JPH0215514A - Manufacture of oxide superconductor and superconductive magnet - Google Patents

Manufacture of oxide superconductor and superconductive magnet

Info

Publication number
JPH0215514A
JPH0215514A JP63166424A JP16642488A JPH0215514A JP H0215514 A JPH0215514 A JP H0215514A JP 63166424 A JP63166424 A JP 63166424A JP 16642488 A JP16642488 A JP 16642488A JP H0215514 A JPH0215514 A JP H0215514A
Authority
JP
Japan
Prior art keywords
oxide superconductor
pipe
oxide
powder
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63166424A
Other languages
Japanese (ja)
Inventor
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Toshio Usui
俊雄 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63166424A priority Critical patent/JPH0215514A/en
Publication of JPH0215514A publication Critical patent/JPH0215514A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To enable it to be used while letting flow refrigerant into inside of a metallic sheath by burying an oxide superconductor inside the peripheral wall of a pipe-shaped metallic sheath. CONSTITUTION:A tape material 1 which is constituted by covering a tape-shaped consolidated substance 3 consisting of a superconductor or a precursor of the oxide superconductor with a metallic sheath 2 is formed, and this tape material 1 is formed in pipe shape, and the butting parts are welded so as to make a pipe body 4. At the same time, this pipe body 4 is applied with heat treatment after being wound around a drum so as to produce an oxide superconductor 6 inside the consolidated substance 3. Hereby, a part of defective parts such as cracks, etc., which occurred in the consolidated substance during winding or before winding disappears by sintering actions by heat treatment, and the lowering of the critical current density of the oxide superconductor can be prevented. Also, the oxide superconductor 6 can be cooled efficiently from the inside of the metallic sheath 2 by letting flow refrigerant into inside of the metallic sheath 2.

Description

【発明の詳細な説明】 「産業上の利用分野」 ”/l)尭0日E+ パップぜの静什物紹雷道導体とこ
の酸化物超電導体を用いた超電導マグネットの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Field of Application" /l) 庭0日E+ 纭0日 E+ PAPZE's Static Articles Introduction The present invention relates to a superconducting conductor and a method for manufacturing a superconducting magnet using this oxide superconductor.

「従来の技術」 近年相欠いで発見されている酸化物超電導体は、常電導
状態から超電導状態に遷移する臨界温度が極めて高いこ
とで知られている。この種の酸化物超電導体は、従来知
られている合金系あるいは金属間化合物系の超電導体に
比較して臨界温度が極めて高いものであって、特に、Y
 −B a−Cu−0系、B i−S r−Ca−Cu
−0系、T ic a−B a−Cu−0系などの酸化
物超電導体は液体窒素温度を超える臨界温度を示すこと
で知られている。
"Prior Art" Oxide superconductors that have been discovered in recent years are known to have an extremely high critical temperature at which they transition from a normal conducting state to a superconducting state. This type of oxide superconductor has an extremely high critical temperature compared to conventionally known alloy-based or intermetallic compound-based superconductors.
-B a-Cu-0 system, B i-S r-Ca-Cu
Oxide superconductors such as -0 series and Tica-B a-Cu-0 series are known to exhibit critical temperatures exceeding liquid nitrogen temperature.

また、従来、この種の酸化物超電導体を用いて超電導線
を製造するには、酸化物超電導体を構成する元素を含む
混合粉末を金属管に充填して縮径加工を施し、金属管の
内部の粉末を圧密し、縮径後に熱処理を施して圧密体の
内部で固相反応を生じさせて酸化物超電導体を生成させ
る方法が行なわれている。
Conventionally, in order to manufacture superconducting wire using this type of oxide superconductor, a metal tube is filled with a mixed powder containing the elements constituting the oxide superconductor, and the diameter of the metal tube is reduced. A method is used in which the powder inside is compacted, and after diameter reduction, heat treatment is performed to cause a solid phase reaction inside the compacted body to produce an oxide superconductor.

「発明が解決しようとする課題 ところで、前述のように臨界温度の高い新規な酸化物超
電導体が発見されているので、従来から知られている超
電導材料の応用分野にこの種の酸化物超電導体を応用す
る試みがなされている。
``Problems to be Solved by the Invention'' By the way, as mentioned above, new oxide superconductors with high critical temperatures have been discovered. Attempts are being made to apply this.

この応用例の1つとして広く知られているものに超電導
マグネットがある。この超電導マグネットは、巻胴に超
電導線を巻回して構成されるものであるが、酸化物超電
導線を用いて超電導マグネットを製造する場合に問題と
なるのが、巻胴への巻回時に酸化物超電導線に付加され
ろ機械歪の問題である。
A widely known example of this application is a superconducting magnet. This superconducting magnet is constructed by winding a superconducting wire around a drum. However, when manufacturing superconducting magnets using oxide superconducting wire, there is a problem with oxidation occurring during winding around the drum. The problem is mechanical strain added to superconducting wires.

周知のように酸化物超電導線は、焼結された酸化物超電
導体を備えているために、極めて脆く強度に劣る問題が
ある。従って前記構造の酸化物超電導線を巻胴に巻回し
て超電導マグネットを製造した場合、酸化物超電導体に
クラックなどの欠陥が生じて酸化物超電導体の臨界電流
密度が著しく低下する問題があり、このため従来、良好
な特性を発揮する酸化物超電導マグネットを製造するこ
とができない問題があった。
As is well known, since oxide superconducting wires include sintered oxide superconductors, they are extremely brittle and have poor strength. Therefore, when a superconducting magnet is manufactured by winding an oxide superconducting wire having the above structure around a winding drum, there is a problem that defects such as cracks occur in the oxide superconductor, and the critical current density of the oxide superconductor decreases significantly. For this reason, there has conventionally been a problem that it has not been possible to manufacture oxide superconducting magnets that exhibit good characteristics.

