JPH0653037A - Oxide superconductor current lead - Google Patents

Oxide superconductor current lead

Info

Publication number
JPH0653037A
JPH0653037A JP4205657A JP20565792A JPH0653037A JP H0653037 A JPH0653037 A JP H0653037A JP 4205657 A JP4205657 A JP 4205657A JP 20565792 A JP20565792 A JP 20565792A JP H0653037 A JPH0653037 A JP H0653037A
Authority
JP
Japan
Prior art keywords
current lead
oxide superconductor
oxide
lead
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4205657A
Other languages
Japanese (ja)
Inventor
Naoki Uno
直樹 宇野
Masanao Mimura
正直 三村
Yasuzo Tanaka
靖三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4205657A priority Critical patent/JPH0653037A/en
Publication of JPH0653037A publication Critical patent/JPH0653037A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce heat amount permeating from a metal sheath oxide superconductor and reinforce the strength of oxide superconductive bulk conductor, by arranging a ceramic body for reinforcement in the length direction of the oxide superconductor. CONSTITUTION:In a current lead 11 wherein a single layer ceramics body for reinforcement is arranged on an oxide superconductor, a rod type ceramics body 13 for reinforcement is made to engage with the inside of a pipe type oxide superconductor 12. In a current lead 21, a penetrating hole 24 for a refrigerant path is formed at the center of a ceramics body 23 for reinforcement in a pipe type oxide superconductor 22. In a multilayered current lead 31, oxide superconductors 32, 34 and 36 are made to concentrically alternately engage with ceramics bodies 33, 35. A ceramics body 37 is made to engage with the center. Thereby the penetrating heat amount into the current lead is reduced, large strength of the lead is obtained, apparatus stability is realized, and the lead is prevented from being bent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マグネット、コイル、
電力応用導体等に外部から電力を供給するための酸化物
超電導電流リードに関する。
BACKGROUND OF THE INVENTION The present invention relates to a magnet, a coil,
The present invention relates to an oxide superconducting current lead for supplying electric power to a power application conductor or the like from outside.

【0002】[0002]

【従来の技術】酸化物超電導体を線材化・導体化して、
マグネット、コイル及び種々の電力応用導体として使用
していこうとする試みがなされている。特に、イットリ
ウム系、ビスマス系、タリウム系に代表される、いわゆ
る酸化物高温超電導体は、液体窒素温度を越える臨界温
度を有しているために、電力応用導体として好ましい材
料として知られている。また、前述のような長尺の線材
の他に、短尺大電流容量の導体として、限流器や電流リ
ードへの適用も考えられている。
2. Description of the Prior Art Oxide superconductors are made into wire rods and conductors,
Attempts have been made to use them as magnets, coils and various power application conductors. In particular, so-called oxide high-temperature superconductors represented by yttrium-based, bismuth-based, and thallium-based materials are known as preferable materials for power application conductors because they have a critical temperature exceeding liquid nitrogen temperature. Further, in addition to the long wire as described above, application to a current limiter or a current lead is also considered as a conductor with a short and large current capacity.

【0003】長尺の線材を製造する最も一般的な方法と
しては、これらの酸化物超電導体の粉末を銀などの金属
シース材中に充填し、これを縮径加工するいわゆるパウ
ダー・イン・チューブ法が知られている。この方法によ
って、すでに単芯の丸線やテープ、多芯あるいは多層の
丸線やテープが作製され、コイルやケーブル用導体の試
作もはじめられている。
The most common method for producing a long wire is to fill the powder of these oxide superconductors in a metal sheath material such as silver and reduce the diameter of the so-called powder-in-tube. The law is known. By this method, a single-core round wire or tape, a multi-core or multi-layer round wire or tape has already been produced, and trial manufacture of conductors for coils and cables has begun.

【0004】しかし、長尺の線材を製造する方法を短尺
の電流リードの製造に応用する場合には、被覆金属の高
い熱伝導性が悪影響を及ぼすという問題がある。即ち、
金属部を伝わる熱の侵入によって電流リードに接続され
ている機器の安定性が損なわれ、また機器の冷却媒体で
ある液体ヘリウムの蒸発量が増大する。
However, when the method of producing a long wire is applied to the production of a short current lead, there is a problem that the high thermal conductivity of the coating metal has an adverse effect. That is,
The invasion of heat transmitted through the metal part impairs the stability of the device connected to the current lead and increases the evaporation amount of liquid helium, which is a cooling medium of the device.

【0005】なお、従来は電流リードとして銅導体が使
用されているが、この場合の侵入及びジュール熱量は1
〜1.2W/kAであったので、これに比較すれば金属
シースの酸化物超電導電流リードは、0.9〜1.0W
/kAまでは侵入熱量を低減することができる。
Conventionally, a copper conductor has been used as a current lead, but in this case, the amount of penetration and Joule heat is 1
Since it was ~ 1.2 W / kA, the oxide superconducting current lead of the metal sheath was 0.9-1.0 W in comparison with this.
The amount of heat entering can be reduced up to / kA.

【0006】[0006]

【発明が解決しようとする課題】従来の銅導体を用いた
電流リードでは、侵入及び発生熱量の合計が1kA当た
り1W以上になる。また、金属シース酸化物超電導体を
用いた電流リードでは、若干の侵入熱量の減少がみられ
るものの、銅導体を用いた場合と大差なく、超電導電流
リードとするメリットがあまり得られない。
In the conventional current lead using the copper conductor, the total amount of intrusion and generated heat is 1 W or more per 1 kA. Further, in the current lead using the metal sheath oxide superconductor, although the amount of intruding heat is slightly reduced, there is not much difference from the case of using the copper conductor, and the merit of the superconducting current lead cannot be obtained so much.

