少加工、熱処理を施すことが
行われている。また、図4(b)に示すような多層線材
を作製する場合には、金属テープの片面または両面に超
電導体となるセラミック原料を付着させるか、あるいは
通常の方法で作製したAgシーステープ状線材を用い、
これを金属製丸棒やパイプの上に渦巻状に巻き付けて得
た複合ビレットに断面減少加工、及び熱処理を施すこと
が試みられている。多芯線材についても、これら多層線
材とほぼ同様な方法によって作製することが可能であ
る。
Conventionally, as a method of manufacturing a multilayer wire rod as shown in FIG. 4 (a), one or both of the inner surface and the outer surface of a metal pipe is coated with a raw material of ceramics to be a superconductor, or is sprayed. A composite billet is formed by attaching them by a method to form a composite billet having different outer diameters, and then subjecting the billet to cross-section reduction processing and heat treatment. Further, in the case of producing a multilayer wire rod as shown in FIG. 4B, an Ag sheath tape-like wire rod produced by attaching a ceramic raw material to be a superconductor to one side or both sides of a metal tape or by an ordinary method. Using
Attempts have been made to subject a composite billet obtained by spirally winding it onto a metal round bar or pipe to subject it to cross-section reduction processing and heat treatment. A multifilamentary wire can also be manufactured by a method substantially similar to those of these multilayer wires.

【0007】例えば、Bi系セラミック超電導体を用い
る場合には、圧縮加工によって結晶配向させ、特性の向
上をはかっている。またコイルに用いる導体の形状とし
ては丸型でもよいが、寸法精度の優れた角型線材を用い
る方が好ましい。ソレノイドコイルを作製する場合に整
列巻きが可能になり、占積率を大きくすることができる
からである。
For example, when a Bi-based ceramic superconductor is used, the crystal orientation is made by compression processing to improve the characteristics. The shape of the conductor used for the coil may be round, but it is preferable to use a rectangular wire rod having excellent dimensional accuracy. This is because when the solenoid coil is manufactured, the winding can be performed in an aligned manner, and the space factor can be increased.

【0008】[0008]

【発明が解決しようとする課題】例えば、テープ状線材
を渦巻状に巻回して構成した複合ビレッドを断面減少加
工して図4(b)に示したような多層線材を作製した場
合、ロールに接触する面のセラミックス超電導体は結晶
配向によってJc向上が図れるが、それと直角方向の面
のセラミックス超電導体は圧縮力が加わらないため、I
c増加に寄与しないという問題点があった。
DISCLOSURE OF THE INVENTION For example, in the case of producing a multilayer wire rod as shown in FIG. 4 (b) by subjecting a composite billed formed by winding a tape-shaped wire rod in a spiral shape to a cross-section reduction process, The ceramic superconductor on the contact surface can be improved in Jc by the crystal orientation, but the ceramic superconductor on the surface perpendicular to it has no compressive force.
There is a problem that it does not contribute to the increase of c.

【0009】本発明の目的は、高Ic特性及び優れた断
面形状を有する多層、多芯セラミックス超電導導体の製
造方法を提供することにある。
An object of the present invention is to provide a method for producing a multi-layer, multi-core ceramics superconducting conductor having high Ic characteristics and an excellent sectional shape.

【0010】[0010]

【課題を解決するための手段】本発明は上述の問題点の
改善をはかったもので、セラミックス超導電体原料粉末
原料と金属との複合体を断面減少加工して、所望の形状
及び寸法の複合線材とし、次いで熱処理を行うことから
なる多層、多芯セラミックス超電導導体の製造方法であ
って、前記断面減少加工は、前記セラミックス超導電体
原料粉末に流動性を付与しつつ、相対する2方向からの
圧延加工を行う第1の圧延工程と、前記セラミックス超
導電体原料粉末に流動性を付与しつつ、前記相対する2
方向に直角な相対する2方向から圧延加工を行う第2の
圧延工程とを、少なくとも1回以上繰り返し行なうこと
を特徴とする多層、多芯セラミックス超電導導体の製造
方法を提供する。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, in which a composite of a ceramic superconductor raw material powder raw material and a metal is subjected to cross-section reduction processing to obtain a desired shape and size. A method for manufacturing a multi-layered, multi-core ceramics superconducting conductor, which comprises forming a composite wire and then performing heat treatment, wherein the cross-section reduction processing is performed in two opposite directions while imparting fluidity to the ceramics superconductor raw material powder. From the first rolling step of performing rolling processing from 1 to 2, while imparting fluidity to the ceramic superconductor raw material powder.
Provided is a method for producing a multi-layer, multi-core ceramics superconducting conductor, characterized in that a second rolling step in which rolling is performed from two opposite directions perpendicular to the direction is repeated at least once.

