JP2004227917A - Manufacturing method of oxide superconductive wire and oxide superconductive wire - Google Patents

Manufacturing method of oxide superconductive wire and oxide superconductive wire Download PDF

Info

Publication number
JP2004227917A
JP2004227917A JP2003014303A JP2003014303A JP2004227917A JP 2004227917 A JP2004227917 A JP 2004227917A JP 2003014303 A JP2003014303 A JP 2003014303A JP 2003014303 A JP2003014303 A JP 2003014303A JP 2004227917 A JP2004227917 A JP 2004227917A
Authority
JP
Japan
Prior art keywords
wire
oxide superconducting
multifilamentary
oxide
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003014303A
Other languages
Japanese (ja)
Other versions
JP4396101B2 (en
Inventor
Jun Fujigami
純 藤上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003014303A priority Critical patent/JP4396101B2/en
Publication of JP2004227917A publication Critical patent/JP2004227917A/en
Application granted granted Critical
Publication of JP4396101B2 publication Critical patent/JP4396101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an oxide superconductive wire having high mechanical strength, and to provide the oxide superconductive wire. <P>SOLUTION: The manufacturing method of an oxide superconductive wire wherein a metal for covering the raw material powder of the oxide superconductor contains silver, and a silver ratio is 2 or lower, comprises a step of manufacturing a multicore wire of the oxide superconductor raw material powder covered by the metal, a step of drawing the multicore wire, and a step of rolling the multicore wire. Before the step of rolling the multicore wire, surface roughness Ra is set 0.5 μm or lower in a range of a measuring length of 1 mm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、酸化物超電導線材の製造方法に関し、特に、原材料粉末を被覆する前記金属が銀を含み、かつ酸化物超電導線材の銀比は2以下である酸化物超電導線材の製造方法および酸化物超電導線材に関するものである。
【0002】
【従来の技術】
酸化物超電導体を金属被覆した多芯線からなる酸化物超電導線材は、従来、以下に示すような製造方法によって製造されていた。
【0003】
まず、原料粉末が混合され、熱処理されることにより反応が起こり、最終目的の超電導体に変化する中間状態の前駆体粉末が作製される。次に、この前駆体粉末が金属パイプに充填され、伸線加工と中間軟化とが繰り返されることにより、前駆体を芯材として金属で被覆されたクラッド線とされる。複数のクラッド線が束ねられて再び金属パイプに嵌合される。次に伸線加工と中間軟化とが繰り返されることにより、前駆体フィラメントが銀に埋め込まれた所定の直径の多芯線とされる。その後、この多芯線に対して圧延加工および熱処理が繰り返されることによりテープ状の線材となり、フィラメントは結晶の向きが揃った超電導体となる。
【0004】
上記の酸化物超電導線材は、特にマグネットやケーブルなどとして用いられている。マグネットの場合には、酸化物超電導線材はパンケーキ状に巻かれ、これにより形成されたコイルを積み重ねることでマグネットが形成されている。このマグネットにおいて、超伝導線材に電流を流して中心部に発生する磁場が利用される。ケーブルの場合には、酸化物超電導線材は円筒形状の管の外側に沿って巻きつけられることでケーブルが形成されている。
【0005】
【非特許文献1】
綾井他6名著、「シリコン単結晶引上炉マグネット用高温超電導線材の開発」、SEIテクニカルレビュー、2001年9月、第159号、P123〜128
【0006】
【発明が解決しようとする課題】
酸化物超電導線材がたとえばマグネットやケーブルなどとして用いられる場合には、マグネットやケーブルを形成する際の巻線加工やコイルの通電時に発生する大きな電磁力などの影響により、酸化物超電導線材にクラックが発生し、臨界電流密度が低下するおそれがある。これを防止するために、酸化物超電導線材には機械的強度が求められている。しかしながら、従来の酸化物超電導線材は、機械的強度が十分ではなかった。このため、たとえばマグネットやケーブルを形成する際の巻線加工やコイルの通電時に発生する大きな電磁力による外力などの影響により、クラックが発生し、臨界電流密度が低下するという問題があった。