【0007】一方、金属シースを施さないことにより侵
入熱量を低減した酸化物超電導バルク導体を電流リード
に用いることも考えられるが、この場合は、酸化物超電
導体が脆いために、使用中に折損する危険性があった。
On the other hand, it is possible to use an oxide superconducting bulk conductor for the current lead in which the amount of heat entering is reduced by not providing a metal sheath, but in this case, the oxide superconducting conductor is fragile and therefore breaks during use. There was a risk of

【0008】そこで、本発明は、金属シース酸化物超電
導体より侵入熱量を低減し、かつ、酸化物超電導バルク
導体の強度を補強した、酸化物超電導体電流リードを提
供することを目的とする。
Therefore, an object of the present invention is to provide an oxide superconductor current lead in which the amount of heat entering the metal superconducting oxide superconductor is reduced and the strength of the oxide superconducting bulk conductor is reinforced.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、酸化物超電導体と、この酸化物超電導体
の長さ方向に配置された補強用セラミックス体とからな
ることを特徴とする酸化物超電導電流リードを提供す
る。
In order to solve the above-mentioned problems, the present invention comprises an oxide superconductor and a reinforcing ceramic body arranged in the length direction of the oxide superconductor. An oxide superconducting current lead is provided.

【0010】また、本発明は、酸化物超電導体と補強用
セラミックス体とからなる複合体の長さ方向に冷媒通路
用貫通孔を有する酸化物超電導電流リードを提供する。
The present invention also provides an oxide superconducting current flow lead having a through hole for a refrigerant passage in the length direction of a composite composed of an oxide superconductor and a reinforcing ceramics body.

【0011】本発明の酸化物超電導電流リードに使用さ
れる補強用セラミックス体は、単芯、又は多芯のいずれ
の構造であってもよい。単芯構造の場合は、補強用セラ
ミックス体が単層で配置された構造、又は、酸化物超電
導体と補強用セラミックス体とが、多層配された構造で
あってもよい。
The reinforcing ceramic body used for the oxide superconducting current lead of the present invention may have either a single-core structure or a multi-core structure. In the case of the single core structure, the structure may be a structure in which the reinforcing ceramics body is arranged in a single layer, or a structure in which the oxide superconductor and the reinforcing ceramics body are arranged in multiple layers.

【0012】補強用セラミックス体を単層で、酸化物超
電導体に配置した電流リードの構造を、図1(a)に示
す。電流リード11は、パイプ状の酸化物超電導体12
の内部にロッド状の補強用セラミックス体13を嵌合さ
せた構造である。この構造の場合、冷媒通路用の貫通孔
を設けることもでき、この構造の電流リードを図1
(b)に示す。電流リード21は、パイプ状の酸化物超
電導体22の内部に嵌合されたロッド状の補強用セラミ
ックス体23の中心に、冷媒通路用貫通孔24を設けた
構造である。
FIG. 1A shows the structure of a current lead in which a reinforcing ceramic body is arranged in a single layer on an oxide superconductor. The current lead 11 is a pipe-shaped oxide superconductor 12
This is a structure in which a rod-shaped reinforcing ceramics body 13 is fitted inside. In the case of this structure, it is possible to provide a through hole for the refrigerant passage, and the current lead of this structure is shown in FIG.
It shows in (b). The current lead 21 has a structure in which a through hole 24 for a refrigerant passage is provided at the center of a rod-shaped reinforcing ceramic body 23 fitted inside a pipe-shaped oxide superconductor 22.

【0013】酸化物超電導体と補強用セラミックス体と
を多層配した構造の電流リードの例を、図1(c)及び
図2(a)に示す。図1(c)に示す電流リード31
は、パイプ状の酸化物超電導体32、34及び36と、
パイプ状の補強用セラミックス体33、35とを同心円
状に交互に、順次組み合わせ、中心にはロッド状の補強
用セラミックス体37を嵌合させた構造である。図2
(a)に示す電流リード41は、酸化物超電導体42と
補強用セラミックス体43とを、渦巻状に配した構造で
ある。また、電流リード31及び41は、冷媒通路用の
貫通孔を設けた構造とすることもでき、この構造の電流
リードを図2(b)及び図2(c)に示す。図2(b)
に示す電流リード51は、電流リード31におけるロッ
ド状セラミックス体37をパイプ状に加工することによ
り、冷媒通路用貫通孔58を設けた構造である。また、
図2(c)に示す電流リード61は、渦巻状に配した酸
化物超電導体62と補強用セラミックス体63との中心
に冷媒通路用貫通孔64を設けた構造である。
An example of a current lead having a structure in which an oxide superconductor and a reinforcing ceramic body are arranged in multiple layers is shown in FIGS. 1 (c) and 2 (a). The current lead 31 shown in FIG.
Is a pipe-shaped oxide superconductor 32, 34 and 36,
This is a structure in which the pipe-shaped reinforcing ceramics bodies 33 and 35 are concentrically alternately and sequentially combined, and a rod-shaped reinforcing ceramics body 37 is fitted in the center. Figure 2
The current lead 41 shown in (a) has a structure in which an oxide superconductor 42 and a reinforcing ceramics body 43 are spirally arranged. Further, the current leads 31 and 41 may have a structure in which a through hole for the refrigerant passage is provided, and the current leads of this structure are shown in FIGS. 2 (b) and 2 (c). Figure 2 (b)
The current lead 51 shown in (1) has a structure in which the rod-shaped ceramic body 37 of the current lead 31 is processed into a pipe shape to provide a through hole 58 for the refrigerant passage. Also,
The current lead 61 shown in FIG. 2C has a structure in which a through hole 64 for a refrigerant passage is provided at the center of a spirally arranged oxide superconductor 62 and a reinforcing ceramic body 63.

