JPH0494014A - Ceramic superconductive conductor - Google Patents
Ceramic superconductive conductorInfo
- Publication number
- JPH0494014A JPH0494014A JP2213413A JP21341390A JPH0494014A JP H0494014 A JPH0494014 A JP H0494014A JP 2213413 A JP2213413 A JP 2213413A JP 21341390 A JP21341390 A JP 21341390A JP H0494014 A JPH0494014 A JP H0494014A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- layer
- alloy
- composite
- ceramic superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 75
- 239000004020 conductor Substances 0.000 title abstract description 6
- 239000002887 superconductor Substances 0.000 claims abstract description 56
- 229910001316 Ag alloy Inorganic materials 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 13
- 229910052709 silver Inorganic materials 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 5
- 239000002131 composite material Substances 0.000 claims description 36
- 230000003014 reinforcing effect Effects 0.000 claims description 14
- 229910000510 noble metal Inorganic materials 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 7
- 239000000835 fiber Substances 0.000 abstract description 6
- 239000010970 precious metal Substances 0.000 abstract description 5
- 230000002787 reinforcement Effects 0.000 abstract description 5
- 229910052737 gold Inorganic materials 0.000 abstract description 3
- 239000011159 matrix material Substances 0.000 abstract description 3
- 229910002696 Ag-Au Inorganic materials 0.000 abstract description 2
- 229910052763 palladium Inorganic materials 0.000 abstract description 2
- 229910052697 platinum Inorganic materials 0.000 abstract description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 2
- 238000013329 compounding Methods 0.000 abstract 2
- 229910000923 precious metal alloy Inorganic materials 0.000 abstract 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910052741 iridium Inorganic materials 0.000 abstract 1
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 238000011049 filling Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 229910017937 Ag-Ni Inorganic materials 0.000 description 1
- 229910017984 Ag—Ni Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、マグネット用、ケーブル用、ft流リード用
等に適した機械的及び電気的特性に優れたセラミックス
超電導々体に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic superconductor having excellent mechanical and electrical properties and suitable for use in magnets, cables, FT style leads, etc.
(従来の技術)
近年B 1−3r−Ca−Cu−0系、Y −、B a
Cu−0系、Tl−Ba−Ca−Cu−0系等の臨界温
度(Tc)が液体窒素温度を超えるセラミックス超電導
体が見出され、種々の分野での応用研究が盛んに進めら
れている。(Prior art) In recent years, B 1-3r-Ca-Cu-0 system, Y −, B a
Ceramic superconductors such as Cu-0 series and Tl-Ba-Ca-Cu-0 series, whose critical temperature (Tc) exceeds the temperature of liquid nitrogen, have been discovered, and applied research in various fields is actively progressing. .
ところで、これらのセラミックス超電導体は脆い為、線
状体等に加工するにはセラミックス超電導体となし得る
原料物質(以下原料物質と略記する)を金属製パイプ内
に充填して、これを伸延加工する方法によりなされてい
る。By the way, these ceramic superconductors are brittle, so in order to process them into linear objects, etc., a metal pipe is filled with a raw material that can be made into a ceramic superconductor (hereinafter abbreviated as raw material), and this is stretched. This is done using a method that
又、他の製造方法としては、原料物質をバインダーと混
練してペースト状物となし、これを金属上に塗布したり
、金属テープと交互に積層して複合体となし、必要に応
して更にこれを伸延加工する方法等がある。In addition, other manufacturing methods include kneading the raw material with a binder to form a paste, and applying this onto metal or layering it alternately with metal tape to form a composite. Furthermore, there is a method of stretching this.
又前記の伸延加工方法としては、押出し、スェージング
、引抜き、圧延等が適用され、伸延加工材は断面形状が
円、楕円、多角、テープ等の他、これらを複数本束ねて
多芯線、或いは多層線等に加工する方法が試作検討され
ている。In addition, extrusion, swaging, drawing, rolling, etc. are applied as the above-mentioned stretching method, and the stretched material can have a cross-sectional shape of circle, ellipse, polygon, tape, etc., or can be made into a multifilamentary wire or multilayer by bundling multiple pieces of these. A method of processing it into wires, etc., is being prototyped.