本発明は、11η記課題を解決するためになされたもの
で、新規な構造のパイプ状の酸化物超電導導体を提供す
ること、更には、前記酸化物超電導導体を用いて特性の
優れた超電導マグネッ)・を製造する方法を提供するこ
とを目的とする。
The present invention has been made in order to solve the problem No. 11, and is to provide a pipe-shaped oxide superconducting conductor having a novel structure, and further, to provide a superconducting magnet with excellent characteristics using the oxide superconducting conductor. )・The purpose is to provide a method for manufacturing.

「課題を解決するための手段」 請求項Iに記載した発明は前記課題を解決するために、
酸化物超電導体をパイプ状の金属ソースの周壁内部に埋
設してなるものである。
"Means for solving the problem" In order to solve the problem, the invention stated in claim I,
An oxide superconductor is embedded inside the peripheral wall of a pipe-shaped metal source.

請求項2に記載した発明は前記課題を解決するために、
酸化物超電導体あるいは酸化物超電導体の前駆体からな
るテープ状の圧密体を金属シースで被覆してなるテープ
材を形成し、このテープ材をパイプ状に成形し、突き合
わせ部分を接合してパイプ体を作成するとともに、この
パイプ体を巻胴に巻回した後に熱処理を施して圧密体の
内部に酸化物超電導体を生成させるものである。
In order to solve the above problem, the invention described in claim 2 has the following features:
A tape material is formed by covering a tape-shaped compacted body made of an oxide superconductor or a precursor of an oxide superconductor with a metal sheath, and this tape material is formed into a pipe shape, and the butted parts are joined to form a pipe. After the pipe body is wound around a winding drum, it is heat-treated to produce an oxide superconductor inside the consolidated body.

1作用 」 パイプ状の金属シースの周壁に酸化物超電導体が埋設さ
れているので、金属シースの内部に冷媒を流して金属ソ
ースの内部側から酸化物超電導体を効率良く冷却するこ
とが可能になる。また、巻胴に巻回した後に熱処理を施
すことにより、巻回時あるいは巻回前に圧密体に生じて
いたクラックなどの欠陥部分の一部が熱処理による焼結
作用によって消失し、酸化物超電導体の電流通路が増加
する。更に、巻胴に巻回したパイプに酸素ガスを流しつ
つ熱処理を行うならば、パイプ全長にわたる圧密体に効
率良く酸素を供給できるので、巻胴に巻回したパイプに
おいて、巻胴の内周側に巻回されたパイプの圧密体にも
十分効率良く酸素が供給される。
1. Since the oxide superconductor is embedded in the peripheral wall of the pipe-shaped metal sheath, it is possible to efficiently cool the oxide superconductor from the inside of the metal source by flowing a coolant inside the metal sheath. Become. In addition, by applying heat treatment after winding around the drum, some of the defects such as cracks that occurred in the consolidated body during or before winding disappear due to the sintering effect of the heat treatment, making the oxide superconductor Increases current flow through the body. Furthermore, if heat treatment is performed while oxygen gas is flowing through the pipe wound around the drum, oxygen can be efficiently supplied to the consolidated body over the entire length of the pipe. Oxygen is also supplied efficiently to the compacted body of the pipe wound around the pipe.

「実施例」 第1図ないし第3図は、本発明の一実施例を説明するた
めのもので、本発明を実施して酸化物超電導線を製造す
るには、まず、出発物を調製する。
"Example" Figures 1 to 3 are for explaining an example of the present invention.In order to carry out the present invention and manufacture an oxide superconducting wire, first, starting materials are prepared. .

この出発物としては、酸化物超電導体、酸化物超電導体
を構成する元素を含む材料(前駆体)あるいはこれらの
混合物(前駆体)が用いられる。
As this starting material, an oxide superconductor, a material containing an element constituting the oxide superconductor (precursor), or a mixture thereof (precursor) is used.

前記の酸化物超電導体としては、A −B −Cu−0
系(ただしAはLa、Ce、Y、Yb、Dy、Hoなど
の周期律表ll1a族元素の1種以上、または、Biな
どの周期律表vb族元素の1種以上、または、TIなど
の周期律表llIb族元素の1種以上を示し、BはCa
As the oxide superconductor, A-B-Cu-0
system (however, A is one or more elements of group 11a of the periodic table such as La, Ce, Y, Yb, Dy, and Ho, or one or more elements of group Vb of the periodic table such as Bi, or TI, etc.) Represents one or more elements of group IIIb of the periodic table, B is Ca
.

Sr、Baなどの周期律表11a族元素の1種以上を示
す。)のものが用いられる。
One or more elements of group 11a of the periodic table, such as Sr and Ba. ) are used.

また、酸化物超電導体を構成する元素を含む材料として
は、周期律表ma族元素または周期律表Va族元素また
は周期律表111b族元素を含む粉末と、周期律表11
a族元素を含む粉末と酸化銅粉末なとからなる混合粉末
あるいはこの混合粉末を仮焼した粉末、または、前記混
合粉末と仮焼粉末の混合粉末などが用いられる。ここで
用いられる周期律表■a族元素粉末としては、Ila族
元素の炭酸塩粉末、酸化物粉末、塩化物粉末、硫化物粉
末、フッ化物粉末などの化合物粉末あるいは合金粉末な
どである。また、周期律表IIra族元素粉末、vb族
元素粉末、Ib族元素粉末としては、各元素の酸化物粉
末、炭酸塩粉末、塩化物粉末、硫化物粉末、フッ化物粉
末などの化合物粉末あるいは合金粉末などが用いられる
。更に、酸化銅粉末としては、CuO,CutO,Cu
3C12,Cu40zなどが用いられる。
In addition, materials containing elements constituting the oxide superconductor include powders containing elements of group Ma of the periodic table, elements of group Va of the periodic table, or elements of group 111b of the periodic table, and powders containing elements of group 111 of the periodic table.
A mixed powder consisting of a powder containing a group A element and a copper oxide powder, a calcined powder of this mixed powder, a mixed powder of the above mixed powder and calcined powder, etc. are used. The powder of a group Ia group element of the periodic table used here includes compound powder or alloy powder of group Ila elements such as carbonate powder, oxide powder, chloride powder, sulfide powder, and fluoride powder. In addition, the periodic table IIra group element powder, VB group element powder, and Ib group element powder include compound powders or alloys such as oxide powders, carbonate powders, chloride powders, sulfide powders, and fluoride powders of each element. Powder etc. are used. Furthermore, as copper oxide powder, CuO, CutO, Cu
3C12, Cu40z, etc. are used.