【0014】以上述べた単芯構造の電流リードにおい
て、単層構造の場合は、酸化物超電導体が補強用セラミ
ックス体の外側に配置された構造となり、多層構造の場
合も、最外層は酸化物超電導体とすることが好ましい。
In the above-described single-core current lead, in the case of the single-layer structure, the oxide superconductor is arranged outside the reinforcing ceramic body, and also in the case of the multi-layer structure, the outermost layer is the oxide. It is preferably a superconductor.

【0015】また、多芯構造の電流リードの例を図3及
び図4に示す。図3(a)に示す電流リード71は、酸
化物超電導体72をマトリックスとして、その長さ方向
にロッド状の補強用セラミックス体73を配置した構造
であり、図3(b)に示す電流リード81は、補強用セ
ラミックス体82をマトリックスとして、その長さ方向
にロッド状の酸化物超電導体83を同様に配置した構造
である。このように、酸化物超電導体又は補強用セラミ
ックス体のいずれの材料も、マトリックスとして用いる
ことができるが、酸化物超電導リードの冷却効率の面か
らは、酸化物超電導体が外表面に露出していることが望
ましい。さらに、酸化物超電導体及び補強用セラミック
ス体は、導体の長さ方向に連続体であることが必要であ
る。
An example of a current lead having a multi-core structure is shown in FIGS. 3 and 4. The current lead 71 shown in FIG. 3 (a) has a structure in which an oxide superconductor 72 is used as a matrix and rod-shaped reinforcing ceramics bodies 73 are arranged in the length direction thereof. 81 is a structure in which the reinforcing ceramic body 82 is used as a matrix and rod-shaped oxide superconductors 83 are similarly arranged in the length direction thereof. As described above, any material of the oxide superconductor or the reinforcing ceramics body can be used as the matrix, but from the viewpoint of cooling efficiency of the oxide superconducting lead, the oxide superconductor is exposed on the outer surface. Is desirable. Furthermore, the oxide superconductor and the reinforcing ceramics body must be continuous in the length direction of the conductor.

【0016】また、貫通孔の径をより小さくして孔の個
数を多くし、複数個の冷媒通路用貫通孔を設けた電流リ
ードを作製することもできる。図4に、この構造の電流
リードの一例を示す。図4(a)に示す電流リード10
1は、酸化物超電導体102をマトリックスとして、ロ
ッド状の補強用セラミックス体103を7本嵌合し、3
つの冷媒通路用貫通孔104を設けた構造である。一
方、図4(b)に示す電流リード111は、マトリック
スに補強用セラミックス体112を用い、ロッド状酸化
物超電導体113を嵌合し、同様に3つの冷媒通路用貫
通孔114を設けた構造である。
It is also possible to make a current lead having a plurality of through holes for a refrigerant passage by making the diameter of the through holes smaller and increasing the number of the holes. FIG. 4 shows an example of the current lead of this structure. The current lead 10 shown in FIG.
1 is a structure in which seven rod-shaped reinforcing ceramic bodies 103 are fitted with the oxide superconductor 102 as a matrix.
This is a structure in which one refrigerant passage through hole 104 is provided. On the other hand, the current lead 111 shown in FIG. 4B has a structure in which a reinforcing ceramic body 112 is used in a matrix, rod-shaped oxide superconductors 113 are fitted, and three through holes 114 for refrigerant passages are similarly provided. Is.

【0017】上述の種々の構造は、所望の強度等に応じ
て、適宜選択することができる。
The various structures described above can be appropriately selected according to the desired strength and the like.

【0018】本発明の電流リードに含まれる補強用セラ
ミックス体の割合は、酸化物超電導体に対して断面積で
5〜99%が好ましく、より好ましくは20〜90%で
ある。5%未満では、所望の強度が得られず、99%を
越えると導体の特性が低下するためである。
The proportion of the reinforcing ceramic body contained in the current lead of the present invention is preferably 5 to 99%, more preferably 20 to 90% in terms of cross-sectional area with respect to the oxide superconductor. This is because if it is less than 5%, the desired strength cannot be obtained, and if it exceeds 99%, the properties of the conductor deteriorate.

【0019】これらの構造を有する複合酸化物超電導電
流リードは、さらにその長さ方向に冷媒通路として1又
はそれ以上の貫通孔を設けることが好ましい。
It is preferable that the complex oxide superconducting current lead having these structures further has one or more through holes as a coolant passage in the length direction thereof.

【0020】貫通孔の断面積の割合は、電流リードの断
面積の2〜90%程度が好ましく、より好ましくは10
〜85%である。2%未満では十分な冷却効率を得るこ
とができず、90%を越えると電流リードの特性が低下
するためである。
The proportion of the cross-sectional area of the through hole is preferably about 2 to 90% of the cross-sectional area of the current lead, more preferably 10%.
~ 85%. This is because if it is less than 2%, sufficient cooling efficiency cannot be obtained, and if it exceeds 90%, the characteristics of the current lead are deteriorated.