【0007】
そこで、本発明の目的は、機械的強度の高い酸化物超電導線材の製造方法および酸化物超電導線材を提供することである。
【0008】
【課題を解決するための手段】
本発明の酸化物超電導線材の製造方法は、酸化物超電導体の原材料粉末を被覆する金属が銀を含み、かつ銀比が2以下である酸化物超電導線材の製造方法であって、酸化物超電導体の前記原材料粉末を金属で被覆した多芯線を作製する工程と、多芯線を伸線加工する工程と、多芯線を圧延する工程とを備えている。多芯線を圧延する工程前において、多芯線の表面粗さRaは測定長1mmの範囲で0.5μm以下となるようにされる。
【0009】
本発明の酸化物超電導線材の製造方法によれば、多芯線を圧延する工程前において、多芯線の表面粗さRaが小さくなるようにされるので、多芯線を圧延する工程の際に多芯線が不均一に変形することが抑止される。ここで、圧延の際の不均一な変形により金属の厚みが極端に薄くなった部分に、ピンホールおよび割れは生成しやすいので、圧延時にピンホールおよび割れが多芯線に生成することが抑止される。したがって、ピンホールおよび割れへの応力集中がなくなり、機械的強度の高い酸化物超電導線材が得られる。
【0010】
なお、本明細書中において銀比とは、作製された酸化物超電導線材の横断面における酸化物超電導体部分の面積に対する金属部分の面積の割合を意味する。また、表面粗さRaとは、JIS(Japanese Industrial Standards)に規定された算術平均粗さRaのことを意味する。
【0011】
本発明の製造方法において好ましくは、多芯線を伸線加工する工程は、多芯線を中間軟化する処理を含み、多芯線を伸線加工する工程に用いられる潤滑油の動粘度は20mm/s以上100mm/s以下であり、かつ多芯線を中間軟化する処理における温度は500℃以下である。
【0012】
これにより、多芯線を圧延する工程後の多芯線の表面粗さRaが測定長1mmの範囲で0.5μm以下となる。この結果、酸化物超電導線材の機械的強度が向上する。なお、本明細書中における動粘度の値は、20℃の温度での値を示している。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図を用いて説明する。
【0014】
図1は、酸化物超電導線材の構成を概念的に示す部分断面斜視図である。図1を参照して、酸化物超電導線材1は、複数本の酸化物超電導体フィラメント2と、それらを被覆するシース部3とを有している。酸化物超電導体フィラメント2の材質は、たとえばBi(ビスマス)−Pb(鉛)−Sr(ストロンチウム)−Ca(カルシウム)−Cu(銅)−O(酸素)系の組成からなっている。シース部3の材質は、たとえば銀や銀合金などからなっている。
【0015】
次に、上記の酸化物超電導線材の製造方法について説明する。
図2は、本発明の一実施の形態における酸化物超電導線材の製造方法を示す図である。
【0016】
図2を参照して、まず、原料粉末が混合され、熱処理されることが繰り返される。これにより反応が起こり、最終目的の超電導体に変化する中間状態の前駆体粉末が作製される(ステップS1)。原料粉末としては、たとえばBiとPbとSrとCaとCuとを含み、その原子比として(BiとPb):Sr:Ca:Cuが2:2:2:3と近似して表されるBi−Pb−Sr−Ca−Cu−O系の酸化物超電導相(以下Bi2223相)と非超電導相とから構成される混合粉末が用意される。熱処理はたとえば700℃〜800℃の温度で行なわれる。次に、この前駆体粉末が金属パイプに充填される(ステップS2)。金属パイプの材質としては、銀または銀合金のものが用いられる。次に、前駆体粉末が金属パイプに充填されたものに対して伸線加工が行なわれる(ステップS3)。この際には伸線加工と中間軟化処理とが繰り返され、前駆体フィラメントを芯材として金属で被覆されたクラッド線となる。次に、複数のクラッド線が束ねられて再び金属パイプに嵌合される(ステップS4)。これにより、たとえば61芯を有する多芯線が作製される。次に多芯線に対して伸線加工される(ステップS5)。この際には伸線加工と中間軟化処理とが繰り返される。中間軟化処理は、一定時間一定温度あるいは一定の温度範囲に多芯線を保持する処理であって、この処理により伸線の際に多芯線に生じた内部応力が除去され、酸化物超電導線材の耐脆性が向上する。伸線加工により、前駆体フィラメントが銀に埋め込まれた所定の直径の多芯線となる。その後、この多芯線に対して圧延加工と熱処理とが繰り返される(ステップS6)。熱処理はたとえば大気中で800℃以上の温度で行なわれる。これにより、フィラメントは結晶の向きが揃った超電導結晶となり、銀比が2以下のテープ状の酸化物超電導線材が作製される。
【0017】
本実施の形態においては、伸線加工(ステップS5)が以下の2つの条件で行われることにより、芯線を圧延する工程前多芯線の表面の表面粗さRaが測定長1mmの範囲で0.5μm以下となる。
【0018】
1つ目の条件は、多芯線を伸線加工の際に用いられる潤滑油の動粘度が20mm/s以上100mm/s以下とされる。以下、伸線加工の方法について説明する。
【0019】
図3は多芯線の伸線加工の方法を示す概略断面図である。
図3を参照して、多芯線の伸線加工は引抜き加工により行なわれる。ダイス6を通して、酸化物超電導線材1を引張ることにより、ダイス穴形状と同一断面の酸化物超電導線材1が得られる。この際、潤滑油(図示なし)は酸化物超電導線材1とダイス6との接触面に塗布される。本願発明者らは鋭意検討した結果、伸線加工する工程における潤滑油の動粘度が20mm/s以上100mm/s以下であれば、酸化物超電導線材1の表面に潤滑油が付着しやすくなり、かつ伸線加工中に発生する金属粉がダイスの外部へ排出されやすくなることで、伸線加工におけるダイス6と酸化物超電導線材1との間の摩擦力が低下することにより、圧延する工程前において多芯線の表面粗さを低くすることができることを見出した。
【0020】