ところで前記混合粉末を調製するには、通常、前述の粉
末法が用いられるが、この方法に限定されるものではな
く、各元素をシュウ酸塩として共沈させ、その沈澱物を
乾燥させて粉末状の混合粉末として得る共沈法を適用す
ることも自由である。
By the way, to prepare the mixed powder, the powder method described above is usually used, but it is not limited to this method. Each element is coprecipitated as oxalate, and the precipitate is dried to form a powder. It is also free to apply a coprecipitation method to obtain a mixed powder.

また、前記必要な元素のアルコキンド化合物、オキシケ
トン化合物、シクロペンタジェニル化合物などを所定の
比率で混合して混合液とし、この混合液に水を加えて加
水分解などしてゾル状にするとと乙に、このゾル状の物
質を加熱してゲル化し、このゲルを更に加熱して固相と
した上で粉砕して混合粉末を得るゾルゲル法を適用して
も良い。
In addition, if the above-mentioned necessary elements such as alcokind compounds, oxyketone compounds, cyclopentadienyl compounds, etc. are mixed in a predetermined ratio to form a mixed solution, water is added to this mixed solution and hydrolyzed to form a sol. Alternatively, a sol-gel method may be applied in which this sol-like substance is heated to gel, and the gel is further heated to form a solid phase, which is then pulverized to obtain a mixed powder.

次に、前述のように調製された粉末を金属製の管体に充
填して複合体を作成する。前記管体は、酸素の透過性に
優れたAgなどの金属材料から構成することが好ましい
。なお、管体の構成材料は塑性加工可能なものであれば
金属材料に限らない。
Next, the powder prepared as described above is filled into a metal tube to create a composite. The tubular body is preferably made of a metal material such as Ag that has excellent oxygen permeability. Note that the constituent material of the tube is not limited to metal materials as long as it can be plastically worked.

なおまた、管体に充填するものは、前記粉末を圧密後に
焼結した酸化物超電導体でも差し支えないし、この超電
導体を粉砕して得られた超電導粉末、あるいは超電導粒
体でも良い。
Furthermore, what is filled in the tube may be an oxide superconductor obtained by compacting and sintering the powder, or superconducting powder obtained by pulverizing this superconductor, or superconducting granules.

前記管体に粉末を充填したならば、鍛造加工あるいは圧
延加工などを必要回数繰り返し施し、粉末を圧密して全
体をテープ状に成形し、第1図に断面構造を示すテープ
材lを作成する。このテープ111は、金属製の管体が
圧密変形されて形成された板状の金属シース2とこの金
属シース2の内部に埋設された板状の圧密体3とから構
成されている。なお、この例では金属管に粉末を充填し
て加工することによりテープ材lを形成したが、予め加
圧成形して得られた圧密体の外周に金属被覆を行ってテ
ープ材lを形成しても良い。
Once the tube body is filled with powder, forging or rolling is repeated as many times as necessary to compact the powder and form the entire body into a tape shape, creating tape material l whose cross-sectional structure is shown in Figure 1. . The tape 111 is composed of a plate-shaped metal sheath 2 formed by compressing and deforming a metal tube, and a plate-shaped compacted body 3 embedded inside the metal sheath 2. In this example, the tape material 1 was formed by filling a metal tube with powder and processing it, but the tape material 1 was also formed by coating the outer periphery of a compacted body obtained by pressure forming in advance. It's okay.

次にこのテープ材1をロールフォーミングなどの手段に
よって第2図に示すようにパイプ状に丸め加工し、パイ
プの突き合わけ部分を溶接などの接合手段により接合し
てパイプ体4を作成する。
Next, this tape material 1 is rolled into a pipe shape as shown in FIG. 2 by means such as roll forming, and the abutting portions of the pipes are joined by a joining means such as welding to create a pipe body 4.

次いでこのパイプ体4に対して熱処理を施す。Next, this pipe body 4 is subjected to heat treatment.

この熱処理は、好ましくは酸素存在雰囲気中において8
00〜1100℃に数分〜数十時間加熱した後に冷却す
ることによって行う。なお、Y−BaCu−0系あるい
はT ic a−B a−Cu−0系などの酸化物超電
導体を使用した場合は、この熱処理時にパイプの内部に
酸素ガスを流しつつ熱処理を行うことが好ましい。
This heat treatment is preferably carried out in an oxygen-present atmosphere for 8
This is carried out by heating to 00 to 1100°C for several minutes to several tens of hours and then cooling. In addition, when using an oxide superconductor such as Y-BaCu-0 series or Tica-Ba-Cu-0 series, it is preferable to perform the heat treatment while flowing oxygen gas inside the pipe during this heat treatment. .

以上の処理によってパイプ体4の圧密体3の内部で固相
反応がなされて酸化物超電導体が生成し、第3図に断面
構造を示すように、パイプ状の金属シース5の周壁内部
にリング状の酸化物超電導体6が埋設された酸化物超電
導導体Aを得ることができる。
Through the above processing, a solid phase reaction occurs inside the compacted body 3 of the pipe body 4 to generate an oxide superconductor, and as shown in the cross-sectional structure of FIG. It is possible to obtain an oxide superconducting conductor A in which a shaped oxide superconductor 6 is embedded.