而して、前記の線材は最後に酸素含有雰囲気中で高温で
加熱処理され原料物質をセラミックス超1!導体に反応
せしめてセラミックス超電導々体となされるものである
。Then, the wire rod is finally heat-treated at high temperature in an oxygen-containing atmosphere to transform the raw material into a ceramic superlative! It is made into a ceramic superconductor by reacting with a conductor.
尚、原料物質上複合する金属材料には、Ag。Incidentally, Ag is used as a composite metal material based on the raw material.
Ag合金、Cu、Cu合金等が用いられるが、中でもA
g、Ag合金は酸素透過性に優れている為、内部の原料
物質に酸素が充分供給され、得られるセラミックス超電
44体の臨界電流密度(Jc)が向上して好ましいもの
である。Ag alloy, Cu, Cu alloy, etc. are used, among which A
Since Ag alloy has excellent oxygen permeability, oxygen is sufficiently supplied to the internal raw materials, and the critical current density (Jc) of the resulting ceramic superelectric 44 body is improved, so it is preferable.
しかしながら、かかるセラミックス超電44体は前述の
通り高温で加熱処理して製造される為、セラミックス超
電導体層に複合されたAg等の金属材料は非常に軟弱な
ものとなり、その結果セラミックス超電導々体にコイリ
ング時等に僅かな張力がかかると内部のセラミックス超
電導体層にクラックが生し、その結果、線材の超電導特
性が著しく低下してしまうという問題があった。However, since such ceramic superconductor 44 bodies are manufactured by heat treatment at high temperatures as described above, the metal material such as Ag composited into the ceramic superconductor layer becomes extremely soft, and as a result, the ceramic superconductor layer When a small amount of tension is applied during coiling or the like, cracks occur in the internal ceramic superconductor layer, resulting in a significant deterioration in the superconducting properties of the wire.
このようなことから、セラミックス超電導体層と複合す
る金属材料にはFe、SUS、Ni等の耐熱性高強度金
属材料又は繊維強化金属等の複合材料を用いる方法が提
案されたが、これらの金属材料や複合材料は前記の加熱
処理の際にセラミックス超電導体層と反応して上記超電
導体層を変質せしめ、その結果超電導体のJc等の超電
導特性が20000〜30000 A /cd程度にま
で低下してしまうという別の問題が生じた。For this reason, it has been proposed to use heat-resistant high-strength metal materials such as Fe, SUS, and Ni or composite materials such as fiber-reinforced metals as the metal material to be composited with the ceramic superconductor layer. The material or composite material reacts with the ceramic superconductor layer during the heat treatment to alter the quality of the superconductor layer, and as a result, the superconducting properties such as Jc of the superconductor decrease to about 20,000 to 30,000 A/cd. Another problem arose:
本発明はかかる状況に鑑み鋭意研究を行った結果なされ
たもので、その目的とするところは機械的強度並びに超
電導特性に優れたセラミックス超電44体を提供するこ
とにある。The present invention was made as a result of intensive research in view of the above situation, and its purpose is to provide a ceramic superconductor 44 having excellent mechanical strength and superconducting properties.
即ち、本発明のセラミックス超電44体は、セラミック
ス超電導体層の周囲に貴金属又は貴金属合金からなる介
在層が複合され、更にその周囲に繊維強化Ag又はAg
合金、粒子分散強化Ag又はAg合金、耐熱性高強度A
g合金の群から選ばれたいずれかの高強度材料からなる
補強層が複合されていることを特徴とするものである。That is, in the ceramic superconductor 44 of the present invention, an intervening layer made of a noble metal or a noble metal alloy is composited around a ceramic superconductor layer, and a fiber-reinforced Ag or Ag
Alloy, particle dispersion strengthened Ag or Ag alloy, heat resistant high strength A
It is characterized by a composite reinforcing layer made of any high-strength material selected from the group of g-alloys.
以下に本発明のセラミックス超電44体を図を参照して
具体的に説明する。The ceramic superelectric 44 body of the present invention will be specifically explained below with reference to the drawings.
第1図イル二は本発明のセラミックス超電44体の態様
例のそれぞれ断面円である。図においてlはセラミック
ス超電導体層、2は介在層、3は補強層である。FIG. 1 shows circular cross-sections of 44 embodiments of the ceramic superelectric body of the present invention. In the figure, l is a ceramic superconductor layer, 2 is an intervening layer, and 3 is a reinforcing layer.