【0011】本発明の方法では、まず最初に多層状、ま
たは多芯状複合ビレットを作製する。その方法は、例え
ば前述したような公知の手段を適用することができる。
例えば、図4(a)に示すように、金属パイプ2の内
面、外面の一方または両方に、超電導体となるセラミッ
クスの原料1を塗布又は溶射などの方法で付着させ、外
径の異なるこれらを同芯状に構成して複合ビレットとし
たり、図4(b)に示すような多層線材を作製する場合
には、金属テープ2の片面または両面に超電導体となる
セラミックス原料1を付着させるか、或いは通常の方法
で作製したAgシーステープ状線材を用い、これを金属
製丸棒、パイプの上に渦巻状に巻き付けて得ることも可
能である。
In the method of the present invention, first, a multi-layer or multi-core composite billet is produced. As the method, for example, the known means described above can be applied.
For example, as shown in FIG. 4A, the ceramic raw material 1 to be a superconductor is applied to one or both of the inner surface and the outer surface of the metal pipe 2 by a method such as coating or thermal spraying, and those having different outer diameters are attached. In the case where the composite billet is formed by concentric cores or when a multilayer wire material as shown in FIG. 4B is produced, the ceramic raw material 1 to be a superconductor is attached to one or both surfaces of the metal tape 2, or Alternatively, it is also possible to use an Ag sheath tape-shaped wire produced by a usual method and spirally wind this on a metal round bar or pipe.

【0012】多芯型線材を作製する場合の複合ビレット
も、ほぼ同様に作製することができる。これらの複合ビ
レット形状は断面が丸型のほか、四角形でもよい。
A composite billet for producing a multi-core wire can be produced in substantially the same manner. The shape of these composite billets may be rectangular as well as circular in cross section.

【0013】あるいは図5に示すような複数の空隙3を
設けた角型ビレット4を用いてもよい。更にあらかじめ
テープ線材を作製しておき、これを複数枚積層した後、
再度図6に示すような角型パイプ5内に挿入して複合ビ
レットとすることもできる。
Alternatively, a square billet 4 having a plurality of voids 3 as shown in FIG. 5 may be used. In addition, tape wire is made in advance, and after stacking multiple sheets,
It is also possible to insert it again into the rectangular pipe 5 as shown in FIG. 6 to form a composite billet.

【0014】次に、以上のようにして得られた複合ビレ
ットを断面減少加工する。その方法は、例えば次のよう
にして行なう。即ち、図1に示すように、複合ビレット
6の相対する2面に第1の圧延ロ−ル7を配し、その下
流に上記相対する2面とは直角な他の相対する2面に第
2の圧延ロ−ル8を配し、それぞれの相対する2面に圧
力を加え、順次圧延加工を行なう。その際、複合ビレッ
ト内のセラミックス超電導体原料粉末に流動性を与えな
がら圧延加工を行なう。通常、これらの工程を複数回繰
り返す。
Next, the composite billet obtained as described above is subjected to cross-section reduction processing. The method is performed as follows, for example. That is, as shown in FIG. 1, the first rolling roll 7 is disposed on the two opposing surfaces of the composite billet 6, and the first rolling roll 7 is disposed downstream of the first rolling roller 7 on the other two opposing surfaces at right angles to the opposing two surfaces. Two rolling rolls 8 are arranged, pressure is applied to each of the two opposing surfaces, and rolling is sequentially performed. At that time, rolling is performed while imparting fluidity to the ceramic superconductor raw material powder in the composite billet. Usually, these steps are repeated multiple times.