また、前記熱処理時に、金属シース5を透過して雰囲気
中の酸素が圧密体側に拡散するので酸素不足を生じるこ
となく特性の良好な酸化物超電導体が生成する。また、
パイプの内部に酸素ガスを流しつつ熱処理を行った場合
は、パイプの内周面側からも酸素が透過して圧密体側に
到達するので、より効率良く酸素を供給することができ
、臨界電流密度の高い特性の優れた酸化物超電導体を生
成させることができる。
Furthermore, during the heat treatment, oxygen in the atmosphere diffuses into the compact through the metal sheath 5, so that an oxide superconductor with good properties is produced without oxygen deficiency. Also,
When heat treatment is performed while flowing oxygen gas inside the pipe, oxygen also permeates from the inner peripheral surface of the pipe and reaches the compacted body, making it possible to supply oxygen more efficiently and lowering the critical current density. An excellent oxide superconductor with high properties can be produced.

第3図に示す+M造の酸化物超電導導体Aは中空部に液
体窒素などの冷媒を流して臨界温度以下に冷却して使用
することができる。このように使用する場合、別途に冷
媒の流通路などを設けることなく金属シース5の周壁内
部の酸化物超電導体を冷却することができる。
The +M-made oxide superconducting conductor A shown in FIG. 3 can be used by flowing a coolant such as liquid nitrogen into the hollow part to cool it below the critical temperature. When used in this manner, the oxide superconductor inside the peripheral wall of the metal sheath 5 can be cooled without providing a separate coolant flow path or the like.

次に超電導マグネットの製造方法について説明する。Next, a method for manufacturing a superconducting magnet will be explained.

超電導マグネットを製造するには、第2図に示すパイプ
体4を用意し、このパイプ体4を熱処理前に第4図に示
すように巻胴11に必要回数巻回する。
To manufacture a superconducting magnet, a pipe body 4 shown in FIG. 2 is prepared, and the pipe body 4 is wound around a winding drum 11 a necessary number of times as shown in FIG. 4 before heat treatment.

巻胴Ifに必要長さのパイプ4を巻回したならば、巻胴
11に巻回されたペイプ4を巻胴IIとともに熱処理す
る。この熱処理条件は前記した例の場合と同等に設定す
ることが好ましい。そしてこの熱処理を行う場合、パイ
プ4の内部に酸素ガスを流しながら熱処理することが好
ましい。
Once the required length of pipe 4 is wound around the winding drum If, the pipe 4 wound around the winding drum 11 is heat treated together with the winding drum II. It is preferable that the heat treatment conditions be set to be the same as in the above-mentioned example. When performing this heat treatment, it is preferable to perform the heat treatment while flowing oxygen gas inside the pipe 4.

巻胴11に巻回されたパイプ4においては、熱処理によ
って金属シース2の内部に酸化物超電導体が生成され、
超電導コイルを得ることができる。
In the pipe 4 wound around the winding drum 11, an oxide superconductor is generated inside the metal sheath 2 by heat treatment,
A superconducting coil can be obtained.

なお、パイプ4を巻胴llに巻回する場合に、パイプ4
の周壁内部の圧密体3に作用する応力によって圧密体3
に微細なりラックなどの欠陥を生じることがある。とこ
ろが、このような欠陥を生じていた場合であっても、焼
結反応による元素の拡散によってこれらの欠陥は消失さ
れて圧密体の焼結密度が若干向上し、焼結体における電
流通路が増加する。従って巻回に伴う機賊歪の影響を受
けることなく超電導マグネットを製造することができ、
臨界電流密度の高い超電導特性の優れた酸化物超電導マ
グネットを得ることができる。
In addition, when winding the pipe 4 around the winding drum ll, the pipe 4
Due to the stress acting on the consolidated body 3 inside the surrounding wall of
Defects such as fine racks may occur. However, even when such defects occur, these defects disappear due to the diffusion of elements through the sintering reaction, and the sintered density of the compact improves slightly, increasing the current path in the sintered compact. do. Therefore, superconducting magnets can be manufactured without being affected by the distortion caused by winding.
An oxide superconducting magnet with high critical current density and excellent superconducting properties can be obtained.

また、巻胴!lに何重にもパイプ4を巻回した後に熱処
理を行う場合においては、金属シース2の構成材料に、
酸素の透過性に優れた材料を使用し、しかも、酸素ガス
雰囲気で熱処理を行った場合でも、巻胴11の内周側に
巻回したペイプ4の圧密体3には雰囲気中の酸素が到達
できないおそれがある。この点においてパイプ4の内部
に酸素ガスを流しつつ熱処理するならば、巻胴11の内
周側に巻回したパイプ4の内部の圧密体3にも十分に酸
素を供給しつつ熱処理することができ、巻胴11の内周
側のパイプ4の圧密体3にも臨界電流密度の高い酸化物
超電導体を生成できる効果がある。
Also, the winding trunk! When performing heat treatment after winding the pipe 4 around the metal sheath 2 several times, the constituent material of the metal sheath 2 may be
Even when a material with excellent oxygen permeability is used and heat treatment is performed in an oxygen gas atmosphere, oxygen in the atmosphere does not reach the compacted body 3 of the tape 4 wound around the inner circumference of the winding drum 11. There is a possibility that it cannot be done. In this respect, if the heat treatment is carried out while flowing oxygen gas into the inside of the pipe 4, the heat treatment can also be carried out while supplying sufficient oxygen to the compacted body 3 inside the pipe 4 wound around the inner circumferential side of the winding drum 11. This has the effect of producing an oxide superconductor with a high critical current density in the compacted body 3 of the pipe 4 on the inner peripheral side of the winding drum 11.