図イに示したセラミックス超電44体は、断面円形のセ
ラミックス超電導体層1の周囲に介在層2が、更にその
外周に補強層3がそれぞれ層状に複合された丸線状のも
のである。又ロワに示したセラミックス超電44体は、
外観形状がテープ状を呈する他は図イに示したのと同し
構成のものである。又図ハには、複数のセラミックス超
電導体層1が介在層2内に互いに独立した状態で埋入さ
れ、更に上記介在層2の外周に補強層3が同心状に設け
られたものを示した。又図二には、複数本の互いに径の
異なるパイプ状のセラミックス超電導体1.1′が介在
層2,2′を介して同心状に複合され、更にその最外周
に補強層3を設けたセラミックス超電44体を示した。The ceramic superconductor 44 body shown in FIG. In addition, the 44 ceramic superelectric bodies shown in the lower part are
The structure is the same as that shown in Figure A, except that the external shape is tape-like. Furthermore, Fig. C shows a structure in which a plurality of ceramic superconductor layers 1 are embedded in an intervening layer 2 in a mutually independent state, and a reinforcing layer 3 is further provided concentrically around the outer periphery of the intervening layer 2. . Further, in Fig. 2, a plurality of pipe-shaped ceramic superconductors 1.1' with different diameters are concentrically composited with intervening layers 2, 2' interposed therebetween, and a reinforcing layer 3 is further provided on the outermost periphery. 44 ceramic superelectric bodies are shown.
本発明において、原料物質には前記したような種々系の
セラミックス超電導体が広く適用されるに加えて、上記
セラミックス超電導体の前駆物質であるセラミックス超
電導体に合成されるまでの中間体、例えばセラミックス
超電導体構成元素の混合体、共沈混合物、酸素欠損型複
合酸化物、上記構成元素の合金等が使用可能でこれらの
前駆物質は酸素含有雰囲気中で加熱処理することにより
セラミックス超電導体に反応するものである。In the present invention, in addition to the various types of ceramic superconductors mentioned above being widely applied as raw materials, intermediates used until synthesis into the ceramic superconductor, which is a precursor of the ceramic superconductor, such as ceramics, etc. Mixtures of superconductor constituent elements, coprecipitated mixtures, oxygen-deficient composite oxides, alloys of the above constituent elements, etc. can be used, and these precursors react to the ceramic superconductor by heat treatment in an oxygen-containing atmosphere. It is something.
本発明において、介在層にはセラミックス超電導体と非
反応性のAg、Au、Pt等の貴金属又はAg−1r、
Ag−Pd、Ag−Au等の貴金属合金が適用される。In the present invention, the intervening layer includes noble metals such as Ag, Au, and Pt that are non-reactive with the ceramic superconductor, or Ag-1r,
Noble metal alloys such as Ag-Pd and Ag-Au are applied.
又補強層にはAg−Ni。Also, the reinforcing layer is Ag-Ni.
Ag−Mo等の耐熱性高強度Ag合金、Agマトリンク
ス中にSiC,TiC,ZrC,ZrO。Heat resistant high strength Ag alloy such as Ag-Mo, SiC, TiC, ZrC, ZrO in Ag matrix.
A1.Os 、MgO等の粒子状又は短繊維状又は長繊
維状のセラミックスを分散せしめた複合材料が適用され
る。この複合材料は強化繊維のプリフォームにAg溶湯
を注入し加圧する溶湯鍛造法、又はAg溶湯中に粒子状
又は繊維状セラミックスを分散させ凝固せしめる溶融撹
拌凝固法、又はAg−Affi合金粉末とAg粉末との
混合粉末を所定形状に圧縮成形し、この圧縮成形体を酸
素含有雰囲気中で加熱処理してAlを内部酸化してAg
A l z Os系粒子分散強化型合金となす粉末冶金
法等任意の方法により作製される。A1. A composite material in which particulate, short fiber, or long fiber ceramics such as Os, MgO, etc. are dispersed is applied. This composite material can be produced using a molten metal forging method in which molten Ag is injected into a reinforcing fiber preform and pressurized, or a melt stirring solidification method in which particulate or fibrous ceramics are dispersed and solidified in molten Ag, or Ag-Affi alloy powder and Ag The mixed powder with powder is compression molded into a predetermined shape, and this compression molded body is heat-treated in an oxygen-containing atmosphere to internally oxidize Al to form Ag.