【0021】本発明に用いる酸化物超電導体としては、
臨界温度が高い、いわゆる高温超電導体が適しており、
電流リードの構造、所望の容量等に応じて、ランタン
系、イットリウム系(希土類系)、ビスマス系、タリウ
ム系、鉛系等を使用することができる。
As the oxide superconductor used in the present invention,
So-called high temperature superconductors with high critical temperature are suitable,
Lanthanum-based, yttrium-based (rare earth-based), bismuth-based, thallium-based, lead-based, or the like can be used depending on the structure of the current lead, the desired capacity, and the like.

【0022】これらの高温超電導体の原料としては、Y
2 3 、BaCO3 、CuO、Bi2 3 、PbO、S
rCO3 、CaCO3 等の酸化物粉末を、複数、適宜選
択して使用することができる。
The raw materials for these high-temperature superconductors are Y
2 O 3 , BaCO 3 , CuO, Bi 2 O 3 , PbO, S
A plurality of oxide powders such as rCO 3 and CaCO 3 can be appropriately selected and used.

【0023】本発明に使用できる補強用セラミックス体
としてはアルミナ系、ジルコニア系、シリカ系、マグネ
シア系等のほとんどの酸化物系の構造用セラミックスが
挙げられ、また、高強度・耐熱性に特徴のある窒化ケイ
素等の窒化物系あるいは炭化ケイ素等の炭化物系構造用
セラミックスも適用できる。特に好ましくはジルコニア
系セラミックスである。さらに近年よく用いられている
種々の酸化物系、非酸化物系セラミックスを複合したマ
シナブルセラミックスも適用できる。
The reinforcing ceramics that can be used in the present invention include most oxide-based structural ceramics such as alumina-based, zirconia-based, silica-based, and magnesia-based ceramics, and are characterized by high strength and heat resistance. Certain nitride-based structural ceramics such as silicon nitride or carbide-based structural ceramics such as silicon carbide can also be applied. Zirconia-based ceramics are particularly preferable. Furthermore, machinable ceramics that are a composite of various oxide-based and non-oxide-based ceramics that have been often used in recent years can also be applied.

【0024】以下、上記の電流リードの製造方法を説明
する。
A method of manufacturing the above current lead will be described below.

【0025】原料酸化物粉末は、所定の割合で混合した
後、所定の温度及び時間、仮焼を行なった後、粉砕して
仮焼粉とし、得られた仮焼粉を用いて、所定の寸法のロ
ッド状又はパイプ状にCIP成形する。
The raw material oxide powders are mixed at a predetermined ratio, calcined at a predetermined temperature and for a predetermined time, and then pulverized into a calcined powder. CIP molding into a rod shape or a pipe shape with a size.

【0026】得られた成形体に、所定温度及び時間の熱
処理を施すことにより、酸化物超電導体が完成するが、
必要に応じて、さらに加熱及び熱処理を施すこともでき
る。なお、多芯構造の電流リードを作製する場合は、酸
化物超電導体をロッド状に成形した後、所定の径の貫通
孔を所定個数、設ける。
An oxide superconductor is completed by subjecting the obtained molded body to heat treatment at a predetermined temperature and for a period of time.
If necessary, heating and heat treatment can be further performed. In the case of producing a current lead having a multi-core structure, after forming the oxide superconductor into a rod shape, a predetermined number of through holes having a predetermined diameter are provided.

【0027】補強用セラミックス体としては、例えばイ
ットリア安定化ジルコニア(YSZ)を用い、ロッド
状、パイプ状等の所定の形状に削り出して、前述の酸化
物超電導体に嵌合させることにより、電流リードを得る
ことができる。
As the reinforcing ceramic body, for example, yttria-stabilized zirconia (YSZ) is used, which is carved into a predetermined shape such as a rod shape or a pipe shape, and fitted into the above-mentioned oxide superconductor to obtain an electric current. You can get a lead.

【0028】また、補強用セラミックス体をマトリック
スとした多芯構造の電流リードの場合は、ロッド状のセ
ラミックス体に所定の径の貫通孔を設け、孔に適合する
ように成形した酸化物超電導体を嵌合させることによ
り、作製することができる。
In the case of a multi-core current lead having a reinforcing ceramic body as a matrix, a rod-shaped ceramic body is provided with a through hole having a predetermined diameter, and an oxide superconductor formed to fit the hole. It can be manufactured by fitting.

【0029】さらに、酸化物超電導体と補強用セラミッ
クス体とを渦巻状に配した構造の電流リードの場合は、
各々、所定の原料粉末を混合した後、2層のシート状に
積層し、酸化物超電導体が外側になるように巻き込ん
で、成形することにより、作製することができる。
Further, in the case of a current lead having a structure in which an oxide superconductor and a reinforcing ceramic body are spirally arranged,
Each can be manufactured by mixing predetermined raw material powders, laminating them into a two-layered sheet, winding them so that the oxide superconductor is on the outside, and molding.