【0015】セラミックス超電導体原料への流動性の付
与は、複合ビレット6又は圧延ロール7,8の軸に、例
えば振動板を取付け、それらに、例えばバイブレ−タ−
により振動を付加することにより行なう。
To impart fluidity to the ceramic superconductor raw material, for example, a vibration plate is attached to the shaft of the composite billet 6 or the rolling rolls 7 and 8, and a vibrator is attached to them.
By adding vibration.

【0016】振動は、バイブレ−タ−に限らず、超音波
トランスジュ−サ−を用いて付与することも可能であ
る。また、セラミックス原料への流動性の付与は、機械
的振動を付与することに限らず、他の方法によって行な
ってもよい。
The vibration is not limited to the vibrator, but can be applied by using an ultrasonic transducer. In addition, imparting fluidity to the ceramic raw material is not limited to imparting mechanical vibration, and may be performed by another method.

【0017】なお、このような圧延加工を行う前に、あ
らかじめ複合ビレット6にスウェージング加工等を行っ
ておくこともよい。また、このような圧延加工と熱処理
とを複数回繰り返し行えば、Ic特性は更に向上する。
Before the rolling process described above, the composite billet 6 may be swaged in advance. Further, the Ic characteristic is further improved by repeating such rolling and heat treatment a plurality of times.

【0018】最後に所定の条件で熱処理を施すことによ
り、セラミックス超電導導体を得ることが出来る。この
熱処理の温度は、通常、830〜880℃である。
Finally, a ceramics superconducting conductor can be obtained by performing heat treatment under predetermined conditions. The temperature of this heat treatment is usually 830 to 880 ° C.

【0019】以上説明した本発明の方法によると、セラ
ミックス超電導体の全面にわたって圧縮力が付加される
ため、結晶配向が可能になり、その結果Jcが向上し、
Ic増加に寄与する。なお、線材の形状に制約はなく多
芯、多層等いずれを用いてもよい。
According to the method of the present invention described above, a compressive force is applied to the entire surface of the ceramic superconductor, so that crystal orientation becomes possible, and as a result, Jc is improved,
It contributes to the increase of Ic. There is no restriction on the shape of the wire, and any of multi-core, multi-layer, etc. may be used.

【0020】また、本発明の方法において、例えば図2
に示したように、4個の平板を用いて圧縮加工を順次行
いながら断面減少加工することも可能である。更に、例
えば図2に示したような4方向ロールを用いる等、同時
に行なうことも可能であり、製造工程が短縮出来るとい
う利点がある。
Further, in the method of the present invention, for example, as shown in FIG.
As shown in, it is also possible to perform the cross-section reduction processing while sequentially performing the compression processing using four flat plates. Further, it is also possible to perform them at the same time, for example, using a four-direction roll as shown in FIG.

【0021】[0021]

【実施例】以下、本発明について、実施例に基づいてさ
らに具体的に説明する。
EXAMPLES The present invention will be described more specifically below based on examples.

【0022】(実施例1)Bi2 3 、PbO、SrC
3 、CaCO3 、CuOなどの各一次原料粉を、B
i:Pb:Sr:Ca:Cu=1.6:0.4:2:
2:3のモル比となるように配合・混合した後、大気中
800℃で50時間仮焼成し、得られた仮焼成体をさら
に粉砕して、平均粒径約5μmの仮焼粉を作製した。こ
れを角型Agパイプ内に充填し、圧延加工を行って、幅
100mm、厚さ0.5mmのAgシーステープ状線材を作
製した。
(Example 1) Bi 2 O 3 , PbO, SrC
Each primary raw material powder such as O 3 , CaCO 3 , and CuO is added to B
i: Pb: Sr: Ca: Cu = 1.6: 0.4: 2:
After mixing and mixing so as to have a molar ratio of 2: 3, calcination is performed in the air at 800 ° C. for 50 hours, and the obtained calcined body is further pulverized to prepare calcined powder with an average particle size of about 5 μm. did. This was filled in a rectangular Ag pipe and rolled to produce an Ag sheath tape-shaped wire having a width of 100 mm and a thickness of 0.5 mm.