It is produced by any method such as a powder metallurgy method using an Al z Os-based particle dispersion strengthened alloy.
以下に本発明のセラミックス[導々体の製造方法につい
て具体的に説明する。The method for manufacturing the ceramic conductor of the present invention will be specifically described below.
先ず、前述の如くして繊維強化Ag合金等の複合材料を
作製し、これを中ぐり等の機械加工によりパイプ状とな
し、次に貴金属製筒状体を上記パイプ内に嵌合して複合
パイプとなし、この複合パイプ内に原料物質を充填して
複合ビレットを作製し、この複合ビレットを熱間押出後
、スェージング、圧延、引抜き等の通常の伸延加工法に
より所定形状の線材に加工し、更にこの線材を酸素含有
雰囲気中で800〜900℃の高温にて加熱処理して原
料物質のセラミックス超電導体への反応並びに焼結、上
記焼結体への酸素補給及び結晶構造の調整等をなしてセ
ラミックス超電44体が製造される。First, a composite material such as a fiber-reinforced Ag alloy is produced as described above, and this is made into a pipe shape by machining such as boring, and then a cylindrical body made of precious metal is fitted into the pipe to form a composite material. A composite billet is produced by filling the composite pipe with a raw material, and after hot extrusion, the composite billet is processed into a wire rod of a predetermined shape by ordinary stretching methods such as swaging, rolling, and drawing. Furthermore, this wire is heat-treated at a high temperature of 800 to 900°C in an oxygen-containing atmosphere to react and sinter the raw material into a ceramic superconductor, supply oxygen to the sintered body, adjust the crystal structure, etc. Thus, 44 ceramic superelectric bodies were manufactured.
上記の如くして得られたセラミックス超電44体は、そ
の形状が丸線や角線の場合は複数本を集束して、又テー
プ状やシート状の場合は渦巻状に巻上げて、この集束体
又は渦巻体の外周を貴金属材料や繊維強化Ag合金等の
高強度材料等で被覆し、必要に応し更に伸延加工や加熱
処理を施してセラミックス超電44体となすことも可能
である。The 44 ceramic superelectric bodies obtained as described above are collected by converging multiple wires in the case of round or square wires, or by winding them into a spiral shape in the case of tape or sheet shapes. It is also possible to cover the outer periphery of the body or spiral body with a high-strength material such as a noble metal material or a fiber-reinforced Ag alloy, and further perform stretching or heat treatment if necessary to form a ceramic superelectric body.
上記の他、原料物質をドクターブレード法によりグリー
ンシートとなし、これを貴金属シートと重ね合わせて貴
金属シートが外側になるように巻上げ、この渦巻体を繊
維強化Ag合金等の高強度材料製パイプ内に充填して複
合ビレットとなして製造することもできる。In addition to the above, the raw material is made into a green sheet using the doctor blade method, this is overlapped with a precious metal sheet and rolled up so that the precious metal sheet is on the outside, and this spiral body is placed inside a pipe made of high strength material such as fiber-reinforced Ag alloy. It is also possible to manufacture a composite billet by filling the billet into a composite billet.
本発明のセラミックス超電44体は、セラミックス超電
導体層に貴金属又は貴金属合金からなる介在層を介して
繊維強化Ag合金1粒子分散強化Ag合金、耐熱性高強
度Ag合金の群から選ばれたいずれかの高強度材料から
なる補強層が複合されているので、高温度で加熱処理し
ても軟弱化することがなく、従って線材のコイリング時
にかかる張力等によっても内部のセラミックス超電導体
層にクランクが入るようなことがない。The ceramic superconductor 44 of the present invention has a ceramic superconductor layer with an intervening layer made of a noble metal or a noble metal alloy. Since the reinforcing layer made of such high-strength material is composite, it will not become soft even when heated at high temperatures, and therefore the internal ceramic superconductor layer will not be cranked by the tension applied when coiling the wire. There's no way I'll go in.