【0030】[0030]

【作用】本発明の酸化物超電導電流リードは、酸化物超
電導体よりも高強度であって、かつ金属等の高強度材料
よりも熱伝導性の低いセラミックスを、酸化物超電導体
の長さ方向に連続的に配している。このため、発生熱量
と侵入熱量の低減という酸化物超電導電流リードの特徴
を損なうことなくその強度を上げ、実用特性を向上させ
ることができる。
In the oxide superconducting current lead of the present invention, a ceramic having a strength higher than that of the oxide superconductor and a thermal conductivity lower than that of the high-strength material such as metal is used. Are arranged continuously. Therefore, the strength of the oxide superconducting current lead can be increased without impairing the characteristics of the oxide superconducting current lead, that is, the amount of heat generated and the amount of heat entering can be reduced, and the practical characteristics can be improved.

【0031】さらに、本発明の酸化物超電導電流リード
は、冷媒通路として1又はそれ以上の貫通孔を長さ方向
に設けてもよく、これにより、酸化物超電導リードの特
性を損なうことなく、冷却効率を高めることができる。
Further, in the oxide superconducting current lead of the present invention, one or more through holes may be provided in the lengthwise direction as a refrigerant passage, which allows cooling without impairing the characteristics of the oxide superconducting lead. The efficiency can be increased.

【0032】[0032]

【実施例】以下、本発明の実施例を示し、本発明をより
具体的に説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically by showing examples of the present invention.

【0033】(実施例1)酸化物超電導体の原料とし
て、Y2 3 、BaCO3 、及びCuOの粉末を用い、
これらの粉末をYBa2 Cu3 7-x の組成となるよう
に配合、混合して混合粉を調製した。得られた混合粉
を、大気中850℃、6時間の条件で仮焼した後、粉砕
して仮焼粉とし、CIP成形して外径10mm、肉厚1
mm、長さ200mmのパイプを作製した。得られたパ
イプを大気中950℃、10時間の熱処理を施し、2℃
/分で徐冷して酸化物超電導体を得た。
(Example 1) Powders of Y 2 O 3 , BaCO 3 and CuO were used as raw materials for an oxide superconductor,
These powders were blended and mixed so as to have a composition of YBa 2 Cu 3 O 7-x to prepare a mixed powder. The obtained mixed powder is calcined in the atmosphere at 850 ° C. for 6 hours, and then pulverized into a calcined powder, which is CIP molded to have an outer diameter of 10 mm and a wall thickness of 1
A pipe having a length of 200 mm and a length of 200 mm was produced. The obtained pipe is heat-treated in the atmosphere at 950 ° C for 10 hours and then at 2 ° C.
It was gradually cooled at a speed of about 1 / min to obtain an oxide superconductor.

【0034】補強用セラミックスとして、YSZ(イッ
トリア安定化ジルコニア)製の棒を用い、前記超電導体
の内径に適合する径で、200mmの長さに削り出し
て、超電導体パイプ内に嵌合し、図1(a)に示す複合
導体11を得た。
A rod made of YSZ (yttria-stabilized zirconia) was used as the reinforcing ceramics, and it was carved into a length of 200 mm with a diameter suitable for the inner diameter of the superconductor and fitted into the superconductor pipe. The composite conductor 11 shown in FIG. 1A was obtained.

【0035】このようにして得られた複合導体5本を銅
導体の先端に接続した電流リードを二組作製した。
Two sets of current leads were produced by connecting the five composite conductors thus obtained to the tips of copper conductors.

【0036】(実施例2)酸化物超電導体の原料とし
て、Bi2 3 、PbO、SrCO3 、CaCO3及び
CuOの粉末を使用し、これらの粉末をモル比でBi:
Pb:Sr:Ca:Cu=1.6:0.4:2:2:3
となるように配合し、実施例1と同様に混合して混合粉
を調製した。得られた混合粉を、大気中800℃、50
時間の条件で仮焼し、その後、粉砕して仮焼粉とし、C
IP成形してそれぞれの外径が14mm、10mm、6
mm、肉厚1mm、長さ200mmの3本のパイプを作
製した。得られたパイプを大気中850℃、50時間の
熱処理を施し、さらにCIPを行なった後、再び同様の
条件で熱処理を施して3本の酸化物超電導パイプを得
た。
Example 2 Powders of Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO were used as raw materials for the oxide superconductor, and these powders were mixed at a molar ratio of Bi:
Pb: Sr: Ca: Cu = 1.6: 0.4: 2: 2: 3
And mixed in the same manner as in Example 1 to prepare a mixed powder. The obtained mixed powder is heated in the air at 800 ° C. and 50
Calcination under the condition of time, then crushing into calcination powder, C
IP molding and each outer diameter is 14mm, 10mm, 6
mm, wall thickness 1 mm, length 200 mm 3 pipes were produced. The obtained pipe was heat-treated in the atmosphere at 850 ° C. for 50 hours, further CIP was performed, and then heat-treated again under the same conditions to obtain three oxide superconducting pipes.

【0037】補強用セラミックスとして、実施例1と同
様のYSZ製の棒を用い、前記の酸化物超電導パイプと
組み合わされるように、それぞれ外径12mm、8m
m、4mm、肉厚1mm、長さ200mmのパイプを3
本作製した。得られたセラミックスパイプと上記酸化物
超電導パイプを交互に順次嵌合することにより、図2
(b)に示す複合導体51を得た。
As the reinforcing ceramics, the same YSZ rods as in Example 1 were used, and the outer diameters were 12 mm and 8 m, respectively, so as to be combined with the above oxide superconducting pipe.
m, 4 mm, wall thickness 1 mm, length 200 mm 3 pipes
This was made. By alternately fitting the obtained ceramic pipes and the above oxide superconducting pipes one after another, as shown in FIG.
The composite conductor 51 shown in (b) was obtained.