2つ目の条件は、伸線加工と交互に行なわれる中間軟化処理において、温度が500℃以下とされる。中間軟化処理は、伸線の際に酸化物超電導線材中に生じた内部応力を焼き鈍し効果によって除去するために行なわれる。本願発明者らは鋭意検討した結果、以下のことを見出した。すなわち、中間軟化の温度が500℃より大きい場合には、焼き鈍し効果のほかに、超電導結晶の再結晶化が進んでしまう。超電導結晶の再結晶化が進むと、結晶粒が粗大化し、圧延後に表面粗さが大きくなる要因となる。したがって、中間軟化の温度は500℃以下に保たれることにより、焼き鈍し効果のみを得ることができ、その結果圧延する工程前において多芯線の表面粗さRaを低くすることができる。なお、母材の酸化を防止するために、中間軟化は不活性ガス雰囲気中で行なうか、または真空中で行なうことが好ましい。真空中で行なう場合には、圧力が500Pa以下であることが好ましい。
【0021】
以上2つの条件で伸線加工する工程が行われることにより、圧延と熱処理とが繰り返される工程(ステップS6)前において、多芯線の表面の表面粗さRaが測定長1ミリメートルの範囲で0.5マイクロメートル以下となるようにすることができる。
【0022】
【実施例】
以下、本発明の実施例について説明する。
【0023】
(実施例1)
図2を用いて説明した方法における伸線加工・中間軟化(ステップS5)までの工程を行うことにより、61芯を持つ多芯構造で、銀比が1.5である多芯線を作製した。
【0024】
本実施例においては、図2の伸線加工・中間軟化(ステップS5)において、中間軟化処理の温度をすべて500℃とし、20℃における動粘度がそれぞれ1000mm/s、500mm/s、100mm/s、50mm/s、20mm/s、10mm/sである潤滑剤を用いて多芯線の伸線を行った。このようにして作製された多芯線について測定長1mmで表面粗さRaの測定を行った。表1にそれぞれの多芯線の表面粗さRaの測定結果を示す。
【0025】
【表1】

Figure 2004227917
【0026】
表1の結果より、潤滑剤の動粘度が20mm/s以上100mm/以下である潤滑剤C、D、Eを用いて伸線した場合は、いずれの場合も表面粗さRaが0.5μm以下となることがわかる。
【0027】
(実施例2)
本実施例においては、図2の伸線加工・中間軟化(ステップS5)において、中間軟化処理の温度をそれぞれ600℃、500℃、300℃、100℃とした。また、すべて100mm/sの動粘度である潤滑剤Cを用いて伸線加工を行った。このようにして作製された多芯線について測定長1mmで表面粗さRaの測定を行った。表2にそれぞれの多芯線の表面粗さRaの測定結果を示す。
【0028】
【表2】
Figure 2004227917
【0029】
表2の結果より、中間軟化処理の温度が500℃以下である場合には、表面粗さRaが0.5μm以下となることがわかる。
【0030】
(実施例3)
本実施例においては、図2の伸線加工・中間軟化(ステップS5)において、中間軟化処理の温度をすべて400℃とし、20℃における動粘度がそれぞれ1000mm/s、50mm/sである潤滑剤を用いて多芯線の伸線加工を行った。そして、この多芯線に対して圧延加工と熱処理とが行なわれた(ステップS6)。熱処理は840℃で行なわれた。このようにして作製された酸化物超電導線材について引張り試験を行った。表3にその測定結果を示す。
【0031】
【表3】
Figure 2004227917
【0032】
表3の結果より、中間軟化処理の温度が400℃であり、伸線加工の際用いられる潤滑剤の動粘度が50mm/sである場合には、ピンホールが少なくなり、機械的強度が向上していることがわかる。
【0033】
なお、本実施の形態においては、伸線加工(ステップS5)において動粘度が20mm/s以上100mm/以下の潤滑油が用いられ、かつ中間軟化処理の温度を500℃以下にすることにより、多芯線の表面粗さRaが測定長1mmの範囲で0.5μm以下となるようにされる場合について示したが、本発明はこのような場合に限られず、多芯線を圧延する工程前において、多芯線の表面粗さRaが測定長1mmの範囲で0.5μm以下となるようにされればよい。
【0034】
また、本実施の形態においては、Bi2223相と非超電導相とから構成される混合粉末が用いられる場合について示したが、本発明はこのような場合に限られず、酸化物超電導線材の原材料粉末であればよい。
【0035】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0036】
【発明の効果】
以上のように、本発明の酸化物超電導線材の製造方法によれば、多芯線を圧延する工程前において、多芯線の表面粗さRaが小さくなるようにされるので、多芯線を圧延する工程の際に多芯線が不均一に変形することが抑止される。ここで、圧延の際の不均一な変形により金属の厚みが極端に薄くなった部分に、ピンホールおよび割れは生成しやすいので、圧延時にピンホールおよび割れが多芯線に生成することが抑止される。したがって、ピンホールおよび割れへの応力集中がなくなり、機械的強度の高い酸化物超電導線材が得られる。
【図面の簡単な説明】
【図1】酸化物超電導線材の構成を概念的に示す部分断面斜視図である。
【図2】本発明の一実施の形態における酸化物超電導線材の製造方法を示す図である。
【図3】多芯線を伸線加工する方法を示す概略断面図である。
【符号の説明】
1 酸化物超電導線材、2 フィラメント、3 シース部、6 ダイス。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an oxide superconducting wire, and more particularly to a method for producing an oxide superconducting wire and a method for producing an oxide superconducting wire, wherein the metal covering the raw material powder contains silver, and the silver ratio of the oxide superconducting wire is 2 or less. It relates to a superconducting wire.