又上記高強度材料からなる補強層とセラミックス超電導
体層との間にセラミックス超電導体と非反応性の貴金属
又は貴金属合金からなる介在層を設ケるので、高強度材
料からなる補強層とセラミックス超電導体層とが接触し
反応してセラミ、クス超電導体層が変質するようなこと
もない。Furthermore, since an intervening layer made of a noble metal or noble metal alloy that is non-reactive with the ceramic superconductor is provided between the reinforcing layer made of the high-strength material and the ceramic superconductor layer, the reinforcing layer made of the high-strength material and the ceramic superconductor There is no possibility that the ceramic or carbon superconductor layer will change in quality due to contact with the body layer and reaction.
〔実施例) 以下に本発明を実施例により詳細に説明する。〔Example) The present invention will be explained in detail below using examples.
実施例1
A120.短繊維製のプリフォームを内径251のコン
テナ内にセットし、このコンテナ内に1100°Cに加
熱したAg溶湯を注入し加圧して凝固せしめて繊維強化
Ag鋳塊となし、次いでこの鋳塊を機械加工して外径2
5w、内径16m1+の中空ビレットとなし、この中空
ビレット内に外形15.81、内径12mmのAgパイ
プを嵌合して複合パイプとなし、次いでこの複合パイプ
内にBi系セラミックス超電導体の仮焼成粉を充填して
複合ビレットを作製した。しかるのちこの複合ビレット
にスェージング加工及び圧延加工を順次施して5×0、
2 mmのテープ状複合線材となし、次いでこのテープ
状複合線材に大気中で850’CX50Hrの加熱処理
を施してセラミックス超電44体を製造した。Example 1 A120. A preform made of short fibers was set in a container with an inner diameter of 251 mm, and molten Ag heated to 1100°C was poured into the container and solidified under pressure to form a fiber-reinforced Ag ingot. Machined to outer diameter 2
A hollow billet with a diameter of 5w and an inner diameter of 16 m1+ was made, and an Ag pipe with an outer diameter of 15.81 mm and an inner diameter of 12 mm was fitted into this hollow billet to form a composite pipe, and then pre-sintered powder of Bi-based ceramic superconductor was placed inside this composite pipe. A composite billet was prepared by filling the billet with After that, this composite billet was sequentially subjected to swaging processing and rolling processing to obtain 5×0,
A 2 mm tape-shaped composite wire was prepared, and then this tape-shaped composite wire was subjected to heat treatment at 850'CX50Hr in the atmosphere to produce 44 ceramic superelectric bodies.
尚、Bi系セラミックス超電導体の仮焼成粉はB 1z
03.5rCOs 、CaC0:+ 、Cu0(7)粉
末をBi :Sr :Ca :Cuが原子比で2=21
:2になるようlこ配合し混合したのち、大気中で80
0°CX20Hr加熱し、これを粉砕分級して作製した
ものを用いた。In addition, the pre-sintered powder of Bi-based ceramic superconductor is B 1z
03.5rCOs, CaC0:+, Cu0(7) powder with Bi:Sr:Ca:Cu atomic ratio of 2=21
: After mixing the mixture to give a ratio of 80% in the air,
The material was prepared by heating at 0° C. for 20 hours, pulverizing and classifying it.
実施例2
実施例1において、補強層及び介在層の形成材料にAg
に替えてAg−Pd合金を用いたものを用いた他は実施
例1と同し方法によりセラミックス超電44体を製造し
た。Example 2 In Example 1, Ag was used as the material for forming the reinforcing layer and the intervening layer.
44 ceramic superelectric bodies were manufactured in the same manner as in Example 1, except that an Ag-Pd alloy was used instead.
実施例3
実施例1と同様にして作った複合ビレットをスェージン
グ加工後引抜加工して1.2s−φの複合線材となした
他は、実施例1と同じ方法によりセラミックス超電44
体を製造した。Example 3 Ceramic superelectric 44 was produced in the same manner as in Example 1, except that a composite billet made in the same manner as in Example 1 was swaged and then drawn into a composite wire of 1.2 s-φ.
manufactured a body.