【0038】なお、この複合導体51の中心部には、直
径2mmの冷媒通路用貫通孔58が形成される。
A through hole 58 for a refrigerant passage having a diameter of 2 mm is formed at the center of the composite conductor 51.

【0039】このようにして得られた複合導体3本を銅
導体の先端に接続した電流リードを二組作製した。
Two sets of current leads were produced by connecting the three composite conductors thus obtained to the tips of copper conductors.

【0040】(実施例3)酸化物超電導体の原料とし
て、実施例2と同様の粉末を使用し、実施例2の混合粉
末と同様のモル比で配合、混合した混合粉を調製した。
得られた混合粉を、大気中800℃、50時間の条件で
仮焼し、その後粉砕して仮焼粉とし、CIP成形して外
径が10mm長さ200mmのロッドを作製した。得ら
れた成形体を大気中で850℃、50時間の熱処理し、
さらにCIPを行なった後、再び同様の条件で熱処理を
施して酸化物超電導体を得た。得られたロッド状酸化物
超電導体の長さ方向に、径2mmの貫通孔を7個設け
た。貫通孔の1個は、中心に設け、残りの6個は同心円
上になるように設けた。
Example 3 The same powder as in Example 2 was used as the raw material for the oxide superconductor, and the mixed powder was mixed and mixed in the same molar ratio as the mixed powder in Example 2 to prepare a mixed powder.
The obtained mixed powder was calcined in the atmosphere at 800 ° C. for 50 hours, and then pulverized into a calcined powder, which was CIP molded to prepare a rod having an outer diameter of 10 mm and a length of 200 mm. The obtained molded body is heat-treated in the atmosphere at 850 ° C. for 50 hours,
After further performing CIP, heat treatment was performed again under the same conditions to obtain an oxide superconductor. Seven through holes having a diameter of 2 mm were provided in the length direction of the obtained rod-shaped oxide superconductor. One of the through holes was provided at the center, and the remaining six holes were provided so as to be concentric.

【0041】複合用セラミックスとして、実施例1と同
様のYSZ製ロッドを使用し、前記酸化物超電導体に設
けられた穴の径に適合するよう、外径2mm、200m
mの長さで削り出し、酸化物超電導体の中心部を除く6
個の穴に挿入して、図3(c)に示す複合導体91を得
た。
As the composite ceramics, the same YSZ rod as in Example 1 was used, and the outer diameter was 2 mm and 200 m so as to match the diameter of the hole provided in the oxide superconductor.
Machined to a length of m, excluding the center of the oxide superconductor 6
The composite conductor 91 shown in FIG. 3C was obtained by inserting the composite conductor 91 into the individual holes.

【0042】完成した多芯型複合導体91の中心部に
は、2mmの冷媒通路用貫通孔94が形成される。
In the center of the completed multi-core type composite conductor 91, a 2 mm through hole 94 for the refrigerant passage is formed.

【0043】このようにして得られた複合導体5本を銅
導体の先端に接続して電流リードを二組作製した。
Five composite conductors thus obtained were connected to the tips of copper conductors to prepare two sets of current leads.

【0044】(比較例1)実施例1と同様の粉末を使用
し、実施例1と同様の組成となるように配合、混合した
混合粉を、同様の条件で仮焼、粉砕し、仮焼粉を得た。
得られた仮焼粉をCIP成形して外径10mm、長さ2
00mmのロッドを作製した。得られた成形体を実施例
1と同様に熱処理を施した後、徐冷して酸化物超電導体
を得た。
(Comparative Example 1) The same powder as in Example 1 was used, and the mixed powder mixed and mixed so as to have the same composition as in Example 1 was calcined, pulverized and calcined under the same conditions. Got the powder.
The obtained calcined powder is CIP-molded to have an outer diameter of 10 mm and a length of 2
A 00 mm rod was made. The obtained molded body was heat treated in the same manner as in Example 1 and then gradually cooled to obtain an oxide superconductor.

【0045】このようにして得られた酸化物超電導体の
みからなる導体5本を、銅導体の先端に接続して電流リ
ードを二組作製した。
Five conductors consisting of only the oxide superconductor thus obtained were connected to the tips of the copper conductors to prepare two sets of current leads.

【0046】(比較例2)実施例2と同様の原料粉末を
使用し、実施例2と同様のモル比となるように配合、混
合した混合粉を、同様の条件で仮焼、粉砕し、仮焼粉を
得た。得られた仮焼粉をCIP成形してそれぞれの外径
が10mm、内径8mm、長さ200mmのパイプを作
製した。得られたパイプを実施例2と同様に熱処理を施
し、さらにCIPを行なった後、再び熱処理を施して酸
化物超電導体を得た。
(Comparative Example 2) The same raw material powder as in Example 2 was used, and the mixed powder mixed and mixed so as to have the same molar ratio as in Example 2 was calcined and pulverized under the same conditions, A calcined powder was obtained. The obtained calcined powder was CIP-molded to produce a pipe having an outer diameter of 10 mm, an inner diameter of 8 mm, and a length of 200 mm. The obtained pipe was heat-treated in the same manner as in Example 2, further CIP-treated, and then heat-treated again to obtain an oxide superconductor.

【0047】このようにして得られた酸化物超電導体の
みからなる導体5本を、銅導体の先端に接続して電流リ
ードを二組作製した。
Five conductors consisting of only the oxide superconductor thus obtained were connected to the tips of the copper conductors to prepare two sets of current leads.