【0023】得られたテープ状線材を外径10mmφのA
g製丸棒上に23層渦巻状に巻き付け、これをさらに外
径50mmφ、内径40mmφのAgパイプ内に挿入して複
合ビレットを得た。得られた複合ビレットを外径5mmφ
になるまでスウェージング加工した後、図1に示した方
法で、圧縮治具にバイブレ−タ−により振動を付加しな
がら圧縮加工を行い、3mm×4mmの角型線材とした。
The tape-shaped wire thus obtained was used for A having an outer diameter of 10 mmφ.
A 23-layer spiral bar was wound around a g-made round bar, and this was further inserted into an Ag pipe having an outer diameter of 50 mmφ and an inner diameter of 40 mmφ to obtain a composite billet. The resulting composite billet has an outer diameter of 5 mmφ
After performing swaging until it becomes, a compression process was performed by applying a vibration to the compression jig by a vibrator as shown in FIG. 1 to obtain a 3 mm × 4 mm square wire rod.

【0024】次に、大気中で830℃で50時間熱処理
を行った後、再度図1に示した方法で圧縮加工を行い、
2mm×3mmの角型線材を得た。これを前記と同様に大気
中、830℃で50時間熱処理を施して、多層セラミッ
クス超電導導体とした。
Next, after heat-treating at 830 ° C. for 50 hours in the atmosphere, compression processing is performed again by the method shown in FIG.
A 2 mm × 3 mm square wire rod was obtained. This was heat-treated in the atmosphere at 830 ° C. for 50 hours in the same manner as described above to obtain a multilayer ceramic superconducting conductor.

【0025】得られたセラミックス超電導導体につい
て、液体窒素中、0磁場におけるIcを測定した結果、
35(A)の優れた特性が得られた。
The obtained ceramics superconducting conductor was measured for Ic in liquid nitrogen at 0 magnetic field.
The excellent characteristics of 35 (A) were obtained.

【0026】また、中心付近のセラミックス超電導体の
配向率を求めた結果、82(%)であった。断面形状は
比較的優れたものであった。
As a result of obtaining the orientation rate of the ceramics superconductor near the center, it was 82 (%). The cross-sectional shape was relatively excellent.

【0027】(実施例2)実施例1で得られた仮焼粉
を、図3に示したような角型多芯Agパイプ9の孔部1
0内に充填し、圧延加工を行って幅100mm、厚さ0.
5mmのAgシーステープ状線材を作製した。その内部の
セラミックス超電導体原料は、幅5mm、15芯である。
得られたテープ線材を外径10mmφのAg製丸棒上に2
3層渦巻状に巻き付け、これをさらに外径50mmφ、内
径40mmφのAgパイプ内に挿入して複合ビレットを得
た。
(Example 2) The calcined powder obtained in Example 1 was applied to the hole 1 of the square multicore Ag pipe 9 as shown in FIG.
It is filled in 0 and rolled, and the width is 100 mm and the thickness is 0.
A 5 mm Ag sheath tape-shaped wire was prepared. The raw material of the ceramic superconductor in the inside is 5 mm in width and 15 cores.
Place the obtained tape wire on an Ag round bar with an outer diameter of 10 mmφ.
It was wound in a three-layer spiral shape, and this was further inserted into an Ag pipe having an outer diameter of 50 mmφ and an inner diameter of 40 mmφ to obtain a composite billet.

【0028】得られた複合ビレットを外径5mmφとなる
までスウェージング加工した後、図1に示した方法で圧
縮治具にバイブレ−タ−により振動を付加しながら圧縮
加工を行い、3mm×4mmの角型線材とした。
The composite billet thus obtained was swaged to an outer diameter of 5 mmφ and then compressed by a method shown in FIG. 1 while applying vibration to the compression jig with a vibrator to obtain 3 mm × 4 mm. It was a square wire rod.