実施例4
実施例3で作製した1、21φの複合線材を7氷菓束し
、この集束体を外径61.内径4msのAg製パイプ内
に充填し、次いでこれを引抜加工して外径2■曽の線材
となした他は、実施例1と同し方法により加熱処理して
、セラミ・2クス超電導々体を製造した。Example 4 Seven 1.21φ composite wire rods prepared in Example 3 were bundled into 7 frozen bundles, and this bundle was made into a bundle with an outer diameter of 61mm. A ceramic 2x superconducting conductor was heated in the same manner as in Example 1, except that it was filled into an Ag pipe with an inner diameter of 4 ms, and then drawn into a wire rod with an outer diameter of 2 mm. manufactured a body.
実施例5
外径12−のPtビレットに2mIIφの孔を等間隔に
7本穿ち、この孔に実施例1にて作製したBi系セラミ
ックス超電導体の仮焼成粉を充填して複合体となし、次
いでこの複合体を実施例1で用いたのと同し繊維強化A
g製で外径18mm、内径12.5蒙園の中空ビレット
内に挿入して複合ビレットとなし、これを引抜加工して
1.5ms+φの複合線材となした。しかるのちこの複
合線材を実施例1と同じ方法により加熱処理してセラミ
ックス超電導々体を製造した。Example 5 Seven holes of 2 mIIφ were bored at equal intervals in a Pt billet with an outer diameter of 12 mm, and the pre-sintered powder of the Bi-based ceramic superconductor produced in Example 1 was filled into the holes to form a composite. This composite was then treated with the same fiber reinforcement A as used in Example 1.
The composite billet was inserted into a hollow billet made of aluminum with an outer diameter of 18 mm and an inner diameter of 12.5 mm, and this was drawn into a composite wire rod of 1.5 ms + φ. Thereafter, this composite wire was heat treated in the same manner as in Example 1 to produce a ceramic superconductor.
実施例6
実施例!で作製したBi系セラミックス超電導体の仮焼
成粉をバインダーと混練してペースト状物となし、これ
をドクターブレード法により0.51厚さのグリーンシ
ートとなした。次いで得られたグリーンシートを0.5
mm厚さのAuシートと重合わせて51φのAg丸棒上
にAuシートが外側になるように渦巻状に巻き付け、次
いでこの渦巻体を実施例1で用いたのと同じ繊維強化A
g製で外径20■、内径15mmの中空ビレット内に充
填して複合ビレットを作製した。次いで、これをスェー
ジング加工及び引抜加工を順次施して2mmφの複合線
材となし、しかるのち実施例1と同し加熱処理を施して
セラミックス超電導々体を製造した。Example 6 Example! The pre-sintered powder of the Bi-based ceramic superconductor produced in the above was kneaded with a binder to form a paste, which was then formed into a green sheet with a thickness of 0.51 by the doctor blade method. Then, the obtained green sheet was
A mm-thick Au sheet is overlapped with the 51φ Ag round rod and wound in a spiral shape with the Au sheet facing outward, and then this spiral body is wrapped with the same fiber-reinforced A as used in Example 1.
A composite billet was prepared by filling a hollow billet manufactured by G. G with an outer diameter of 20 mm and an inner diameter of 15 mm. Next, this was sequentially subjected to swaging processing and drawing processing to obtain a composite wire of 2 mm diameter, and then subjected to heat treatment in the same manner as in Example 1 to produce a ceramic superconductor.
比較例1〜2
実施例1及び実施例3において、繊維強化Ag製中空ビ
レット内に、Bi系セラミックス超電導体の仮焼成粉を
Ag製パイプを介在させずに直接充填した他は、それぞ
れ実施例1及び実施例3と同し方法によりセラミックス
超電導々体を製造した。Comparative Examples 1 to 2 In Examples 1 and 3, the pre-sintered powder of Bi-based ceramic superconductor was directly filled into the fiber-reinforced Ag hollow billet without intervening an Ag pipe. Ceramic superconductors were manufactured by the same method as in Example 1 and Example 3.