【0048】(比較例3)実施例1で作製した外径10
mmの複合酸化物超電導体の代わりに、外径5mm、長
さ200mmの銅ロッド5本を用いて電流リードを二組
作製した。
(Comparative Example 3) Outer diameter 10 produced in Example 1
Two sets of current leads were prepared by using five copper rods having an outer diameter of 5 mm and a length of 200 mm instead of the mm composite oxide superconductor.

【0049】実施例1〜3及び比較例1〜3で作製した
各複合酸化物超電導電流リードを、液体ヘリウムに浸漬
したNbTi超電導体に接続し、1000Aの通電を行
ない、測温とヘリウム蒸発量とから侵入熱量を求めた。
Each of the composite oxide superconducting current leads prepared in Examples 1 to 3 and Comparative Examples 1 to 3 was connected to an NbTi superconductor immersed in liquid helium, and a current of 1000 A was applied to measure the temperature and evaporate the helium. The heat of penetration was calculated from

【0050】また、実施例1〜3及び比較例1〜2で作
製した各複合酸化物超電導電流リードの酸化物超電導体
部分の曲げ強度を、インストロン型試験機を用い、JI
SR1601−1981に準じた測定法により測定し、
その結果を侵入熱量とともに下記表1に示す。
The bending strength of the oxide superconductor portion of each of the composite oxide superconducting current leads produced in Examples 1 to 3 and Comparative Examples 1 and 2 was measured by JI using an Instron type tester.
Measured by a measuring method according to SR1601-1981,
The results are shown in Table 1 below together with the amount of heat of penetration.

【0051】[0051]

【表1】 表1から明らかなように、本発明の電流リード(実施例
1〜3)は、いずれも侵入熱量が0.52W/kA以下
であり、75.0MPa以上の曲げ強度を有している。
これに対して、比較例1及び2は、侵入熱量については
0.52W/kA以下と、実施例と同等であるが、曲げ
強度については、実施例の25%程度の値しか得られな
い。また、比較例3については、本発明の電流リードの
2倍以上の侵入熱量があることがわかる。
[Table 1] As is clear from Table 1, all of the current leads of the present invention (Examples 1 to 3) have an intrusion heat amount of 0.52 W / kA or less and a bending strength of 75.0 MPa or more.
On the other hand, in Comparative Examples 1 and 2, the intrusion heat amount is 0.52 W / kA or less, which is equivalent to that of the example, but the bending strength is only about 25% of that of the example. Further, it can be seen that in Comparative Example 3, the amount of heat entering is twice or more that of the current lead of the present invention.

【0052】[0052]

【発明の効果】以上詳述したように、本発明の電流リー
ドは、侵入熱量が小さく、高い強度が得られる。
As described above in detail, the current lead of the present invention has a small amount of heat entering and a high strength.

【0053】したがって、機器の安定性を保ち、かつ使
用中の折損を免れることが可能となる。
Therefore, it is possible to maintain the stability of the device and avoid breakage during use.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)実施例1の電流リードの構造を示す図。 (b)本発明の電流リードの他の構造を示す図。 (c)本発明の電流リードの他の構造を示す図。FIG. 1A is a diagram showing a structure of a current lead of Example 1. FIG. (B) The figure which shows the other structure of the current lead of this invention. (C) The figure which shows the other structure of the current lead of this invention.

【図2】(a)本発明の電流リードの他の構造を示す
図。 (b)実施例2の電流リードの構造を示す図。 (c)本発明の電流リードの他の構造を示す図。
FIG. 2A is a diagram showing another structure of the current lead of the present invention. (B) The figure which shows the structure of the current lead of Example 2. (C) The figure which shows the other structure of the current lead of this invention.

【図3】(a)本発明の電流リードの他の構造を示す
図。 (b)本発明の電流リードの他の構造を示す図。 (c)実施例3の電流リードの構造を示す図。
FIG. 3A is a diagram showing another structure of the current lead of the present invention. (B) The figure which shows the other structure of the current lead of this invention. (C) The figure which shows the structure of the current lead of Example 3.

【図4】(a)本発明の電流リードの他の構造を示す
図。 (b)本発明の電流リードの他の構造を示す図。
FIG. 4A is a diagram showing another structure of the current lead of the present invention. (B) The figure which shows the other structure of the current lead of this invention.

【符号の説明】[Explanation of symbols]