第5図は請求項1に記載した発明の酸化物超電導導体の
他の例を示すもので、この例の酸化物超電導導体Bは、
パイプ状の金属シース20の周壁内部に埋設されたリン
グ状の酸化物超電導体2Iが、金属シース20の内周面
に近い部分に設けられた構造である。即ち、酸化物超電
導体21より外方側に設けられた金属シース20の厚さ
よりも酸化物超電導体21より内方側に設けられた金属
シース20の方が薄く形成されている。
FIG. 5 shows another example of the oxide superconducting conductor of the invention described in claim 1, and the oxide superconducting conductor B of this example is
The structure is such that a ring-shaped oxide superconductor 2I buried inside the peripheral wall of the pipe-shaped metal sheath 20 is provided in a portion close to the inner peripheral surface of the metal sheath 20. That is, the metal sheath 20 provided on the inner side of the oxide superconductor 21 is formed thinner than the thickness of the metal sheath 20 provided on the outer side of the oxide superconductor 21.

この例の構造では、中空部に酸素ガスを流して焼結する
際に、リング状の酸化物超電導体21の内方側の金属シ
ース20の厚さが小さいために、先の例に比較して、内
周側から金属シース20を介して、より活発に酸素を透
過させて酸素を供給することができる。従って、より特
性の優れた酸化物超電導体2Iを生成させることができ
る。また、中空部に冷媒を流して酸化物超電導導体Bを
冷却して使用する場合、酸化物超電導体21の内方側の
金属シース20が薄いので冷却効率が向上する。
In the structure of this example, when sintering is performed by flowing oxygen gas into the hollow part, the thickness of the metal sheath 20 on the inner side of the ring-shaped oxide superconductor 21 is smaller than in the previous example. Therefore, oxygen can be more actively permeated through the metal sheath 20 from the inner peripheral side to supply oxygen. Therefore, an oxide superconductor 2I with more excellent properties can be produced. Further, when the oxide superconducting conductor B is used by cooling the oxide superconducting conductor B by flowing a refrigerant into the hollow portion, the cooling efficiency is improved because the metal sheath 20 on the inner side of the oxide superconducting conductor 21 is thin.

第6図は請求項1に記載した発明の更に別の例を示すも
ので、この例の酸化物超電導導体Cにおいては、パイプ
状の金属シース30の周壁内部に酸化物超電導体31が
埋設されている構造であって、金属シース30の内周面
に酸化物超電導体3Iに達する微細な透孔32が多数形
成された構造となっている。
FIG. 6 shows still another example of the invention set forth in claim 1. In the oxide superconducting conductor C of this example, an oxide superconductor 31 is embedded inside the peripheral wall of a pipe-shaped metal sheath 30. The metal sheath 30 has a structure in which a large number of fine through holes 32 reaching the oxide superconductor 3I are formed on the inner circumferential surface of the metal sheath 30.

この例の酸化物超電導導体Cは、熱処理時に中空部に酸
素ガスを流す場合、酸素ガスがパイプの内部側から前記
透孔23を介して圧密体に容易に到達できるので十分な
量の酸素を供給しつつ熱処理できる効果がある。また、
酸化物超電導導体Cを冷媒などで冷却して使用する場合
、透孔23を介して冷媒が酸化物超電導体32に直接接
触するので、酸化物超電導体32を効率良く冷却するこ
とができる。
In the oxide superconducting conductor C of this example, when oxygen gas is flowed into the hollow part during heat treatment, the oxygen gas can easily reach the compacted body from the inside of the pipe through the through holes 23, so that a sufficient amount of oxygen can be supplied. This has the effect of allowing heat treatment to be performed while being supplied. Also,
When the oxide superconducting conductor C is used after being cooled with a refrigerant or the like, the refrigerant comes into direct contact with the oxide superconductor 32 through the through holes 23, so that the oxide superconductor 32 can be efficiently cooled.

「製造例!」 Y2O3粉末とB a CO3粉末とCuO粉末をY:
Ba:Cu= 1 :2 :3となるように混合して混
合粉末を調整し、この混合粉末を900℃で12時間仮
焼し、更に粉砕した後に、ラバープレスにより成形して
直径8mmの棒状体を得た。その後、この棒状体を酸素
雰囲気中において890°Cで5時間加熱する熱処理を
施し、更に熱処理後の棒状体を直径10mm、内径9m
mの銀製のパイプに挿入し、直径8mmに縮径後、圧延
機によって厚さ1mm、幅10m+nのテープ材を形成
した。
"Production example!" Y2O3 powder, B a CO3 powder, and CuO powder Y:
A mixed powder was prepared by mixing Ba:Cu=1:2:3, and this mixed powder was calcined at 900°C for 12 hours, further crushed, and then molded using a rubber press into a rod shape with a diameter of 8 mm. I got a body. Thereafter, this rod-shaped body was heat-treated at 890°C for 5 hours in an oxygen atmosphere, and the rod-shaped body after heat treatment was further reduced to a diameter of 10 mm and an inner diameter of 9 m.
The tape material was inserted into a silver pipe of 1 mm in thickness, and after being reduced to a diameter of 8 mm, a tape material with a thickness of 1 mm and a width of 10 m+n was formed using a rolling machine.