[0002]
[Prior art]
2. Description of the Related Art An oxide superconducting wire made of a multifilamentary wire in which an oxide superconductor is coated with a metal has conventionally been manufactured by the following manufacturing method.
[0003]
First, the raw material powders are mixed and subjected to a heat treatment to cause a reaction, thereby producing a precursor powder in an intermediate state which is changed to a final target superconductor. Next, this precursor powder is filled in a metal pipe, and wire drawing and intermediate softening are repeated to form a clad wire coated with metal using the precursor as a core material. A plurality of clad wires are bundled and fitted again to the metal pipe. Next, by repeating the wire drawing and the intermediate softening, a multifilamentary wire having a predetermined diameter is obtained in which the precursor filament is embedded in silver. Thereafter, the multi-filamentary wire is repeatedly subjected to rolling and heat treatment to form a tape-shaped wire, and the filament becomes a superconductor in which the crystal directions are aligned.
[0004]
The above-mentioned oxide superconducting wire is used particularly as a magnet or a cable. In the case of a magnet, the oxide superconducting wire is wound into a pancake shape, and the coils formed by this are stacked to form a magnet. In this magnet, a magnetic field generated at the center by passing a current through the superconducting wire is used. In the case of a cable, a cable is formed by winding an oxide superconducting wire along the outside of a cylindrical tube.
[0005]
[Non-patent document 1]
Ayai et al., "Development of High-Tc Superconducting Wire for Silicon Single Crystal Pulling Furnace Magnet", SEI Technical Review, September 2001, No. 159, P123-128.
[0006]
[Problems to be solved by the invention]
When an oxide superconducting wire is used, for example, as a magnet or cable, cracks may occur in the oxide superconducting wire due to the effects of the large electromagnetic force generated when the magnet or cable is formed or the coil is energized. Occurs and the critical current density may decrease. In order to prevent this, the oxide superconducting wire is required to have mechanical strength. However, conventional oxide superconducting wires have insufficient mechanical strength. For this reason, for example, there has been a problem that cracks are generated due to the influence of external force due to a large electromagnetic force generated when a magnet or a cable is formed or a coil is energized when a coil is formed, and the critical current density is reduced.