【0029】次に而して得た角型線材を大気中、830
℃で50時間熱処理を行った後、再度図1に示した方法
で圧縮加工を行い、2mm×3mmの角型線材を得た。これ
を前記と同様に大気中、830℃で50時間熱処理を施
して、多層セラミックス超電導導体とした。
Next, the rectangular wire rod thus obtained was placed in the air at 830
After heat treatment at 50 ° C. for 50 hours, compression processing was performed again by the method shown in FIG. 1 to obtain a square wire rod of 2 mm × 3 mm. This was heat-treated in the atmosphere at 830 ° C. for 50 hours in the same manner as described above to obtain a multilayer ceramic superconducting conductor.

【0030】得られたセラミックス超電導導体につい
て、液体窒素中、0磁場におけるIcを測定した結果、
29(A)の優れた特性が得られた。
With respect to the obtained ceramics superconducting conductor, Ic was measured in liquid nitrogen at 0 magnetic field.
The excellent characteristics of 29 (A) were obtained.

【0031】また、中心付近のセラミックス超電導体の
配向率を求めた結果、83(%)であった。断面形状は
比較的優れたものであった。
As a result of obtaining the orientation rate of the ceramics superconductor near the center, it was 83 (%). The cross-sectional shape was relatively excellent.

【0032】(実施例3)実施例1で得られた仮焼粉
を、あらかじめ機械加工した外径11mmφ、内径8mmφ
のAg製パイプ内に充填して複合ビレットとした。これ
を圧延加工して厚さ0.5mm、幅12mmに仕上げた。得
られたテープ状線材を10枚積層した後、これを、図6
に示したような外側の寸法14.5mm×7.5mm、内側
の寸法12.5mm×5.5mmのAg製角型パイプ内に挿
入して再度複合ビレットを構成した。
(Example 3) The calcined powder obtained in Example 1 was machined in advance to have an outer diameter of 11 mmφ and an inner diameter of 8 mmφ.
Was filled in an Ag pipe to prepare a composite billet. This was rolled to a thickness of 0.5 mm and a width of 12 mm. After laminating 10 pieces of the obtained tape-shaped wire,
The composite billet was constructed again by inserting it into an Ag rectangular pipe having outer dimensions of 14.5 mm × 7.5 mm and inner dimensions of 12.5 mm × 5.5 mm as shown in FIG.

【0033】作製した複合ビレットを図2に示したよう
な4方向ロールを用い、各ロールにバイブレ−タ−によ
り振動を付加しながら圧延加工を行い、4mm×2mmに仕
上げた。これを大気中、830℃で200時間熱処理を
行い、多層セラミックス超電導導体を得た。
The produced composite billet was rolled by using a four-direction roll as shown in FIG. 2 while applying vibration to each roll by a vibrator to finish it into 4 mm × 2 mm. This was heat-treated in air at 830 ° C. for 200 hours to obtain a multilayer ceramic superconducting conductor.

【0034】得られたセラミックス超電導導体につい
て、液体窒素中、0磁場におけるIcを測定した結果、
30(A)の優れた特性が得られた。この場合も中心付
近のセラミックス超電導体の配向率は、83(%)と高
く、断面形状は比較的優れたものであった。
The obtained ceramic superconducting conductor was measured for Ic in liquid nitrogen at 0 magnetic field.
Excellent characteristics of 30 (A) were obtained. Also in this case, the orientation rate of the ceramics superconductor near the center was as high as 83 (%), and the cross-sectional shape was relatively excellent.

【0035】(比較例1)実施例1で得られた複合ビレ
ットを外径3mmφとなるまでスウェージング加工した
後、通常の圧延加工を行って、3mm×4mmの角型線材と
した。次に大気中、830℃で50時間熱処理を行った
後、2mm×4.2mmの角型線材を得た。これを前記同様
大気内、830℃で50時間熱処理を施して多層セラミ
ックス超電導導体とした。
Comparative Example 1 The composite billet obtained in Example 1 was swaged to an outer diameter of 3 mmφ and then rolled normally to obtain a 3 mm × 4 mm square wire rod. Then, after heat treatment at 830 ° C. for 50 hours in the atmosphere, a square wire rod of 2 mm × 4.2 mm was obtained. This was heat-treated at 830 ° C. for 50 hours in the same atmosphere as described above to obtain a multilayer ceramic superconducting conductor.

