JPH03110714A - Ceramic superconducting conductor - Google Patents

Ceramic superconducting conductor

Info

Publication number
JPH03110714A
JPH03110714A JP1249435A JP24943589A JPH03110714A JP H03110714 A JPH03110714 A JP H03110714A JP 1249435 A JP1249435 A JP 1249435A JP 24943589 A JP24943589 A JP 24943589A JP H03110714 A JPH03110714 A JP H03110714A
Authority
JP
Japan
Prior art keywords
ceramic
fiber
ceramic superconductor
ceramics
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1249435A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Naoki Uno
直樹 宇野
Kenji Enomoto
憲嗣 榎本
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1249435A priority Critical patent/JPH03110714A/en
Publication of JPH03110714A publication Critical patent/JPH03110714A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a ceramic superconducting conductor excellent in mechanical and electrical properties by joining a particle-dispersion reinforced type or fiber-reinforced type heat resistant complex metal of high strength to a ceramics superconducting layer. CONSTITUTION:A particle diffusion-reinforced type or fiber-reinforced type complex metal material 2 excellent in both strength and heat resistance is joined to a ceramics superconducting layer 1. Preferably, the matrix metal of the complex metal 2 is Ag; because Ag has good oxygen permeability, oxygen is sufficiently supplied to a ceramics superconducting layer during heating treatment and a high critical current density is obtained, and also, because Ag has high heat conductivity, excellent quenching resistance is obtained and the amount of electricity that the superconductor transmits in use is heightened. Ceramics of SiC, Al2O3 and the like is applicable to particles or fiber to be joined to the matrix metal. Thus a ceramic superconducting conductor excellent in mechanical strength and having a high critical current value is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機械的並びに電気的特性に優れ、マグネット
コイル用導体等に適したセラミックス超電導々体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic superconductor having excellent mechanical and electrical properties and suitable as a conductor for a magnet coil.

〔従来の技術とその課題〕[Conventional technology and its issues]

近年液体窒素温度で超電導を示すLnBatCusot
−*(Lnは希土類元素x<1)、BizSr、cac
uzos、(B i I−XP bJzs r 2Ca
 tCuiO+o (x<1)、T/!JazCaCu
、Os、T !! z B a z Ca z Cu 
z O+ o等のセラミックス超電導体が見出され、マ
グネットコイル等への応用が盛んに検討されている。
LnBatCusot shows superconductivity at liquid nitrogen temperature in recent years
-*(Ln is rare earth element x<1), BizSr, cac
uzos, (B i I-XP bJzs r 2Ca
tCuiO+o (x<1), T/! JazCaCu
,Os,T! ! z B a z C a z Cu
Ceramic superconductors such as z O+ o have been discovered, and their application to magnet coils and the like is being actively studied.

ところで上記のセラミックス超電導体は脆い為、これを
線材等に加工するにはセラミックス超電導粉体を金属製
チューブに入れて伸延加工する方法によりなされており
、得られた線材は加熱処理することによりセラミックス
超電導々体に製造される。
By the way, the above-mentioned ceramic superconductor is brittle, so in order to process it into a wire etc., ceramic superconducting powder is placed in a metal tube and stretched, and the obtained wire is heated to form a ceramic material. Manufactured into superconductors.

斯くの如くして得られたセラミックス超電導々体はセラ
ミックス超電導体層の外周に金属層が複合された導体で
あるが、この複合金属層は内部のセラミックス超電導体
層を補強するとともに、使用中の冷却媒体としての作用
及びクエンチ事故における電流のバイパスとしての作用
をも果すものである。
The ceramic superconductor thus obtained is a conductor in which a metal layer is composited around the outer periphery of the ceramic superconductor layer, but this composite metal layer not only reinforces the internal ceramic superconductor layer but also protects the ceramic superconductor layer during use. It also functions as a cooling medium and as a current bypass in the event of a quench accident.