[0007]
Therefore, an object of the present invention is to provide a method for manufacturing an oxide superconducting wire having high mechanical strength and an oxide superconducting wire.
[0008]
[Means for Solving the Problems]
The method for producing an oxide superconducting wire of the present invention is a method for producing an oxide superconducting wire in which the metal coating the raw material powder of the oxide superconductor contains silver and has a silver ratio of 2 or less. The method includes a step of producing a multi-core wire in which the raw material powder of the body is coated with a metal, a step of drawing the multi-core wire, and a step of rolling the multi-core wire. Before the step of rolling the multifilamentary wire, the surface roughness Ra of the multifilamentary wire is set to be 0.5 μm or less within a range of the measurement length of 1 mm.
[0009]
According to the method for producing an oxide superconducting wire of the present invention, the surface roughness Ra of the multifilamentary wire is reduced before the step of rolling the multifilamentary wire. Is suppressed from being deformed unevenly. Here, pinholes and cracks are likely to be formed in portions where the thickness of the metal is extremely thin due to uneven deformation during rolling, so that pinholes and cracks are suppressed from being formed in the multifilamentary wire during rolling. You. Therefore, stress concentration on pinholes and cracks is eliminated, and an oxide superconducting wire having high mechanical strength can be obtained.
[0010]
In this specification, the silver ratio means the ratio of the area of the metal portion to the area of the oxide superconductor portion in the cross section of the manufactured oxide superconducting wire. Further, the surface roughness Ra means an arithmetic average roughness Ra defined in JIS (Japanese Industrial Standards).
[0011]
Preferably, in the production method of the present invention, the step of wire-drawing the multifilamentary wire includes a process of intermediate softening the multifilamentary wire, and the kinematic viscosity of the lubricating oil used in the process of wiredrawing the multifilamentary wire is 20 mm 2 / s. It is at least 100 mm 2 / s and the temperature in the process of intermediate softening the multifilamentary wire is at most 500 ° C.
[0012]
Thereby, the surface roughness Ra of the multifilamentary wire after the step of rolling the multifilamentary wire becomes 0.5 μm or less in the range of the measurement length of 1 mm. As a result, the mechanical strength of the oxide superconducting wire is improved. In addition, the value of the kinematic viscosity in this specification has shown the value at the temperature of 20 degreeC.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 is a partial cross-sectional perspective view conceptually showing the configuration of the oxide superconducting wire. Referring to FIG. 1, an oxide superconducting wire 1 has a plurality of oxide superconductor filaments 2 and a sheath portion 3 that covers them. The material of the oxide superconductor filament 2 is composed of, for example, a Bi (bismuth) -Pb (lead) -Sr (strontium) -Ca (calcium) -Cu (copper) -O (oxygen) composition. The material of the sheath portion 3 is made of, for example, silver or a silver alloy.
[0015]
Next, a method for manufacturing the above-described oxide superconducting wire will be described.
FIG. 2 is a diagram illustrating a method for manufacturing an oxide superconducting wire according to one embodiment of the present invention.
[0016]
Referring to FIG. 2, the process of mixing the raw material powder and performing the heat treatment is repeated first. As a result, a reaction occurs, and a precursor powder in an intermediate state, which is changed into a final target superconductor, is produced (Step S1). The raw material powder contains, for example, Bi, Pb, Sr, Ca, and Cu, and the atomic ratio of (Bi and Pb): Sr: Ca: Cu is approximately expressed as 2: 2: 2: 3. A mixed powder composed of a -Pb-Sr-Ca-Cu-O-based oxide superconducting phase (hereinafter referred to as Bi2223 phase) and a non-superconducting phase is prepared. The heat treatment is performed, for example, at a temperature of 700 ° C to 800 ° C. Next, this precursor powder is filled in a metal pipe (step S2). Silver or silver alloy is used as the material of the metal pipe. Next, wire drawing is performed on the metal powder filled with the precursor powder (step S3). At this time, the drawing process and the intermediate softening process are repeated to form a clad wire coated with metal using the precursor filament as a core material. Next, the plurality of clad wires are bundled and fitted again to the metal pipe (step S4). Thereby, for example, a multi-core wire having 61 cores is manufactured. Next, the multifilamentary wire is drawn (step S5). At this time, the drawing process and the intermediate softening process are repeated. Intermediate softening is a process of maintaining a multifilamentary wire at a constant temperature or a certain temperature range for a certain period of time. This process removes the internal stress generated in the multifilamentary wire during drawing, and reduces the resistance of the oxide superconducting wire. Brittleness is improved. The drawing process results in a multifilamentary wire having a predetermined diameter in which the precursor filament is embedded in silver. Thereafter, rolling and heat treatment are repeated for the multifilamentary wire (step S6). The heat treatment is performed, for example, at a temperature of 800 ° C. or more in the atmosphere. As a result, the filament becomes a superconducting crystal in which the crystal directions are aligned, and a tape-shaped oxide superconducting wire having a silver ratio of 2 or less is produced.