次いでこのテープ材を直径3 、2 mmのパイプ状に
成形し、突き合わせ部分をTIG溶接して長尺のパイプ
体を作成し、その後に直径2.5mmに伸管してパイプ
を得た。次いでこのパイプの外周に石英製のクロステー
プを突き合わせ巻きして絶縁処理を行った。次にセラミ
ック(窒化ボロン製)で作成された、巻径20 mm、
ツバ径50mm、軸長50Iの巻胴を用意し、前記パイ
プを17ターンずつ5層積層してコイルとした。次いで
全体を窒素雰囲気に維持した電気炉に挿入し、巻胴に巻
回したパイプの両端末を炉外に出し、パイプの内部に1
/分の割合で酸素ガスを流しつつ890℃で5時間加熱
した後に徐冷する熱処理を行い、酸化物超電導マグネッ
トを作成した。
Next, this tape material was formed into a pipe shape with a diameter of 3.2 mm, and the butted portions were TIG welded to create a long pipe body, which was then expanded to a diameter of 2.5 mm to obtain a pipe. Next, a quartz cross tape was wrapped around the outer periphery of the pipe to insulate it. Next, a winding diameter of 20 mm made of ceramic (made of boron nitride),
A winding drum with a collar diameter of 50 mm and an axial length of 50 I was prepared, and the pipes were laminated in 5 layers each with 17 turns to form a coil. Next, the entire pipe is inserted into an electric furnace maintained in a nitrogen atmosphere, both ends of the pipe wound around the winding drum are taken out of the furnace, and one tube is placed inside the pipe.
A heat treatment was performed in which the magnet was heated at 890° C. for 5 hours while flowing oxygen gas at a rate of 1/2 min, and then slowly cooled, thereby producing an oxide superconducting magnet.

完成後の超電導マグネットを真空容器中に入れ、両端末
をそのまま容器外に出して液体窒素をパイプ内部に流し
つつ通電実験を行い、臨界電流密度(Jc)と臨界温度
(Tc)の測定を行った。なお、前記巻胴に巻回したパ
イプと同様に作成したパイプの短尺試料を熱処理して得
られたパイプ状の超電導導体の臨界電流密度(Jc)と
臨界温度(T c)を測定した。
The completed superconducting magnet was placed in a vacuum container, both terminals were taken out of the container, and an energization experiment was conducted while liquid nitrogen was flowing inside the pipe, and the critical current density (Jc) and critical temperature (Tc) were measured. Ta. In addition, the critical current density (Jc) and critical temperature (Tc) of a pipe-shaped superconducting conductor obtained by heat-treating a short pipe sample prepared in the same manner as the pipe wound around the drum were measured.

短尺試料においては、無磁場中、77Kにおいて、Jc
=3000A/cm’を示し、Tc=92.OKを示し
た。
In a short sample, Jc at 77 K in the absence of a magnetic field.
=3000A/cm', Tc=92. He indicated OK.

超電導コイルでは、77Kにおいて30Aの通電を行う
ことができ、IT(テスラ)の磁場を発生させることが
できた。
The superconducting coil was able to conduct a current of 30 A at 77 K, and was able to generate an IT (Tesla) magnetic field.

「製造例2」 BLOs粉末とSrCO3粉末とCaCO5粉末とCu
O粉末をB i:S r:Ca:Cu= 2 :2 :
2 :3の比率になるように混合し、大気中において8
70℃で仮焼し、粉砕した後に、ラバープレスにより直
径8m+nの棒状体を作成し、更に酸素ガス中において
870℃で10時間加熱する熱処理を行った。
“Production Example 2” BLOs powder, SrCO3 powder, CaCO5 powder, and Cu
B i:S r:Ca:Cu = 2:2:
Mix at a ratio of 2:3 and 8:3 in the atmosphere.
After calcining at 70°C and pulverizing, a rod-shaped body with a diameter of 8m+n was created using a rubber press, and further heat-treated by heating at 870°C for 10 hours in oxygen gas.

この焼結体を外径12mm、内径9mmの銀製のパイプ
に挿入し、更に直径8n+mに縮径し、これを圧延機に
より厚さ2 m+n、幅10mmのテープ状に圧延した
。その後に、このテープの片面を硝酸溶液に連続的に浸
し、片面の銀層の厚さを0.1〜0.2mmに調節した
。なお、他の片面の銀層の厚さは0゜3+n+nとなっ
ている。
This sintered body was inserted into a silver pipe having an outer diameter of 12 mm and an inner diameter of 9 mm, which was further reduced in diameter to 8 n+m, and then rolled into a tape shape with a thickness of 2 m+n and a width of 10 mm using a rolling mill. Thereafter, one side of this tape was continuously immersed in a nitric acid solution to adjust the thickness of the silver layer on one side to 0.1-0.2 mm. The thickness of the silver layer on the other side is 0°3+n+n.

次いで銀層の厚さを少なくした方の面が内面になるよう
にテープをフォーミング加工により丸め加工してパイプ
状に成形し、突き合わせ部分をTIG溶接により接合し
てパイプ体を作成した。次にこのパイプ体にプラグを使
用する伸管加工を行って外径2.5mmのパイプとし、
その表面に0.15mmのアルミナテープを巻き付けて
絶縁処理を施した。
Next, the tape was rounded by forming into a pipe shape so that the side with the smaller thickness of the silver layer became the inner surface, and the abutted portions were joined by TIG welding to create a pipe body. Next, this pipe body was expanded using a plug to create a pipe with an outer diameter of 2.5 mm.
A 0.15 mm alumina tape was wrapped around the surface to insulate it.

次に巻径25 mm1ツバ径60mm、軸長60mmの
セラミック製の巻胴に前記絶縁処理済みのパイプを巻回
し、製造例1で行った熱処理と同様の熱処理を行って超
電導マグネットを得た。この熱処理はパイプの内部に酸
素ガスを流しつつ行うものであるが、前記パイプの内周
面側の金属シースは前記したように0.1〜0.2mm
程度に薄く形成されているために、酸素の供給が十分に
なされて特性の優れた酸化物超電導マグネットを得るこ
とができた。
Next, the insulated pipe was wound around a ceramic drum having a winding diameter of 25 mm, a collar diameter of 60 mm, and an axial length of 60 mm, and the same heat treatment as in Production Example 1 was performed to obtain a superconducting magnet. This heat treatment is performed while flowing oxygen gas inside the pipe, and the metal sheath on the inner circumferential side of the pipe has a thickness of 0.1 to 0.2 mm as described above.
Since the magnet is formed to be relatively thin, oxygen is sufficiently supplied, and an oxide superconducting magnet with excellent characteristics can be obtained.