しかしながら前記の如きセラミックス超電導々体は、セ
ラミックス超電導体層が少なくとも部分溶融するような
高温にて加熱処理を施して、その結晶構造の電流の流れ
易いab面を導体の通電方向に平行に、つまりC軸を導
体の通電方向に垂直に配向せしめ(以下C軸配向と称す
)、且つ結晶粒を通電方向に平行に長く配列させて(以
下結晶長神化と称す)通電障害となる通電方向と交叉す
る結晶粒界を低減せしめることにより高い超電導特性が
得られるものであり、この為上記酸化物超電導体層に複
合する金属材料は上記の如き高温加熱処理によって軟化
し脆弱化して後のコイリング時の張力等によって導体は
容易に変形し内部のセラミックス超電導体層に割れ等の
損傷が生じて超電導特性が低下するという問題があった
However, the above-mentioned ceramic superconductor is heat-treated at a high temperature that at least partially melts the ceramic superconductor layer, so that the a-b plane of its crystal structure, where current flows easily, is aligned parallel to the current-carrying direction of the conductor. The C-axis is oriented perpendicularly to the direction of conduction of the conductor (hereinafter referred to as C-axis orientation), and the crystal grains are arranged long in parallel to the direction of conduction (hereinafter referred to as crystal grain orientation) so that the direction of conduction intersects with the direction of conduction, which may cause a failure in conduction. High superconducting properties can be obtained by reducing the grain boundaries, and for this reason, the metal material composited into the oxide superconductor layer is softened and weakened by the high-temperature heat treatment described above, making it difficult to form during coiling. There is a problem in that the conductor is easily deformed by tension or the like, causing damage such as cracks to the internal ceramic superconductor layer, resulting in deterioration of superconducting properties.

このようなことから加熱処理を低温で行うようにすると
セラミックス超電導体層のC軸配向や結晶長神化が起こ
らず、やはり超電導特性が低い値のものとなるという問
題があった。
For this reason, if the heat treatment is performed at a low temperature, the C-axis orientation and crystal lengthening of the ceramic superconductor layer will not occur, resulting in a problem that the superconducting properties will still have a low value.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる状況に鑑み鋭意研究を行った結果なされ
たもので、その目的とするところは機械的強度に優れ、
且つJ、値の高いセラミックス超電導々体を提供するこ
とにある。
The present invention was made as a result of intensive research in view of the above situation, and its purpose is to have excellent mechanical strength,
Another object of the present invention is to provide a ceramic superconductor having a high J value.

即ち本発明は、セラミックス超電導体層に金属材料が複
合されたセラミックス超電導々体であって、上記複合金
属材料が粒子分散強化型又は繊維強化型複合金属材料で
あることを特徴するものである。
That is, the present invention is a ceramic superconductor in which a metal material is composited into a ceramic superconductor layer, and the composite metal material is a particle dispersion reinforced type or a fiber reinforced type composite metal material.

本発明は、セラミックス超電導体層に、強度並びに耐熱
性に優れた粒子分散強化型又は繊維強化型複合金属材料
を複合したセラミックス超電導々体であって、上記導体
の製造時における高温での加熱処理によっても上記導体
の強度が保持されて、セラミックス超電導々体の損傷が
防止されるようにした導体である。
The present invention is a ceramic superconductor in which a ceramic superconductor layer is combined with a particle dispersion-strengthened or fiber-reinforced composite metal material having excellent strength and heat resistance. This is a conductor that maintains the strength of the conductor and prevents damage to the ceramic superconductor.

本発明において複合金属材料のマトリックス金属にはA
gを用いるのが好ましく、その理由はAgは酸素透過性
が良好なので加熱処理工程においてセラミックス超電導
体層への酸素の供給が十分になされて高いJcが得られ
る為であり、又Agは熱伝導性が高いので耐クエンチ性
に優れ使用時の通電量を高めることができる為である。
In the present invention, the matrix metal of the composite metal material is A
It is preferable to use Ag, because Ag has good oxygen permeability, so oxygen can be sufficiently supplied to the ceramic superconductor layer in the heat treatment process, and a high Jc can be obtained. This is because it has excellent quench resistance and can increase the amount of current applied during use.