[0017]
In the present embodiment, by performing the wire drawing (step S5) under the following two conditions, the surface roughness Ra of the surface of the multifilament wire before the step of rolling the core wire is reduced to 0.1 in the range of the measurement length of 1 mm. It becomes 5 μm or less.
[0018]
The first condition is that the kinematic viscosity of the lubricating oil used in drawing a multifilamentary wire is 20 mm 2 / s or more and 100 mm 2 / s or less. Hereinafter, a method of wire drawing will be described.
[0019]
FIG. 3 is a schematic sectional view showing a method of drawing a multi-core wire.
Referring to FIG. 3, the multi-core wire is drawn by drawing. By pulling the oxide superconducting wire 1 through the die 6, the oxide superconducting wire 1 having the same cross section as the die hole shape is obtained. At this time, lubricating oil (not shown) is applied to the contact surface between the oxide superconducting wire 1 and the die 6. The inventors of the present application have conducted intensive studies. As a result, when the kinematic viscosity of the lubricating oil in the wire drawing step is 20 mm 2 / s or more and 100 mm 2 / s or less, the lubricating oil easily adheres to the surface of the oxide superconducting wire 1. In addition, the metal powder generated during the wire drawing is easily discharged to the outside of the die, so that the frictional force between the die 6 and the oxide superconducting wire 1 in the wire drawing is reduced, so that the rolling is performed. It has been found that the surface roughness of the multifilamentary wire can be reduced before the process.
[0020]
The second condition is that the temperature is set to 500 ° C. or lower in the intermediate softening treatment performed alternately with the wire drawing. The intermediate softening treatment is performed to remove the internal stress generated in the oxide superconducting wire at the time of drawing by an annealing effect. As a result of intensive studies, the present inventors have found the following. That is, when the temperature of the intermediate softening is higher than 500 ° C., recrystallization of the superconducting crystal proceeds in addition to the annealing effect. As the recrystallization of the superconducting crystal progresses, the crystal grains become coarse, which causes the surface roughness to increase after rolling. Therefore, by maintaining the temperature of the intermediate softening at 500 ° C. or lower, only the annealing effect can be obtained, and as a result, the surface roughness Ra of the multifilamentary wire can be reduced before the rolling step. In order to prevent oxidation of the base material, the intermediate softening is preferably performed in an inert gas atmosphere or in a vacuum. When performed in a vacuum, the pressure is preferably 500 Pa or less.
[0021]
By performing the wire drawing step under the above two conditions, before the step of repeating rolling and heat treatment (step S6), the surface roughness Ra of the surface of the multifilamentary wire is 0.1 mm within a measurement length of 1 mm. It can be set to 5 micrometers or less.
[0022]
【Example】
Hereinafter, examples of the present invention will be described.
[0023]
(Example 1)
By performing the steps from wire drawing to intermediate softening (step S5) in the method described with reference to FIG. 2, a multi-core wire having a 61-core multi-core structure and a silver ratio of 1.5 was produced.
[0024]
In the present embodiment, in the drawing and intermediate softening (step S5) of FIG. 2, the temperatures of the intermediate softening treatment are all set to 500 ° C., and the kinematic viscosities at 20 ° C. are 1000 mm 2 / s, 500 mm 2 / s, and 100 mm, respectively. 2 / s, 50mm 2 / s , 20mm 2 / s, a multifilamentary wire drawing using a lubricant which is 10 mm 2 / s was performed. The surface roughness Ra of the multifilamentary wire thus manufactured was measured at a measurement length of 1 mm. Table 1 shows the measurement results of the surface roughness Ra of each multifilamentary wire.