短尺試料においては、無磁場中77KにおいてJ c=
 4000 A/cm’、Tc=105Kを示した。
For short samples, J c= at 77K in no magnetic field.
It showed 4000 A/cm' and Tc=105K.

超電導マグネットにおいては、77Kにおいて40Aの
通電が可能であって、2,5Tの磁場を発生させること
ができた。
In the superconducting magnet, a current of 40 A could be applied at 77 K, and a magnetic field of 2.5 T could be generated.

「製造例3」 BaC0:+粉末とCuO粉末を2;3の割合で混合し
、大気中において880°Cで仮焼した仮焼粉末を用意
し、この仮焼粉末にCaO粉末およびTI。
"Production Example 3" A calcined powder was prepared by mixing BaC0:+ powder and CuO powder at a ratio of 2:3 and calcining the mixture at 880°C in the atmosphere, and adding CaO powder and TI to the calcined powder.

03粉末をTI:Ca:Ba:Cu= 2 :2 :2
 :3の比率になるように混合して混合粉末を得、酸素
ガス中において、880℃で1時間仮焼した。この仮焼
粉末を粉砕して圧延し、直径8mmの棒状体を得、これ
を酸素雰囲気中において880℃で1時間加熱する熱処
理を施し、更に銀製の外径10mm、内径9+nn+の
パイプに挿入し、全体を外径8mmに縮径した。次いで
この線材を厚さ1 mm、幅10mmに圧延してテープ
状に加工した後に、突起を有するロールを用いてテープ
の片面に幅方向に2mm間隔、長さ方向に10mm間隔
で多数のスリットを形成し、この後にスリットを形成し
た面を内面側になるようにフォーミングしてパイプ体を
形成した。このパイプ体を巻胴に巻回して先の製造例と
同様に超電導マグネットを作成した。
03 powder as TI:Ca:Ba:Cu=2:2:2
:3 to obtain a mixed powder, which was calcined at 880° C. for 1 hour in oxygen gas. This calcined powder was crushed and rolled to obtain a rod-shaped body with a diameter of 8 mm, which was heat-treated at 880°C for 1 hour in an oxygen atmosphere, and then inserted into a silver pipe with an outer diameter of 10 mm and an inner diameter of 9+nn+. The overall diameter was reduced to 8 mm. Next, this wire was rolled into a tape with a thickness of 1 mm and a width of 10 mm, and then a large number of slits were made on one side of the tape at 2 mm intervals in the width direction and at 10 mm intervals in the length direction using a roll with protrusions. After that, the pipe body was formed by forming the pipe body so that the surface on which the slits were formed faced the inner surface. This pipe body was wound around a winding drum to produce a superconducting magnet in the same manner as in the previous manufacturing example.

この超電導マグネットと前記パイプを熱処理して得られ
た短尺試料の臨界電流密度と臨界温度を測定した。
The critical current density and critical temperature of a short sample obtained by heat treating this superconducting magnet and the pipe were measured.

短尺試料においては、無磁場中、77KにおいてJc=
4000 A/cm’、Tc=123Kを示した。
For short samples, Jc= at 77K in no magnetic field
It showed 4000 A/cm' and Tc=123K.

超電導マグネットにおいては、77Kにおいて40Aの
通電が可能であって、2.5Tの磁場を発生させること
ができた。
In the superconducting magnet, a current of 40 A could be applied at 77 K, and a magnetic field of 2.5 T could be generated.

「発明の効果」 以上説明したように本発明の酸化物超電導導体は、パイ
プ状の金属シースの周壁に酸化物超電導体が埋設されて
いるので、別途に冷媒の通路を設けることなく金属シー
スの内部に冷媒を流して酸化物超電導体を冷却しながら
使用することができる。また、前記構造を採用すると、
熱処理を行って酸化物超電導体を生成させる場合にパイ
プ体の内外部に酸素ガスを流しつつ熱処理できるので、
金属シースの内外周両側から金属シースの内部の圧密体
に十分に酸素を供給しつつ酸化物超電導体を生成させる
ことができ、超電導特性の優れた酸化物超電導体を生°
成させることができる。
"Effects of the Invention" As explained above, in the oxide superconductor of the present invention, the oxide superconductor is embedded in the peripheral wall of the pipe-shaped metal sheath, so there is no need to provide a separate coolant passage. The oxide superconductor can be used while being cooled by flowing a coolant inside. Moreover, if the above structure is adopted,
When performing heat treatment to generate an oxide superconductor, heat treatment can be performed while flowing oxygen gas inside and outside the pipe body.
Oxide superconductors can be generated while supplying sufficient oxygen to the compacted body inside the metal sheath from both the inner and outer circumferential sides of the metal sheath, producing oxide superconductors with excellent superconducting properties.
can be made.