【0036】得られたセラミックス超電導導体につい
て、液体窒素中、0磁場におけるIcを測定した結果1
2(A)であり、本発明法に比較して極めて劣るもので
あった。また、中心付近の超電導体の配向率は56
(%)と低かった。断面形状は本発明品に比較して劣る
ものであった。
The obtained ceramic superconducting conductor was measured for Ic in liquid nitrogen at 0 magnetic field. 1
2 (A), which was extremely inferior to the method of the present invention. The orientation ratio of the superconductor near the center is 56.
(%) Was low. The cross-sectional shape was inferior to the product of the present invention.

【0037】(比較例2)実施例3で作製した複合ビレ
ットを通常の圧延加工を行い、3mm×8mmに仕上げた。
これを大気中、830℃で200時間熱処理を行い、多
層セラミックス超電導導体を得た。
(Comparative Example 2) The composite billet produced in Example 3 was subjected to a usual rolling process to a size of 3 mm x 8 mm.
This was heat-treated in air at 830 ° C. for 200 hours to obtain a multilayer ceramic superconducting conductor.

【0038】得られたセラミックス超電導導体につい
て、液体窒素中、0磁場におけるIcを測定した結果1
6(A)であり、本発明法に比較して極めて劣るもので
あった。また、中心付近の超電導体の配向率は52
(%)と低かった。断面形状は本発明品に比較して劣る
ものであった。
The obtained ceramic superconducting conductor was measured for Ic in liquid nitrogen at 0 magnetic field. 1
6 (A), which was extremely inferior to the method of the present invention. The orientation ratio of the superconductor near the center is 52
(%) Was low. The cross-sectional shape was inferior to the product of the present invention.

【0039】[0039]

【発明の効果】以上詳細に説明したように、本発明の方
法によれば、優れた断面形状の導体を容易に得ることが
可能である。また、セラミックス超電導体の結晶配向が
可能になり、その結果、高Icの多層セラミックス超電
導導体を得ることが出来る。本発明の方法により得たセ
ラミックス超電導導体は、マグネット、ケーブル等の導
体として、種々適用が可能である。
As described in detail above, according to the method of the present invention, it is possible to easily obtain a conductor having an excellent sectional shape. In addition, the crystal orientation of the ceramic superconductor becomes possible, and as a result, a high Ic multilayer ceramic superconductor can be obtained. The ceramic superconducting conductor obtained by the method of the present invention can be variously applied as a conductor for magnets, cables and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法における複合ビレットを断面減
少加工する工程を示す図。
FIG. 1 is a diagram showing a step of reducing the cross section of a composite billet in the method of the present invention.

【図2】 本発明の方法における複合ビレットを4方向
同時に断面減少加工するための4方向ロールを示す図。
FIG. 2 is a view showing a four-direction roll for simultaneously reducing the cross section of the composite billet in four directions in the method of the present invention.

【図3】 実施例2においてビレットを得るための角型
多芯Agパイプを示す図。
FIG. 3 is a diagram showing a square multi-core Ag pipe for obtaining a billet in Example 2.

【図4】 多層線材の一例を示す断面図。FIG. 4 is a cross-sectional view showing an example of a multilayer wire rod.

【図5】 角型複合ビレットを示す図。FIG. 5 is a view showing a square composite billet.

【図6】 角型複合ビレットを得るための角型パイプを
示す図。
FIG. 6 is a view showing a square pipe for obtaining a square composite billet.