[0025]
[Table 1]
Figure 2004227917
[0026]
From the results shown in Table 1, when wire drawing was performed using lubricants C, D, and E in which the kinematic viscosity of the lubricant was 20 mm 2 / s or more and 100 mm 2 / or less, the surface roughness Ra was 0.1 mm in each case. It turns out that it becomes 5 micrometers or less.
[0027]
(Example 2)
In the present embodiment, in the drawing and intermediate softening (step S5) of FIG. 2, the temperatures of the intermediate softening treatment were set to 600 ° C., 500 ° C., 300 ° C., and 100 ° C., respectively. Wire drawing was performed using a lubricant C having a kinematic viscosity of 100 mm 2 / s. The surface roughness Ra of the multifilamentary wire thus manufactured was measured at a measurement length of 1 mm. Table 2 shows the measurement results of the surface roughness Ra of each multifilamentary wire.
[0028]
[Table 2]
Figure 2004227917
[0029]
From the results in Table 2, it is found that when the temperature of the intermediate softening treatment is 500 ° C. or less, the surface roughness Ra becomes 0.5 μm or less.
[0030]
(Example 3)
In the present embodiment, in the drawing and intermediate softening (step S5) of FIG. 2, the temperatures of the intermediate softening treatment are all 400 ° C., and the kinematic viscosities at 20 ° C. are 1000 mm 2 / s and 50 mm 2 / s, respectively. Multifilamentary wire drawing was performed using a lubricant. Then, rolling and heat treatment were performed on the multifilamentary wire (step S6). The heat treatment was performed at 840 ° C. A tensile test was performed on the oxide superconducting wire thus manufactured. Table 3 shows the measurement results.
[0031]
[Table 3]
Figure 2004227917
[0032]
From the results in Table 3, when the temperature of the intermediate softening treatment is 400 ° C. and the kinematic viscosity of the lubricant used in wire drawing is 50 mm 2 / s, the number of pinholes is reduced and the mechanical strength is reduced. It can be seen that it has improved.
[0033]
In the present embodiment, a lubricating oil having a kinematic viscosity of not less than 20 mm 2 / s and not more than 100 mm 2 / is used in the wire drawing (step S5), and the temperature of the intermediate softening treatment is set to 500 ° C. or less. Although the case where the surface roughness Ra of the multifilamentary wire is set to be 0.5 μm or less in the range of the measurement length of 1 mm has been described, the present invention is not limited to such a case. The surface roughness Ra of the multifilamentary wire may be set to 0.5 μm or less within a range of the measurement length of 1 mm.
[0034]
Further, in this embodiment, the case where a mixed powder composed of the Bi2223 phase and the non-superconducting phase is used has been described. However, the present invention is not limited to such a case, and the raw material powder of the oxide superconducting wire may be used. I just need.
[0035]
The embodiments and examples disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0036]
【The invention's effect】
As described above, according to the method for manufacturing an oxide superconducting wire of the present invention, before the step of rolling the multifilamentary wire, the surface roughness Ra of the multifilamentary wire is reduced, so that the process of rolling the multifilamentary wire is performed. In this case, uneven deformation of the multifilamentary wire is suppressed. Here, pinholes and cracks are likely to be formed in portions where the thickness of the metal is extremely thin due to uneven deformation during rolling, so that pinholes and cracks are suppressed from being formed in the multifilamentary wire during rolling. You. Therefore, stress concentration on pinholes and cracks is eliminated, and an oxide superconducting wire having high mechanical strength can be obtained.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional perspective view conceptually showing a configuration of an oxide superconducting wire.
FIG. 2 is a diagram illustrating a method for manufacturing an oxide superconducting wire according to an embodiment of the present invention.
FIG. 3 is a schematic sectional view showing a method of drawing a multi-core wire.
[Explanation of symbols]
1. Oxide superconducting wire, 2 filaments, 3 sheaths, 6 dies.

Claims (3)

酸化物超電導体の原材料粉末を被覆する金属が銀を含み、かつ銀比が2以下である酸化物超電導線材の製造方法であって、
前記酸化物超電導体の前記原材料粉末を金属で被覆した多芯線を作製する工程と、
前記多芯線を伸線加工する工程と、
前記多芯線を圧延する工程とを備え、
前記多芯線を圧延する工程前において、前記多芯線の表面粗さRaが測定長1mmの範囲で0.5μm以下となるようにされることを特徴とする、酸化物超電導線材の製造方法。
A method for producing an oxide superconducting wire, wherein the metal coating the raw material powder of the oxide superconductor contains silver, and the silver ratio is 2 or less,
A step of producing a multi-core wire in which the raw material powder of the oxide superconductor is coated with a metal,
A step of drawing the multi-core wire,
Rolling the multifilamentary wire,
A method for producing an oxide superconducting wire, characterized in that before the step of rolling the multifilamentary wire, the surface roughness Ra of the multifilamentary wire is set to 0.5 μm or less within a measurement length of 1 mm.