また、本発明方法によれば、パイプ体を巻胴に巻回した
後に熱処理を施してパイプ体周壁内部の圧密体に酸化物
超電導体を生成させるので、巻回時あるいは巻回前に金
属シース内部の圧密体に生じていたクラックなどの欠陥
部分を熱処理による焼結作用によって一部消失させて電
流通路を増大できるので欠陥部分の少ない超電導特性の
劣化を来していない超電導マグネットを製造することが
できる。また、パイプ体の内部に酸素ガスを流しつつ熱
処理するならば、パイプ体の全長にわたり熱処理時に酸
素不足を生じさせることなく超電導特性の優れた酸化物
超電導体を生成さ仕ることができる効果がある。
Furthermore, according to the method of the present invention, after the pipe body is wound around the winding drum, heat treatment is performed to generate an oxide superconductor in the compacted body inside the pipe body peripheral wall, so that the metal sheath is removed during or before winding. To manufacture a superconducting magnet that has few defective parts and does not cause deterioration of superconducting properties because defective parts such as cracks that have occurred in the internal compact body can be partially eliminated by the sintering action of heat treatment and the current path can be increased. I can do it. Furthermore, if heat treatment is performed while flowing oxygen gas inside the pipe body, an oxide superconductor with excellent superconducting properties can be produced without causing oxygen deficiency during heat treatment over the entire length of the pipe body. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、請求項1に記載した発明の一実
施例を示すもので、第1図は金属シースの内部に粉末を
充填した構造のテープ材を示す断面図、第2図はテープ
材をパイプ状に成形している状態を説明するための断面
図、第3図は酸化物超電導導体の断面図、第4図は請求
項2に記載した発明を説明するためのもので、巻胴にパ
イプを巻回している状態を示す斜視図、第5図は請求項
1に記載した発明の他の例を示す断面図、第6図は同発
明の更に別の例を示す斜視図である。 A 、B 、C・・・酸化物超電導導体、l・・・テー
プ材、2.5・・・金属シース、   3・・・圧密体
、4・・・パイプ体、     6・・・酸化物超電導
体、!l・・・巻胴、   20.30・・・金属シー
ス、21.31・・・酸化物超電導体。
1 to 3 show an embodiment of the invention as claimed in claim 1, in which FIG. 1 is a sectional view showing a tape material having a structure in which powder is filled inside a metal sheath, and FIG. 3 is a cross-sectional view of the oxide superconducting conductor, and FIG. 4 is a cross-sectional view of the tape material being formed into a pipe shape. , a perspective view showing a state in which a pipe is wound around a winding drum; FIG. 5 is a sectional view showing another example of the invention set forth in claim 1; FIG. 6 is a perspective view showing yet another example of the invention. It is a diagram. A, B, C... Oxide superconducting conductor, l... Tape material, 2.5... Metal sheath, 3... Consolidated body, 4... Pipe body, 6... Oxide superconducting body,! l... Winding drum, 20.30... Metal sheath, 21.31... Oxide superconductor.

Claims (2)

【特許請求の範囲】[Claims] (1)パイプ状の金属シースの周壁内部に酸化物超電導
体が埋設されてなることを特徴とする酸化物超電導導体
(1) An oxide superconductor characterized in that an oxide superconductor is embedded inside the peripheral wall of a pipe-shaped metal sheath.
(2)酸化物超電導体あるいは酸化物超電導体の前駆体
からなるテープ状の圧密体を金属シースで被覆してなる
テープ材を形成し、このテープ材をパイプ状に成形し、
突き合わせ部分を接合してパイプ体を作成するとともに
、このパイプ体を巻胴に巻回した後に熱処理を施して圧
密体の内部に酸化物超電導体を生成させることを特徴と
する超電導マグネットの製造方法。
(2) A tape material is formed by covering a tape-shaped compacted body made of an oxide superconductor or a precursor of an oxide superconductor with a metal sheath, and this tape material is formed into a pipe shape,
A method for manufacturing a superconducting magnet, which comprises: creating a pipe body by joining the butted parts, and then heat-treating the pipe body after winding it around a winding drum to generate an oxide superconductor inside the consolidated body. .
JP63166424A 1988-07-04 1988-07-04 Manufacture of oxide superconductor and superconductive magnet Pending JPH0215514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166424A JPH0215514A (en) 1988-07-04 1988-07-04 Manufacture of oxide superconductor and superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166424A JPH0215514A (en) 1988-07-04 1988-07-04 Manufacture of oxide superconductor and superconductive magnet

Publications (1)

Publication Number Publication Date
JPH0215514A true JPH0215514A (en) 1990-01-19

Family

ID=15831165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166424A Pending JPH0215514A (en) 1988-07-04 1988-07-04 Manufacture of oxide superconductor and superconductive magnet

Country Status (1)

Country Link
JP (1) JPH0215514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182363A (en) * 1990-11-13 1992-06-29 Tsumoru Hatayama Ceramic composite material
CN110047618A (en) * 2019-05-22 2019-07-23 卢文杰 Compound plow-in cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182363A (en) * 1990-11-13 1992-06-29 Tsumoru Hatayama Ceramic composite material
CN110047618A (en) * 2019-05-22 2019-07-23 卢文杰 Compound plow-in cable
CN110047618B (en) * 2019-05-22 2020-09-29 东阳市天齐科技有限公司 Composite direct-buried cable

Similar Documents

Publication Publication Date Title
JPH09511099A (en) Post-winding reaction superconducting coil and manufacturing method
JP3386942B2 (en) Oxide superconducting coil and manufacturing method thereof
JPS63225409A (en) Compound superconductive wire and its manufacture
EP1187232B1 (en) Oxide high-temperature superconducting wire and method of producing the same
JPH0215514A (en) Manufacture of oxide superconductor and superconductive magnet
JPH01100901A (en) Superconducting ceramic electromagnet and preparation thereof
JP2846361B2 (en) Manufacturing method of oxide superconducting coil
JPS63291311A (en) Superconducting wire
KR102429818B1 (en) Joint Structure of Multi-filament Core Superconducting Wire And Manufacturing Method Thereof
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JPH0382105A (en) Manufacture of oxide superconducting coil
JPS63281319A (en) Manufacture of compound superconductive wire
JPS63281318A (en) Manufacture of compound superconductive wire
JP3879183B2 (en) Superconducting composite material and method of manufacturing superconducting composite material
JP2727565B2 (en) Superconductor manufacturing method
JPH04259203A (en) Manufacture of ceramic superconductor coil
JPH05114313A (en) Superconducting current limiting wire and its manufacture
JPH06309967A (en) Manufacture of oxide type superconducting wire
JPH0494014A (en) Ceramic superconductive conductor
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
JPH0465034A (en) Manufacture of oxide superconducting wire
JPH01144517A (en) Oxide-based superconductive cable
JP2003115225A (en) Oxide superconductive coil and its manufacturing method
JPH0471113A (en) Manufacture of oxide superconducting wire
JP2006107843A (en) Tape-shaped superconductive wire