尚、上記のマトリックス金属には、Agの他に酸素透過
性及び熱伝導性に優れるものであれば、Ag−1r、A
g−Pd、Ag−Au等のAg合金も好適である。
In addition to Ag, the matrix metals mentioned above may include Ag-1r, A
Ag alloys such as g-Pd and Ag-Au are also suitable.

本発明において上記マトリックス金属に複合する粒子又
は繊維材料にはS i C,T i C,Z r C。
In the present invention, the particles or fiber materials to be composited with the matrix metal include S i C, T i C, and Z r C.

SiO□、A1.zO+等の任意のセラミックスが適用
される。
SiO□, A1. Any ceramics such as zO+ can be applied.

マトリックス金属中に上記の如きセラミックス粒子又は
繊維を複合する方法としては、溶湯鍛造法、溶融撹拌凝
固法、固相混合焼結法等任意の方法が用いられる。
Any method such as a molten metal forging method, a melt agitation solidification method, a solid phase mixing sintering method, etc. can be used to composite the above ceramic particles or fibers into a matrix metal.

以下に本発明のセラミックス超電導々体の構成を図を参
照して説明する。第1〜4図は本発明のセラミックス超
電導々体の実施例を示すそれぞれ断面図である。図にお
いて1はセラミックス超電導体層、2は繊維強化金属層
である。
The structure of the ceramic superconductor of the present invention will be explained below with reference to the drawings. 1 to 4 are cross-sectional views showing examples of the ceramic superconductor of the present invention. In the figure, 1 is a ceramic superconductor layer, and 2 is a fiber-reinforced metal layer.

第1図に示した導体は、丸棒状の1本のセラミックス超
電導体層1の周囲に繊維強化金属層2を複合した単芯セ
ラミックス超電導々体である。
The conductor shown in FIG. 1 is a single-core ceramic superconductor in which a fiber-reinforced metal layer 2 is composited around one ceramic superconductor layer 1 in the shape of a round bar.

第2図に示した導体は、丸棒状の7本のセラミックス超
電導体層1の周囲に繊維強化金属層2を複合した多芯セ
ラミックス超電導々体である。
The conductor shown in FIG. 2 is a multicore ceramic superconductor in which a fiber-reinforced metal layer 2 is composited around seven round bar-shaped ceramic superconductor layers 1.

第3図に示した導体は、セラミックス超電導体層1と繊
維強化金属層2とを同心円状に交互に複合したものであ
る。
The conductor shown in FIG. 3 is a composite of ceramic superconductor layers 1 and fiber-reinforced metal layers 2 alternately arranged in concentric circles.

第4図に示した導体は、繊維強化金属層2内に芯材3に
て強化した筒状のセラミックス超電導体層1を7本配置
した多芯セラミックス超電導々体である。上記の芯材に
はFe5SUS、N15W等の金属材料が好適であり、
この芯材には、予めAu、Pt、Pd、Rh等の貴金属
をコーティングしておくと加熱処理時等における芯材の
酸化が防止され好ましいものである。
The conductor shown in FIG. 4 is a multicore ceramic superconductor in which seven cylindrical ceramic superconductor layers 1 reinforced with a core material 3 are arranged within a fiber-reinforced metal layer 2. Metal materials such as Fe5SUS and N15W are suitable for the above core material,
It is preferable to coat this core material in advance with a noble metal such as Au, Pt, Pd, Rh, etc. to prevent oxidation of the core material during heat treatment.

次に上述のセラミックス超電導々体の製造方法について
説明すると、例えば第1図に示した導体は、強化繊維の
プリフォームに金属溶湯を注入し鍛造する溶湯鍛造法又
は溶湯中に強化粒子を撹拌分散させ凝固せしめる溶融撹
拌凝固法等により作製した繊維強化型又は粒子分散強化
型の複合金属製中空ビレットを作製し、この複合金属製
中空ビレットの中空部にセラミックス超電導物質の粉体
を充填して複合ビレットとなし、この複合ビレットを押
出し、引抜き、スェージング等の方法により伸延して所
望形状の線材に加工し、又第3図に示した導体は、セラ
ミックス超電導物質及び複合金属を、それぞれ棒又はパ
イプ状に加工し、各々を嵌合して複合ビレットとなし、
以下前記と同じ伸延加工方法により所望形状の線材に加
工し、而して得られた線材を800〜1000”Cの温
度にて加熱処理して、セラミックス超電導物質のセラミ
ックス超電導体への反応並びに焼結、上記焼結体への酸
素補給又は結晶構造の調整等をなしてセラミックス超電
14体に製造するものである。
Next, we will explain the manufacturing method of the above-mentioned ceramic superconductor. For example, the conductor shown in Fig. 1 can be manufactured using the molten metal forging method, in which molten metal is injected into a reinforcing fiber preform and then forged, or the reinforcing particles are stirred and dispersed in the molten metal. A fiber-reinforced or particle dispersion-reinforced composite metal hollow billet is prepared by a melt stirring solidification method, etc., and the hollow part of this composite metal hollow billet is filled with ceramic superconducting material powder to form a composite. The composite billet is drawn into a wire rod of a desired shape by extrusion, drawing, swaging, etc. The conductor shown in FIG. The pieces are processed into shapes and then fitted together to form a composite billet.
Thereafter, the wire rod is processed into a desired shape using the same stretching method as described above, and the obtained wire rod is heat-treated at a temperature of 800 to 1000''C to react and sinter the ceramic superconducting material into a ceramic superconductor. The sintered body is sintered, oxygen is supplied to the sintered body, the crystal structure is adjusted, etc., and 14 ceramic superelectric bodies are manufactured.

本発明導体を製造するに際し用いるセラミックス超電導
物質には前記したような種々系のセラミックス超電導体
が広く適用されるに加えて上記セラミックス超電導体の
前駆物質であるセラミックス超電導体となし得る原料物
質からセラミックス超電導体に合成されるまでの中間体
、例えばセラミックス超電導体構成元素の混合体又は共
沈混合物又は酸素欠損型複合酸化物又は上記構成元素の
合金等が使用可能でこれらの前駆物質は酸素含有雰囲気
中で加熱処理することによりセラミックス超電導体に反
応するものである。
In addition to the various types of ceramic superconductors mentioned above being widely applied to the ceramic superconducting materials used in manufacturing the conductor of the present invention, ceramics can also be made from raw materials that can be used as ceramic superconductors, which are precursors of the ceramic superconductors mentioned above. Intermediates before being synthesized into superconductors, such as mixtures or co-precipitated mixtures of ceramic superconductor constituent elements, oxygen-deficient composite oxides, or alloys of the above constituent elements, can be used, and these precursors can be used in an oxygen-containing atmosphere. It reacts to the ceramic superconductor by heating it inside.

〔作用〕[Effect]

本発明の導体は、セラミックス超電導体層を粒子分散強
化型又は繊維強化型の高強度耐熱性複合金属材料により
複合し強化した導体なので、製造時の加熱処理によって
導体が軟化してコイリング時の張力等によって変形して
セラミックス超電導体層に割れが入るようなことがなく
、又上記加熱処理を十分高温にて施すことができる為結
晶のC軸配向や結晶粒の長伸化がなされ、依って高い超
電導特性が得られる。
The conductor of the present invention is a conductor reinforced by combining a ceramic superconductor layer with a particle dispersion-reinforced or fiber-reinforced high-strength heat-resistant composite metal material. The ceramic superconductor layer will not be cracked due to deformation due to other factors, and since the above heat treatment can be performed at a sufficiently high temperature, the C-axis orientation of the crystals and the elongation of the crystal grains will be achieved. High superconducting properties can be obtained.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例1 溶湯鍛造装置の内径30IIII11のコンテナ内に直
径30閣、内径16■、高さ40mmの円筒状のSiC
ウィスカーのプリフォームをセットし、このコンテナ内
にAg溶湯を注入すると同時にパンチングしてビレット
に鍛造した。次いでこのビレットの中心部を中ぐりして
直径30InI11、内径16mm、高さ40mmのS
ICウィスカーを20容量%含有する繊維強化金属製の
中空ビレットを作製し、次いで上記中空ビレットの中空
部にBi系酸化物超電導体の仮焼成粉末を充填して複合
ビレットとなした。
Example 1 A cylindrical SiC with a diameter of 30 cm, an inner diameter of 16 mm, and a height of 40 mm was placed in a container with an inner diameter of 30 mm in a molten metal forging device.
A whisker preform was set, and molten Ag was injected into the container, simultaneously punched and forged into a billet. Next, the center of this billet was bored to form an S with a diameter of 30InI11, an inner diameter of 16mm, and a height of 40mm.
A hollow billet made of fiber-reinforced metal containing 20% by volume of IC whiskers was prepared, and then pre-sintered powder of a Bi-based oxide superconductor was filled into the hollow part of the hollow billet to form a composite billet.

上記においてBi系酸化物超電導体の仮焼成粉末は平均
粒径5−1純度99.9%のBi、0..5rcO3、
CaC0z 、CuO粉末をBi:Sr:Ca:Cuが
原子比で2:111になるように配合し混合したのち大
気中にて800°ClOH仮焼成しこれを平均粒径5−
になるまで粉砕して作製したものである。
In the above, the pre-sintered powder of the Bi-based oxide superconductor is Bi with an average particle size of 5-1 and a purity of 99.9%. .. 5rcO3,
CaC0z and CuO powders were mixed so that the atomic ratio of Bi:Sr:Ca:Cu was 2:111, and then calcined in the atmosphere at 800° with ClOH to give an average particle size of 5-
It is made by crushing it until it becomes .

而して前記の複合ビレットを700’Cにて押出して8
IIIIlφの棒材となし、しかるのちこの棒材をスェ
ージング加工して第1図に示した如き1.6ma+φの
線材となした。次いでこの線材をN2−0□混合ガス雰
囲気(P O20,5atm)中で920°C0,5H
引続き850°C100Hの加熱処理を施したのち、表
面にエポキシ樹脂をコーティングして絶縁してコイル導
体となした。
Then, the above composite billet was extruded at 700'C to obtain 8
A bar material of IIIlφ was made, and this bar material was then swaged to form a wire rod of 1.6 ma+φ as shown in FIG. Next, this wire was heated at 920°C0.5H in a N2-0□ mixed gas atmosphere (PO20.5 atm).
Subsequently, it was heat-treated at 850° C. for 100 hours, and then the surface was coated with epoxy resin to insulate it and form a coil conductor.

次いで上記コイル導体をSUS製コア上に自動巻機によ
り一定張力をかけて巻回して内径30圓、外径70輸、
幅50閣のソレノイドコイルを製造した。
Next, the above-mentioned coil conductor was wound around a SUS core with a constant tension using an automatic winding machine to obtain an inner diameter of 30 mm and an outer diameter of 70 mm.
Manufactured a solenoid coil with a width of 50 mm.

実施例2 黒鉛るつぼ内にてAgを溶融せしめ、このAg溶湯中に
粒径0.8μのA l t Os粉末を混合し撹拌した
のち、この溶湯を中心部分に直径16朧の中子を置いた
内径30鵬の鉄鋳型内に注入して実施例1と同じサイズ
のAnヨ0.粉末を20容量%含有する粒子分散強化型
金属製の中空ビレットを作製した。次いでこの中空ビレ
・ントの中空部に実施例1で用いたのと同じBi系酸化
物超電導粉末を充填し以下実施例1と同じ方法によりソ
レノイドコイルを製造した。
Example 2 Ag was melted in a graphite crucible, Al t Os powder with a particle size of 0.8μ was mixed into the molten Ag, and after stirring, a core with a diameter of 16 mm was placed in the center of the molten metal. The same size as in Example 1 was poured into an iron mold with an inner diameter of 30 mm. A particle dispersion reinforced metal hollow billet containing 20% by volume of powder was produced. Next, the same Bi-based oxide superconducting powder as used in Example 1 was filled into the hollow part of this hollow billet, and a solenoid coil was manufactured by the same method as in Example 1.

比較例1 実施例2において、中空ビレットの作製に際し、A I
t z Ox粉末を混合しなかった他は実施例2と同じ
方法によりソレノイドコイルを製造した。
Comparative Example 1 In Example 2, when producing a hollow billet, A I
A solenoid coil was manufactured by the same method as in Example 2, except that t z Ox powder was not mixed.

比較例2 比較例1においてスェージング加工により得たを製造し
た。
Comparative Example 2 A sample obtained by swaging in Comparative Example 1 was manufactured.

斯くの如くして得られた各々のソレノイドコイルについ
て77.3K、4.2に中にてコイルの中心磁界を測定
した。結果は第1表に示した。
For each solenoid coil thus obtained, the central magnetic field of the coil was measured at 77.3K and 4.2 degrees. The results are shown in Table 1.

第1表より明らかなように本発明品(実施例1゜2)は
大電流を通電することができ、従って中心磁界が高い値
のものとなった。
As is clear from Table 1, the products of the present invention (Examples 1 and 2) were able to conduct a large current, and therefore had a high central magnetic field.

これに対し、比較例1は複合金属材料がAgのため加熱
処理によって軟化して、導体はコイリングの際の張力で
変形伸びを生じて内部の酸化物超電導体層に割れが入り
、又比較例2はAgの軟化を防止する為加熱処理温度を
低くしたので酸化物超電導体層の結晶がC軸配向や長神
化せず、その結果通電々流を大きくとれずにいずれも中
心磁界が低い値のものとなった。
On the other hand, in Comparative Example 1, the composite metal material is Ag, so it is softened by heat treatment, and the conductor is deformed and elongated due to the tension during coiling, causing cracks in the internal oxide superconductor layer. In 2, the heat treatment temperature was lowered to prevent the softening of Ag, so the crystals of the oxide superconductor layer did not become C-axis oriented or oriented, and as a result, the current flow was not large and the central magnetic field was low in both cases. It became the property of

尚、実施例1,2の導体のセラミックス超電導体層の結
晶組織は、顕微鏡観察の結果第5図に示した如く結晶粒
4が通電方向に長伸化し、通電方向と交叉する結晶粒界
5が低減した組織からなり、又結晶構造はX線回折の結
果C軸配向していることがti認された。
Incidentally, the crystal structure of the ceramic superconductor layer of the conductor of Examples 1 and 2 was observed by microscopy, as shown in FIG. The crystal structure was found to be C-axis oriented as a result of X-ray diffraction.

〔効果〕〔effect〕

以上述べたように本発明のセラミックス超電導々体は、
セラミックス超電導体層に粒子分散強化型又は繊維強化
型の高強度耐熱性複合金属材料により複合されているの
で、製造時の加熱処理においても高い強度が保持されて
、コイリングの際の張力等によって変形してセラミック
ス超電導体層が損傷するようなことがなく、父上記加熱
処理を十分高温で施すことができる為セラミックス超電
導体層の結晶をC軸配向や長神化させることができ、依
って得られるセラミックス超電導々体は臨界電流密度(
J、)に優れ、この導体を用いて作製したコイルはその
中心磁界が高い値のものとなり、工業上顕著な効果を奏
する。
As described above, the ceramic superconductor of the present invention is
Since the ceramic superconductor layer is composited with a particle dispersion-strengthened or fiber-reinforced high-strength, heat-resistant composite metal material, it maintains high strength even during heat treatment during manufacturing, and does not deform due to tension during coiling. Since the above heat treatment can be performed at a sufficiently high temperature without damaging the ceramic superconductor layer, the crystals of the ceramic superconductor layer can be oriented in the C-axis or have a long crystal structure. Ceramic superconductors have a critical current density (
J,), and coils made using this conductor have a high central magnetic field, which brings about remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は本発明のセラミックス超電導々体の実施例
を示す断面図、第5図は本発明導体の結晶組織の一実施
例を示す模式図である。 1・・・セラミックス超電導体層、 2・・・繊維強化
金属層、 3・・・芯材、 4・・・結晶粒、 5・・
・結晶粒界。
1 to 4 are cross-sectional views showing examples of the ceramic superconductor of the present invention, and FIG. 5 is a schematic diagram showing an example of the crystal structure of the conductor of the present invention. DESCRIPTION OF SYMBOLS 1... Ceramic superconductor layer, 2... Fiber-reinforced metal layer, 3... Core material, 4... Crystal grain, 5...
- Grain boundaries.

Claims (1)

【特許請求の範囲】[Claims] セラミックス超電導体層に金属材料が複合されたセラミ
ックス超電導々体であって、上記複合金属材料が粒子分
散強化型又は繊維強化型複合金属材料であることを特徴
とするセラミックス超電導々体。
A ceramic superconductor comprising a ceramic superconductor layer composited with a metal material, wherein the composite metal material is a particle dispersion-strengthened or fiber-reinforced composite metal material.
JP1249435A 1989-09-26 1989-09-26 Ceramic superconducting conductor Pending JPH03110714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1249435A JPH03110714A (en) 1989-09-26 1989-09-26 Ceramic superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1249435A JPH03110714A (en) 1989-09-26 1989-09-26 Ceramic superconducting conductor

Publications (1)

Publication Number Publication Date
JPH03110714A true JPH03110714A (en) 1991-05-10

Family

ID=17192927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1249435A Pending JPH03110714A (en) 1989-09-26 1989-09-26 Ceramic superconducting conductor

Country Status (1)

Country Link
JP (1) JPH03110714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113507A2 (en) * 1999-12-28 2001-07-04 Sumitomo Electric Industries, Ltd. Superconducting wire and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113507A2 (en) * 1999-12-28 2001-07-04 Sumitomo Electric Industries, Ltd. Superconducting wire and manufacturing method thereof
EP1113507A3 (en) * 1999-12-28 2005-05-04 Sumitomo Electric Industries, Ltd. Superconducting wire and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2672334B2 (en) Superconductor manufacturing method
JP2711358B2 (en) Superconducting wire manufacturing method
KR970004554B1 (en) Apparatus and systems comprising a superconductive body and method for producing such body
US5972846A (en) Article comprising textured superconductive cuprate material
JPH04501188A (en) Improvements regarding superconducting composite conductors
JPH03110714A (en) Ceramic superconducting conductor
KR910009198B1 (en) Method of manufacturing superconductive products
JP2514690B2 (en) Superconducting wire manufacturing method
JP2846361B2 (en) Manufacturing method of oxide superconducting coil
WO1989001706A1 (en) Machine workable, thermally conductive, high strength, ceramic superconducting composite
JPH0494014A (en) Ceramic superconductive conductor
EP0704862A2 (en) Superconducting wire and manufacturing method for the same
JPH0382105A (en) Manufacture of oxide superconducting coil
JPS63291317A (en) Manufacture of oxide superconductive wire rod
JPH03110715A (en) Ceramics superconducting conductor
JP2532144B2 (en) Method for manufacturing metal / ceramic composite
JP2779210B2 (en) Conductor for current lead
JPH03237094A (en) High temperature oxide superconductor, superconducting wire, coil using the wire and production of them
JPS63291318A (en) Manufacture of oxide superconductive wire
JP3466758B2 (en) Boron-containing metal oxide wire and method for producing metal oxide wire
JPH01134821A (en) Manufacture of oxide superconductive wire
JPH01134809A (en) Superconductive wire material
JPH03129610A (en) Manufacture of ceramic superconductor
Poeppel et al. Recent improvements in bulk properties of ceramic superconductors
JPH02158012A (en) Manufacture of oxide superconductive liner body