比較例3
実施例5において、仮焼成粉を充填してなる複合体を外
径1B+am、内径12.5mmのAg製中空ビレット
内に挿入して複合ビレットとなした他は実施例5と同じ
方法によりセラミックス超電導々体を製造した。Comparative Example 3 Same method as in Example 5 except that in Example 5, a composite formed by filling the calcined powder was inserted into a hollow Ag billet with an outer diameter of 1 B+am and an inner diameter of 12.5 mm to form a composite billet. A ceramic superconductor was manufactured using the following method.
比較例4
実施例6において、グリーンシートとAuシートをAg
丸捧に巻付けてなる渦巻体を、外径2゜1、内径15+
+sのAg製中空ビレット内に充填して複合ビレットを
作製した他は、実施例6と同じ方法によりセラミックス
超電導々体を製造した。Comparative Example 4 In Example 6, the green sheet and Au sheet were
The spiral body wound around the round body has an outer diameter of 2゜1 and an inner diameter of 15+.
A ceramic superconductor was produced by the same method as in Example 6, except that a composite billet was produced by filling a +s Ag hollow billet.
このようにして得られた各々のセラミンクス超電導々体
を直径100+uwのコイルに成形して、液体窒素(7
7K)中、無磁場下にてJcを測定した。結果は主な製
造条件を併記して第1表に示した。Each ceramic superconductor obtained in this way was formed into a coil with a diameter of 100+uW, and liquid nitrogen (7
7K), Jc was measured in the absence of a magnetic field. The results are shown in Table 1 along with the main manufacturing conditions.
第1表より明らかなように、本発明品(Nal〜6)は
、比較品(+!17〜10)に較べてJcがいずれも高
い値のものとなった。As is clear from Table 1, the products of the present invention (Nal~6) all had higher Jc values than the comparative products (+!17~10).
特に、介在層及び補強層の金属マトリックスにAgを用
い、平角状に圧延したもの(障1)は、加熱処理時に酸
素の供給が十分になされ又セラミックス超電導体層が緻
密化してJcが高い値を示した。又多芯化し加工率を上
げたもの(N114)も高いJcを示した。又介在層に
pt又はAuを用いたもの(N[15,6)は加熱処理
時の酸素供給が不十分となってJcがやや低下し、中で
もNα6はバインダーが残存した分Jcが低目となった
。In particular, when Ag is used in the metal matrix of the intervening layer and the reinforcing layer and rolled into a rectangular shape (failure 1), oxygen is sufficiently supplied during heat treatment, and the ceramic superconductor layer becomes dense, resulting in a high Jc value. showed that. Also, the material with multi-core material and increased processing rate (N114) also showed a high Jc. In addition, when PT or Au is used in the intervening layer (N[15,6), the oxygen supply during heat treatment is insufficient, resulting in a slight decrease in Jc, and in particular, Nα6 has a low Jc due to the residual binder. became.
他方、比較品のNl117及びNcL8はセラミックス
超電導体層と補強層との間に介在層を設けなかった為、
セラミックス超電導体層が強化層中のAl。On the other hand, the comparative products Nl117 and NcL8 did not have an intervening layer between the ceramic superconductor layer and the reinforcing layer, so
The ceramic superconductor layer is Al in the reinforcing layer.
03と反応して変質して、又Nl119及びNCLIO
は補強層を設けなかった為、コイリングの際の張力によ
りセラミックス超電導体層にクラックが生じて、いずれ
もJcが極めて低い値のものとなった。It reacts with Nl119 and NCLIO.
Because no reinforcing layer was provided, cracks occurred in the ceramic superconductor layer due to the tension during coiling, resulting in extremely low Jc values in both cases.
以上述べたように、本発明のセラミックス超電導々体は
、機械的強度並びにJc等の超電導特性に優れ、工業上
顕著な効果を奏するものである。As described above, the ceramic superconductor of the present invention has excellent mechanical strength and superconducting properties such as Jc, and has remarkable industrial effects.
第1図イル二は本発明のセラミックス超電導々体の態様
例示すそれぞれ横断面図である。
1.1′・・・セラミックス超電導体層、 2.2′
・・・介在層、 3・・・補強層。FIG. 1 is a cross-sectional view illustrating an embodiment of the ceramic superconductor of the present invention. 1.1'... Ceramic superconductor layer, 2.2'
...Intervening layer, 3...Reinforcement layer.
Claims (1)
金からなる介在層が複合され、更にその周囲に、繊維強
化Ag又はAg合金、粒子分散強化Ag又はAg合金、
耐熱性高強度Ag合金の群から選ばれたいずれかの高強
度材料からなる補強層が複合されていることを特徴とす
るセラミックス超電導々体。An intervening layer made of a noble metal or a noble metal alloy is composited around the ceramic superconductor layer, and further surrounded by fiber-reinforced Ag or Ag alloy, particle dispersion-strengthened Ag or Ag alloy,
A ceramic superconductor comprising a composite reinforcing layer made of any high-strength material selected from the group of heat-resistant, high-strength Ag alloys.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2213413A JPH0494014A (en) | 1990-08-10 | 1990-08-10 | Ceramic superconductive conductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2213413A JPH0494014A (en) | 1990-08-10 | 1990-08-10 | Ceramic superconductive conductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0494014A true JPH0494014A (en) | 1992-03-26 |
Family
ID=16638819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2213413A Pending JPH0494014A (en) | 1990-08-10 | 1990-08-10 | Ceramic superconductive conductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0494014A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0887919A (en) * | 1994-09-19 | 1996-04-02 | Natl Res Inst For Metals | Oxide superconducting wire rod and manufacture thereof |
US6469253B1 (en) * | 1995-10-17 | 2002-10-22 | Sumitomo Electric Industries, Ltd | Oxide superconducting wire with stabilizing metal have none noble component |
US6777376B1 (en) | 1999-12-28 | 2004-08-17 | Sumitomo Electric Industries, Ltd. | Superconducting wire |
-
1990
- 1990-08-10 JP JP2213413A patent/JPH0494014A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0887919A (en) * | 1994-09-19 | 1996-04-02 | Natl Res Inst For Metals | Oxide superconducting wire rod and manufacture thereof |
US6469253B1 (en) * | 1995-10-17 | 2002-10-22 | Sumitomo Electric Industries, Ltd | Oxide superconducting wire with stabilizing metal have none noble component |
US6777376B1 (en) | 1999-12-28 | 2004-08-17 | Sumitomo Electric Industries, Ltd. | Superconducting wire |
AU781589B2 (en) * | 1999-12-28 | 2005-06-02 | Sumitomo Electric Industries, Ltd. | Superconducting wire and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01140520A (en) | Manufacture of composite oxide ceramic superconductive wire | |
JPH09511099A (en) | Post-winding reaction superconducting coil and manufacturing method | |
EP1187232B1 (en) | Oxide high-temperature superconducting wire and method of producing the same | |
JPH07201232A (en) | Oxide superconductive wire material and coil | |
JPH0494014A (en) | Ceramic superconductive conductor | |
JPWO2003050826A1 (en) | Metal substrate for oxide superconducting thick film and method for producing the same | |
JP2846361B2 (en) | Manufacturing method of oxide superconducting coil | |
JP2889286B2 (en) | Superconducting body and superconducting coil formed using the superconducting body | |
KR910009198B1 (en) | Method of manufacturing superconductive products | |
JPH0382105A (en) | Manufacture of oxide superconducting coil | |
JPH05334921A (en) | Ceramic superconductor | |
JP3158408B2 (en) | Oxide superconducting wire and manufacturing method thereof | |
JPH02276113A (en) | Manufacture of ceramics group superconductive wire material | |
JPS63284720A (en) | Superconducting wire | |
JPH03110714A (en) | Ceramic superconducting conductor | |
JPS63291318A (en) | Manufacture of oxide superconductive wire | |
JP3011962B2 (en) | Method for manufacturing multi-core or multilayer ceramic superconductor | |
JPH07141929A (en) | Oxide superconductor and its manufacture | |
JPH03122917A (en) | Manufacture of ceramics superconductive conductor | |
JP2583289B2 (en) | Oxide superconducting wire and its manufacturing method | |
JPH0215514A (en) | Manufacture of oxide superconductor and superconductive magnet | |
JPH0494015A (en) | Ceramic superconductive conductor | |
JPH0668729A (en) | Manufacture of multilayer ceramic superconducting conductor | |
JPH03110715A (en) | Ceramics superconducting conductor | |
JPH02278616A (en) | Manufacture of multicore-type oxide superconductor |