前記多芯線を伸線加工する前記工程は、前記多芯線を中間軟化する処理を含み、前記多芯線を伸線加工する前記工程に用いられる潤滑油の動粘度は20mm/s以上100mm/s以下であり、かつ前記多芯線を中間軟化する前記処理における温度は500℃以下である、請求項1に記載の酸化物超電導線材の製造方法。The step of drawing the multi-core wire includes a process of intermediate softening the multi-core wire, and the kinematic viscosity of the lubricating oil used in the step of drawing the multi-core wire is 20 mm 2 / s or more and 100 mm 2 / 2. The method for producing an oxide superconducting wire according to claim 1, wherein the temperature in the treatment for intermediate softening of the multifilamentary wire is 500 ° C. or less. 5. 請求項1または2の製造方法により作製された酸化物超電導線材。An oxide superconducting wire produced by the method according to claim 1.
JP2003014303A 2003-01-23 2003-01-23 Oxide superconducting wire manufacturing method and oxide superconducting wire Expired - Fee Related JP4396101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014303A JP4396101B2 (en) 2003-01-23 2003-01-23 Oxide superconducting wire manufacturing method and oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014303A JP4396101B2 (en) 2003-01-23 2003-01-23 Oxide superconducting wire manufacturing method and oxide superconducting wire

Publications (2)

Publication Number Publication Date
JP2004227917A true JP2004227917A (en) 2004-08-12
JP4396101B2 JP4396101B2 (en) 2010-01-13

Family

ID=32902390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014303A Expired - Fee Related JP4396101B2 (en) 2003-01-23 2003-01-23 Oxide superconducting wire manufacturing method and oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP4396101B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327551A (en) * 2004-05-13 2005-11-24 Sumitomo Electric Ind Ltd Manufacturing method of superconducting wire
US7784169B2 (en) 2004-06-24 2010-08-31 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327551A (en) * 2004-05-13 2005-11-24 Sumitomo Electric Ind Ltd Manufacturing method of superconducting wire
JP4701631B2 (en) * 2004-05-13 2011-06-15 住友電気工業株式会社 Superconducting wire manufacturing method
US7784169B2 (en) 2004-06-24 2010-08-31 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire

Also Published As

Publication number Publication date
JP4396101B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP2897776B2 (en) Electrical conductor in wire or cable form
JP2016195100A (en) SEMI-COMPLETE WIRE MATERIAL HAVING PIT ELEMENT FOR SUPERCONDUCTING WIRE MATERIAL CONTAINING Nb3Sn AND METHOD FOR MANUFACTURING SEMI-COMPLETE WIRE MATERIAL
WO2002037581A2 (en) Superconducting article having low ac loss
US6583362B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
EP1187232B1 (en) Oxide high-temperature superconducting wire and method of producing the same
JP4396101B2 (en) Oxide superconducting wire manufacturing method and oxide superconducting wire
US7325293B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
JP2006260854A (en) Manufacturing method of superconductive wire rod
JP4605156B2 (en) Superconducting wire manufacturing method
JP4660928B2 (en) Manufacturing method of oxide superconducting wire
JPWO2021024529A1 (en) A precursor for Nb3Sn superconducting wire, a method for manufacturing the precursor, and a method for manufacturing Nb3Sn superconducting wire using the precursor.
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JP4039049B2 (en) Multi-core oxide superconducting wire manufacturing method
JPH06349358A (en) Manufacture of oxide high temperature superconductive wire material
JP3858830B2 (en) Manufacturing method of oxide superconducting wire
JP4720211B2 (en) Method for producing bismuth oxide superconducting wire
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment
JPH05242742A (en) Superconducting wire and its manufacture
JP4507899B2 (en) Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire
JP2010135173A (en) Manufacturing method for superconductive wire rod, and superconductive wire rod
JP2003132750A (en) Oxide superconductive multi-core wire rod with barrier and its manufacturing method
JPWO2004081953A1 (en) Manufacturing method of high-temperature superconducting wire
JPH02270222A (en) Ceramic superconducting wire and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4396101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees