JPH04116906A - Ceramic superconductive coil - Google Patents

Ceramic superconductive coil

Info

Publication number
JPH04116906A
JPH04116906A JP2238013A JP23801390A JPH04116906A JP H04116906 A JPH04116906 A JP H04116906A JP 2238013 A JP2238013 A JP 2238013A JP 23801390 A JP23801390 A JP 23801390A JP H04116906 A JPH04116906 A JP H04116906A
Authority
JP
Japan
Prior art keywords
ceramic
sheet
superconductor
flexible
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2238013A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Masanao Mimura
三村 正直
Naoki Uno
直樹 宇野
Kenji Enomoto
憲嗣 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2238013A priority Critical patent/JPH04116906A/en
Publication of JPH04116906A publication Critical patent/JPH04116906A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a ceramic superconductive coil with improved characteristics in a simple configuration by winding a compound conductor of a material and the ceramic superconductor material and a laminated body with a flexible ceramic sheet in spiral shape. CONSTITUTION:A ceramic superconductor material to be used may be either of Y, Bi, and Tl. The superconductor may be in tape shape or may have a section which is circular, elliptical, or polygonal. Also, as a method for producing the ceramic superconductor, the metal sheath method is used, namely a raw material of a ceramic superconductor material is filled into a metal pipe, it is subjected to plastic working such as swaging, rolling, and drawing for finishing to desired shape and dimensions and then heat treatment is performed as needed. Yttrium stabilizing zirconium etc., are used as a ceramic of the flexible ceramic sheet. Also, it is desirable that this sheet should be 100mum thick or less.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、臨界温度Tcが液体窒素温度以上であるセラ
ミックス超電導コイルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a ceramic superconducting coil whose critical temperature Tc is equal to or higher than the liquid nitrogen temperature.

[従来の技術] YBaCuO系、B i S rcacuo系、Ti1
BaCaCuO系のセラミックス超電導体材料は、液体
窒素温度を超える臨界温度Tcを有するので、これらの
セラミックス超電導体材料を種々の用途に適用する検討
がなされている。なかでも、これらのセラミックス超電
導体材料を線材化し、これを巻回してなるコイルの開発
が進められている。
[Prior art] YBaCuO system, B i S rcacuo system, Ti1
Since BaCaCuO-based ceramic superconductor materials have a critical temperature Tc exceeding the liquid nitrogen temperature, studies have been made to apply these ceramic superconductor materials to various uses. Among these, progress is being made in the development of coils made by turning these ceramic superconducting materials into wires and winding them.

コイルの製造において、セラミックス超電導体材料を線
材化する方法として一般に金属シース法が用いられてい
る。この方法は、例えば、セラミックス超電導体材料の
原料を金属製の、<イブ内に充填し、これに縮径加工を
施して所望形状、所望寸法に仕上げ、その後、これに熱
処理を施してセラミックス超電導導体を得るものである
In manufacturing coils, a metal sheath method is generally used as a method for converting ceramic superconductor materials into wire rods. In this method, for example, raw materials for ceramic superconductor materials are filled into a metal tube, the diameter of the tube is reduced to give the desired shape and dimensions, and then heat treatment is applied to make the ceramic superconductor material. It is used to obtain conductors.

そして、このようにして得られたセラミックス超電導導
体を、第2図に示すようにを渦巻状に巻回してコイル2
0を作製する。しかし、熱処理を施した後のセラミック
ス超電導体材料は脆いので、通常は、原料を充填したバ
イブを渦巻状に巻回した後、熱処理を施す。この方式は
、ワインドアンドリアクト方式と呼ばれている。
The ceramic superconductor thus obtained is then spirally wound as shown in Figure 2 to form a coil.
Create 0. However, since the ceramic superconductor material after heat treatment is brittle, heat treatment is usually performed after the vibrator filled with the raw material is spirally wound. This method is called the wind-and-react method.

このようにコイルを製造する場合、巻回されているセラ
ミックス超電導導体を絶縁する必要がある。このため、
従来では絶縁体としてAI 20 s、SLC等のセラ
ミックスからなる繊維やネットをセラミックス超電導導
体と共に巻回している。
When manufacturing a coil in this way, it is necessary to insulate the wound ceramic superconducting conductor. For this reason,
Conventionally, fibers or nets made of ceramics such as AI 20 s and SLC are wound together with ceramic superconducting conductors as insulators.

また、巻回されるセラミックス超電導導体が互いに接触
しないように、第3図に示すような複数の溝32を有す
るセラミックス製の治具30を用いて、溝32内にセラ
ミックス超電導導体を嵌め込んで固定することも試みら
れている。
Furthermore, in order to prevent the wound ceramic superconducting conductors from coming into contact with each other, a ceramic jig 30 having a plurality of grooves 32 as shown in FIG. 3 is used to fit the ceramic superconducting conductors into the grooves 32. Attempts have also been made to fix it.

〔発明が解決しようとする課題] しかしながら、セラミックスからなる繊維やネットをセ
ラミックス超電導導体と共に巻回する方法は、セラミッ
クスからなる繊維やネットが脆いため、これに張力を与
えて巻回することが困難である。このため、熱処理後の
コイル形状の維持やハンドリングも比較的困難になると
いう欠点がある。
[Problem to be solved by the invention] However, in the method of winding ceramic fibers or nets together with a ceramic superconducting conductor, it is difficult to apply tension to the ceramic fibers or nets and wind them because the ceramic fibers or nets are brittle. It is. For this reason, there is a drawback that it is relatively difficult to maintain the coil shape after heat treatment and to handle it.

また、巻回されるセラミックス超電導導体を互いに接触
させない方法は、複雑な工程でセラミックスを加工しな
ければならないという問題点がある。
Furthermore, the method of not bringing the wound ceramic superconducting conductors into contact with each other has a problem in that the ceramics must be processed through complicated steps.

本発明はかかる点に鑑みてなされたものであり、簡単な
構成で優れた特性を有するセラミックス超電導コイルを
提供することを目的とする。
The present invention has been made in view of these points, and an object of the present invention is to provide a ceramic superconducting coil having a simple structure and excellent characteristics.

[課題を解決するための手段] 本発明は、金属材料とセラミックス超電導体材料との複
合導体と、可撓性セラミックスシートとが積層された積
層体を渦巻状に巻回された構造を有することを特徴とす
るセラミックス超電導コイルである。
[Means for Solving the Problems] The present invention has a structure in which a laminate in which a composite conductor of a metal material and a ceramic superconductor material and a flexible ceramic sheet are laminated is spirally wound. This is a ceramic superconducting coil characterized by:

ここで、使用されるセラミックス超電導体材料は、Y系
、Bi系、TR系のいずれのものであってもよい。
The ceramic superconductor material used here may be any of Y-based, Bi-based, and TR-based.

セラミックス超電導導体の形状としては、テープ状の他
、断面が円形状、楕円形状、多角形状等のいずれのもの
も使用することができる。また、セラミックス超電導導
体の製造方法としては従来の金属シース法、すなわち、
セラミックス超電導体材料の原料を金属製のパイプ内に
充填し、これに押出、スウエージング、圧延、引抜等の
塑性加工を施して所望形状、所望寸法に仕上げ、その後
、これに必要に応じて熱処理を施す方法が用いられる。
As for the shape of the ceramic superconducting conductor, in addition to a tape shape, any shape having a circular cross section, an elliptical shape, a polygonal shape, etc. can be used. In addition, as a manufacturing method for ceramic superconducting conductors, the conventional metal sheath method is used.
The raw materials for the ceramic superconductor material are filled into a metal pipe, and then subjected to plastic processing such as extrusion, swaging, rolling, and drawing to give the desired shape and dimensions, and then heat treated as necessary. A method of applying this is used.

可撓性セラミックスシートのセラミックスとしては、Y
SZ(イツトリウム安定化ジルコニア)等が用いられる
。また、このシートの厚さは、100μm以下に設定す
ることが好ましい。これは、シートの厚さが100μm
を超えると充分な可撓性が得られないからである。
As the ceramic of the flexible ceramic sheet, Y
SZ (yttrium stabilized zirconia) or the like is used. Further, the thickness of this sheet is preferably set to 100 μm or less. This sheet has a thickness of 100 μm.
This is because if it exceeds this, sufficient flexibility cannot be obtained.

セラミックス超電導導体をコイルに巻回する際、その巻
回を容易にするために芯材を用いてもよい。
When winding the ceramic superconductor into a coil, a core material may be used to facilitate the winding.

芯材の材質としては、金属材料、セラミックス材料等が
用いられる。特に、ワインアンドリアクト方式を採用す
る場合は、耐酸化性を有するAg。
As the material of the core material, metal materials, ceramic materials, etc. are used. In particular, when using the wine and react method, Ag has oxidation resistance.

Au等の貴金属や酸化物系セラミックスを用いることが
好ましい。
It is preferable to use noble metals such as Au or oxide ceramics.

本発明のセラミックス超電導コイルを作製する方法とし
ては、セラミックス超電導導体と可撓性セラミックスシ
ートとを積層し、これを渦巻状に巻回した後、これに熱
処理を施すか、あらがじめ熱処理を施したセラミックス
超電導導体と可撓性セラミックスシートとを積層して渦
巻状に巻回する方法が用いられる。
The method for producing the ceramic superconducting coil of the present invention is to laminate a ceramic superconducting conductor and a flexible ceramic sheet, wind this in a spiral, and then heat-treat it, or heat-treat it in advance. A method is used in which the applied ceramic superconducting conductor and flexible ceramic sheet are laminated and spirally wound.

〔作用コ 本発明のセラミックス超電導コイルは、セラミックス超
電導導体と可撓性セラミックスシートとを積層した積層
体を渦巻状に巻回してなるものである。
[Function] The ceramic superconducting coil of the present invention is formed by spirally winding a laminate in which a ceramic superconducting conductor and a flexible ceramic sheet are laminated.

積層体に張力を加えて渦巻状に巻回する場合に、可撓性
セラミックスシートは薄くても形状が崩れることなく、
渦巻形状に順応してセラミックス超電導導体の間に介在
される。このため、コイルが密に構成される。しかも、
可撓性セラミックスシートは、充分な絶縁効果を発揮す
ることができる。
When applying tension to a laminate and winding it in a spiral, the flexible ceramic sheet does not lose its shape even if it is thin.
It is interposed between ceramic superconducting conductors to conform to the spiral shape. For this reason, the coils are densely arranged. Moreover,
A flexible ceramic sheet can exhibit a sufficient insulating effect.

[実施例] 以下、本発明の実施例を図面を参照して具体的に説明す
る。
[Example] Hereinafter, an example of the present invention will be specifically described with reference to the drawings.

実施例1 B l x Os 、S r COs 、Ca COi
 、CLI Oの一次原料粉末をモル比がそれぞれ2:
2:1:2となるように配合し、充分に混合した後、大
気中において800℃20時間の仮焼成を行った。
Example 1 B l x Os , S r COs , Ca COi
, the molar ratio of the primary raw material powder of CLI O is 2:
After blending in a ratio of 2:1:2 and thoroughly mixing, pre-calcination was performed at 800° C. for 20 hours in the atmosphere.

次いで、得られた仮焼成体を粉砕して仮焼粉末を得た。Next, the obtained calcined body was pulverized to obtain a calcined powder.

これをあらかじめ外径25龍φ、内径20龍φに加工し
たAgバイブ内に充填して複合ビレットを作製した。次
いで、この複合ビレットにスウエージング加工、圧延加
工を施して、厚さ0.2mm、幅3醜■の複合テープ線
材を作製した。
A composite billet was prepared by filling this into an Ag vibe which had been processed in advance to have an outer diameter of 25 mm and an inner diameter of 20 mm. Next, this composite billet was subjected to swaging and rolling to produce a composite tape wire with a thickness of 0.2 mm and a width of 3 mm.

次いで、第1図に示すように、得られた複合テープ線材
10と厚さ50μm、幅5 mmのYSZS再製可撓−
ト12を積層し、外径20■mφ、内径15關φのMg
O製バイブ14の外周に渦巻状に20層巻回した。なお
、巻回の際の張力は2kgとした。また、巻回後の外径
は30.5龍φであった。
Next, as shown in FIG. 1, the obtained composite tape wire 10 and YSZS remanufactured flexible material having a thickness of 50 μm and a width of 5 mm were combined.
Mg with an outer diameter of 20 mφ and an inner diameter of 15 mφ.
It was spirally wound in 20 layers around the outer periphery of the vibrator 14 made of O. Note that the tension during winding was 2 kg. Further, the outer diameter after winding was 30.5 mm.

その後、この巻回物に大気中において850℃50時間
の熱処理を施してセラミックス超電導コイルを作製した
Thereafter, this wound product was heat-treated at 850° C. for 50 hours in the atmosphere to produce a ceramic superconducting coil.

得られたセラミックス超電導コイルのIc(臨界電流)
を77Kにおいて調べたところ、25Aの高い値が得ら
れた。また、製造上のハンドリングも極めて良好であっ
た。
Ic (critical current) of the obtained ceramic superconducting coil
When tested at 77K, a high value of 25A was obtained. Furthermore, handling during production was also extremely good.

実施例2 実施例1と同様にして厚さ0.2龍、幅31の複合テー
プ線材を作製した。この複合テープ線材に大気中におい
て850℃50時間の熱処理を施してテープ状セラミッ
クス超電導導体を作製した。
Example 2 A composite tape wire having a thickness of 0.2 mm and a width of 31 mm was produced in the same manner as in Example 1. This composite tape wire was heat-treated at 850° C. for 50 hours in the atmosphere to produce a tape-shaped ceramic superconducting conductor.

次いで、得られたテープ状セラミックス超電導導体と厚
さ50μm1幅5龍のYSZS再製可撓−トを積層し、
外径20 mmφ、内径15mmφのMgO製バイブの
外周に渦巻状に20層巻回した。
Next, the obtained tape-shaped ceramic superconducting conductor was laminated with a recycled YSZS flexible sheet with a thickness of 50 μm and a width of 5 mm.
Twenty layers were spirally wound around the outer periphery of an MgO vibrator having an outer diameter of 20 mmφ and an inner diameter of 15 mmφ.

なお、巻回の際の張力は1kgとした。また、巻回後の
外径は31 mmφであった。
Note that the tension during winding was 1 kg. Further, the outer diameter after winding was 31 mmφ.

得られたセラミックス超電導コイルのIcを77Kにお
いて調べたところ、19Aの高い値が得られた。また、
製造上のハンドリングも極めて良好であった。
When the Ic of the obtained ceramic superconducting coil was examined at 77K, a high value of 19A was obtained. Also,
The manufacturing handling was also very good.

[発明の効果] 以上説明した如く、本発明のセラミックス超電導コイル
は、可撓性セラミックスシートが比較的高強度であるの
で、張力を加えて巻回されていてもその形状が崩れるこ
となくセラミックス超電導導体間に介在され、絶縁性を
発揮することができる。また、本発明のセラミックス超
電導コイルは、製造においても作業性を向上させること
ができる。
[Effects of the Invention] As explained above, since the flexible ceramic sheet of the ceramic superconducting coil of the present invention has relatively high strength, the ceramic superconducting coil does not lose its shape even when wound under tension. It is interposed between conductors and can exhibit insulation properties. Further, the ceramic superconducting coil of the present invention can improve workability in manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセラミックス超電導コイルの一実施例
を示す説明図、第2図はセラミックス超電導導体を渦巻
状に巻回した際の説明図、第3図は従来のセラミックス
超電導コイルを製造する際に用いられる治具を示す説明
図である。 10・・・複合テープ線材、12・・・YSZS再製可
撓−ト、14・・・MgO製パイプ、20・・・コイル
、30・・・治具。 第1図 第2図 出願人代理人 弁理士 鈴江武彦 第3図
Fig. 1 is an explanatory diagram showing one embodiment of the ceramic superconducting coil of the present invention, Fig. 2 is an explanatory diagram when a ceramic superconducting conductor is spirally wound, and Fig. 3 is an explanatory diagram showing a method of manufacturing a conventional ceramic superconducting coil. It is an explanatory view showing a jig used in this case. DESCRIPTION OF SYMBOLS 10... Composite tape wire material, 12... YSZS remanufactured flexible sheet, 14... MgO pipe, 20... Coil, 30... Jig. Figure 1 Figure 2 Applicant's agent Patent attorney Takehiko Suzue Figure 3

Claims (1)

【特許請求の範囲】[Claims] 金属材料とセラミックス超電導体材料との複合導体と、
可撓性セラミックスシートとが積層された積層体を渦巻
状に巻回された構造を有することを特徴とするセラミッ
クス超電導コイル。
A composite conductor of a metal material and a ceramic superconductor material,
A ceramic superconducting coil characterized in that it has a structure in which a laminate of flexible ceramic sheets is spirally wound.
JP2238013A 1990-09-07 1990-09-07 Ceramic superconductive coil Pending JPH04116906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2238013A JPH04116906A (en) 1990-09-07 1990-09-07 Ceramic superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238013A JPH04116906A (en) 1990-09-07 1990-09-07 Ceramic superconductive coil

Publications (1)

Publication Number Publication Date
JPH04116906A true JPH04116906A (en) 1992-04-17

Family

ID=17023855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238013A Pending JPH04116906A (en) 1990-09-07 1990-09-07 Ceramic superconductive coil

Country Status (1)

Country Link
JP (1) JPH04116906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631331A1 (en) * 1993-05-10 1994-12-28 Sumitomo Electric Industries, Limited Method of preparing high-temperature superconducting wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631331A1 (en) * 1993-05-10 1994-12-28 Sumitomo Electric Industries, Limited Method of preparing high-temperature superconducting wire

Similar Documents

Publication Publication Date Title
JP3386942B2 (en) Oxide superconducting coil and manufacturing method thereof
EP0472197B1 (en) High-temperature superconductive conductor winding
AU779553B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JP3328941B2 (en) Superconducting conductor
JPH04116906A (en) Ceramic superconductive coil
JPH06325634A (en) Multi-core oxide superconducting wire
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH06139848A (en) Manufacture of oxide high-temperature superconducting wire rod
JP3158408B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH05334921A (en) Ceramic superconductor
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JPH0644834A (en) Ceramics superconductive conductor
JP3042558B2 (en) Ceramic superconducting conductor
JPH05211013A (en) Oxide superconductor and manufacture thereof
JP4709455B2 (en) Oxide high-temperature superconducting wire and manufacturing method
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JPH0382105A (en) Manufacture of oxide superconducting coil
JPH05211012A (en) Oxide superconductor and manufacture thereof
JP3445308B2 (en) Oxide superconducting conductor for power transport and method for producing the same
JPH0653037A (en) Oxide superconductor current lead
KR0174386B1 (en) Method for manufacturing high temperature superconducting multicore wire
JPH0745136A (en) Oxide superconductor
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JPH06325633A (en) Multi-core oxide superconducting wire
JPH01163913A (en) Manufacture of oxide superconductive wire