【符号の説明】[Explanation of symbols]

1…セラミックス超電導体原料粉末、2…金属パイプ、
金属テ−プ、3…空隙、4…角型複合ビレット、5…角
型パイプ、6…複合ビレット、7…第1の圧延ロ−ル、
8…第2の圧延ロ−ル。
1 ... Ceramic superconductor raw material powder, 2 ... Metal pipe,
Metal tape, 3 ... Void, 4 ... Square composite billet, 5 ... Square pipe, 6 ... Composite billet, 7 ... First rolling roll,
8 ... Second rolling roll.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01B 12/10 ZAA 8936−5G (72)発明者 宇野 直樹 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // H01B 12/10 ZAA 8936-5G (72) Inventor Naoki Uno 2-6 Marunouchi, Chiyoda-ku, Tokyo No. 1 inside Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス超電導体原料粉末と金属と
の複合体を断面減少加工して、所望の形状及び寸法の複
合線材とし、次いで熱処理を行うことからなる多層、多
芯セラミックス超電導導体の製造方法において、前記断
面減少加工は、前記セラミックス超電導体原料粉末に流
動性を付与しつつ、相対する2方向からの圧延加工を行
う第1の圧延工程と、前記セラミックス超電導体原料粉
末に流動性を付与しつつ、前記相対する2方向に直角な
相対する2方向からの圧延加工を行う第2の圧延工程と
を、少なくとも1回以上繰り返し行なうことを特徴とす
る多層、多芯セラミックス超電導導体の製造方法。
1. A method for producing a multi-layered, multi-core ceramics superconducting conductor, which comprises subjecting a composite of a ceramics superconductor raw material powder and a metal to a cross-section reduction processing to obtain a composite wire rod having a desired shape and size, and then performing heat treatment. In the step of reducing the cross-section, the ceramic superconductor raw material powder is provided with fluidity while the first rolling step is performed in which rolling is performed from two opposing directions, and the ceramic superconductor raw material powder is provided with fluidity. In addition, the method for producing a multi-layer, multi-core ceramics superconducting conductor, characterized in that the second rolling step of rolling from two opposite directions perpendicular to the two opposite directions is repeated at least once. ..
JP3260803A 1991-10-08 1991-10-08 Production of multilayered multi-core ceramic superconductor Pending JPH0597410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3260803A JPH0597410A (en) 1991-10-08 1991-10-08 Production of multilayered multi-core ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3260803A JPH0597410A (en) 1991-10-08 1991-10-08 Production of multilayered multi-core ceramic superconductor

Publications (1)

Publication Number Publication Date
JPH0597410A true JPH0597410A (en) 1993-04-20

Family

ID=17352968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3260803A Pending JPH0597410A (en) 1991-10-08 1991-10-08 Production of multilayered multi-core ceramic superconductor

Country Status (1)

Country Link
JP (1) JPH0597410A (en)

Similar Documents

Publication Publication Date Title
US6218340B1 (en) Method of manufacturing superconductors including isostatic pressing
US6471785B1 (en) Process for producing a strip-shaped, multi-core superconductor with high-Tc superconducting material and superconductor produced by this process
JPH09223418A (en) Oxide superconductive wire rod and manufacture thereof
JPH0597410A (en) Production of multilayered multi-core ceramic superconductor
JP2989932B2 (en) Manufacturing method of multilayer ceramic superconducting conductor
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH06325634A (en) Multi-core oxide superconducting wire
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH05334921A (en) Ceramic superconductor
JP2775946B2 (en) Manufacturing method of oxide superconducting wire
JPH0773757A (en) Manufacture of oxide superconductor
JPH02273418A (en) Manufacture of oxide superconductive conductor
JP3345834B2 (en) Ceramic superconducting conductor
JP3158408B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH0644834A (en) Ceramics superconductive conductor
JPH05151837A (en) Ceramic superconductive conductor
JPH01134822A (en) Manufacture of oxide superconductive wire
JP2951423B2 (en) Manufacturing method of ceramic superconducting conductor
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JPH05144332A (en) Ceramic superconductor
JP3042558B2 (en) Ceramic superconducting conductor
JPH05114320A (en) Manufacture of ceramics superconductive conductor
JPH04329218A (en) Superconductive wire material
JPH0541117A (en) Manufacture of ceramic superconductor
JPH1139963A (en) Oxide superconductive wire material, stranded wire, method for producing material and stranded wire thereof, and oxide superconductor