11…電流リード,12…酸化物超電導体,13…補強
用セラミックス体 21…電流リード,22…酸化物超電導体,23…補強
用セラミックス体 24…冷媒通路用貫通孔,31…電流リード,32…酸
化物超電導体 33…補強用セラミックス体,34…酸化物超電導体 35…補強用セラミックス体,36…酸化物超電導体 37…補強用セラミックス体,41…電流リード,42
…酸化物超電導体 43…補強用セラミックス体,51…電流リード,52
…酸化物超電導体 53…補強用セラミックス体,54…酸化物超電導体 55…補強用セラミックス体,56…酸化物超電導体 57…補強用セラミックス体,58…冷媒通路用貫通
孔,61…電流リード 62…酸化物超電導体,63…補強用セラミックス体 64…冷媒通路用貫通孔,71…電流リード,72…酸
化物超電導体 73…補強用セラミックス体,81…電流リード 82…補強用セラミックス体,83…酸化物超電導体,
91…電流リード 92…酸化物超電導体,93…補強用セラミックス体 94…冷媒通路用貫通孔,101…電流リード,102
…酸化物超電導体 103…補強用セラミックス体,104…冷媒通路用貫
通孔 111…電流リード,112…補強用セラミックス体 113…酸化物超電導体,114…冷媒通路用貫通孔。
11 ... Current lead, 12 ... Oxide superconductor, 13 ... Reinforcing ceramic body 21 ... Current lead, 22 ... Oxide superconductor, 23 ... Reinforcing ceramic body 24 ... Refrigerant passage through hole, 31 ... Current lead, 32 ... oxide superconductor 33 ... reinforcing ceramic body, 34 ... oxide superconductor 35 ... reinforcing ceramic body, 36 ... oxide superconductor 37 ... reinforcing ceramic body, 41 ... current lead, 42
... Oxide superconductor 43 ... Reinforcing ceramics body, 51 ... Current lead, 52
... oxide superconductor 53 ... reinforcing ceramic body, 54 ... oxide superconductor 55 ... reinforcing ceramic body, 56 ... oxide superconductor 57 ... reinforcing ceramic body, 58 ... refrigerant passage through hole, 61 ... current lead 62 ... Oxide superconductor, 63 ... Reinforcing ceramic body 64 ... Refrigerant passage through hole, 71 ... Current lead, 72 ... Oxide superconductor 73 ... Reinforcing ceramic body, 81 ... Current lead 82 ... Reinforcing ceramic body, 83 ... Oxide superconductor,
91 ... Current lead 92 ... Oxide superconductor, 93 ... Reinforcing ceramics body 94 ... Refrigerant passage through hole, 101 ... Current lead, 102
... Oxide superconductor 103 ... Reinforcing ceramics body, 104 ... Refrigerant passage through hole 111 ... Current lead, 112 ... Reinforcing ceramic body 113 ... Oxide superconductor, 114 ... Refrigerant passage through hole.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体と、この酸化物超電導体
の長さ方向に配置された補強用セラミックス体とからな
ることを特徴とする酸化物超電導電流リード。
1. An oxide superconducting current lead comprising an oxide superconductor and a reinforcing ceramic body arranged in the length direction of the oxide superconductor.
【請求項2】 長さ方向に冷媒通路用貫通孔を有する請
求項1に記載の酸化物超電導電流リード。
2. The oxide superconducting current lead according to claim 1, which has a through hole for a refrigerant passage in a length direction.
JP4205657A 1992-07-31 1992-07-31 Oxide superconductor current lead Pending JPH0653037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4205657A JPH0653037A (en) 1992-07-31 1992-07-31 Oxide superconductor current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205657A JPH0653037A (en) 1992-07-31 1992-07-31 Oxide superconductor current lead

Publications (1)

Publication Number Publication Date
JPH0653037A true JPH0653037A (en) 1994-02-25

Family

ID=16510530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205657A Pending JPH0653037A (en) 1992-07-31 1992-07-31 Oxide superconductor current lead

Country Status (1)

Country Link
JP (1) JPH0653037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6467151B1 (en) 1998-11-30 2002-10-22 Tohoku University Method of producing a superconducting magnet
WO2003038840A1 (en) * 2001-11-02 2003-05-08 Sumitomo Electric Industries, Ltd. Superconducting cable and superconducting cable line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6467151B1 (en) 1998-11-30 2002-10-22 Tohoku University Method of producing a superconducting magnet
WO2003038840A1 (en) * 2001-11-02 2003-05-08 Sumitomo Electric Industries, Ltd. Superconducting cable and superconducting cable line
US7149560B2 (en) 2001-11-02 2006-12-12 Sumitomo Electric Industries, Ldt. Superconducting cable and superconducting cable line

Similar Documents

Publication Publication Date Title
US20030024730A1 (en) Filaments for composite oxide superconductors
US6949490B2 (en) High-TC superconducting ceramic oxide products and macroscopic and microscopic methods of making the same
JPH09129438A (en) Oxide superconductive coil and manufacture thereof
JP3783538B2 (en) Manufacturing method of oxide superconducting wire
JPH10510943A (en) Method for producing long superconductor having bismuth phase at high critical temperature and superconductor produced by this method
KR101051139B1 (en) Superconducting Cable Conductors with RECCO-Coated Conductor Elements
EP0648379A1 (en) High tc superconductor and method of making
JPH0653037A (en) Oxide superconductor current lead
JPH06139848A (en) Manufacture of oxide high-temperature superconducting wire rod
Lee et al. Filament-to-filament joining of multi-filamentary Ag/Bi-2223 superconducting tapes
JPS63284720A (en) Superconducting wire
JP4709455B2 (en) Oxide high-temperature superconducting wire and manufacturing method
JP2509642B2 (en) Superconducting power lead manufacturing method
JPH04262308A (en) Oxide superconductive wire rod
KR0174386B1 (en) Method for manufacturing high temperature superconducting multicore wire
JPH04264315A (en) Manufacture of large-capacity oxide superconducting conductor
RU2097860C1 (en) Method for producing silver sheathed, high-temperature superconducting ceramic base composite conductors
JP2735534B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JPH01143108A (en) Manufacture of ceramics superconductive wire
JP3078765B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JPH04116906A (en) Ceramic superconductive coil
JPH01119002A (en) Superconductor coil and manufacture thereof
JPH04292814A (en) Manufacture of bismuth-based oxide superconductive wire
JPH0668729A (en) Manufacture of multilayer ceramic superconducting conductor
JPH01134809A (en) Superconductive wire material