JPH03122917A - Manufacture of ceramics superconductive conductor - Google Patents

Manufacture of ceramics superconductive conductor

Info

Publication number
JPH03122917A
JPH03122917A JP1259851A JP25985189A JPH03122917A JP H03122917 A JPH03122917 A JP H03122917A JP 1259851 A JP1259851 A JP 1259851A JP 25985189 A JP25985189 A JP 25985189A JP H03122917 A JPH03122917 A JP H03122917A
Authority
JP
Japan
Prior art keywords
metal
heat
strength
ceramic superconductor
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1259851A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Naoki Uno
直樹 宇野
Kenji Enomoto
憲嗣 榎本
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1259851A priority Critical patent/JPH03122917A/en
Publication of JPH03122917A publication Critical patent/JPH03122917A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve a superconductive characteristic and mechanical strength by laminating a desired number of respective sheet bodies of a ceramics superconductor or its precursor, a stabilizing metal and a heat-proof high-strength metal applying external coating extension-processing into a desired shape and preforming prescribed heat treatment. CONSTITUTION:Respective sheet bodies 3 of a ceramics superconductor 2 or its precursor, a stabilizing metal 1 and a heat-proof high-strength metal are laminated in desired order alternately and in a desired number. After this laminate is extension-processed in a desired shape as it is or after applying metal coating this extension-processed material is given prescribed heat treatment. An oxide superconductive conductor thus obtained becomes a conductor of a construction in which the stabilizing metal sheets 1 and the heat-proof high- strength sheets 3 are stacked layers distributed on the oxide superconductors 2. The conductor excellent in the thermal, electrical and mechanical properties can be thereby obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機械的並びに電気的特性に優れ、マグネット
コイル用導体、電カケープル、機器リード線等に適した
セラミックス超電導々体の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic superconductor having excellent mechanical and electrical properties and suitable for use as a conductor for a magnet coil, a power cable, an equipment lead wire, etc. .

〔従来の技術とその課題〕[Conventional technology and its issues]

近年液体窒素温度で超電導を示すLnBazCusot
−x(Lnは希土類元素x<1)、BIgSrtcac
u*os、(Bi、−XPbXltSrICaICui
O+o (x < 1 ) 、TlzB azca C
ut’s、Tffi*BaxCazCusO+e等のセ
ラミックス超電導体が見出され、マグネットコイル等へ
の応用が盛んに検討されている。
LnBazCusot shows superconductivity at liquid nitrogen temperature in recent years
-x (Ln is a rare earth element x<1), BIgSrtcac
u*os, (Bi, -XPbXltSrICaICui
O+o (x < 1), TlzB azca C
Ceramic superconductors such as ut's and Tffi*BaxCazCusO+e have been discovered, and their application to magnet coils and the like is being actively studied.

ところで上記のセラミックス超電導体は脆い為、これを
線材等に加工するにはセラミックス超電導粉体を金属製
チューブに入れて伸延加工する方法によりなされており
、得られた線材は加熱処理することによりセラミックス
超電導々体に製造される。
By the way, the ceramic superconductor mentioned above is brittle, so in order to process it into a wire etc., ceramic superconducting powder is placed in a metal tube and stretched, and the resulting wire is heat-treated to form a ceramic material. Manufactured into superconductors.

斯くの如くして得られたセラミックス超電導々体はセラ
ミックス超電導体層の外周に金属層が複合された導体で
あるが、この金属層は内部のセラミックス超電導体層を
補強するとともに、使用中の冷却媒体として又クエンチ
における電流のバイパスとしての安定化作用をも果すも
のである。
The ceramic superconductor thus obtained is a conductor in which a metal layer is composited around the outer periphery of the ceramic superconductor layer, but this metal layer not only reinforces the internal ceramic superconductor layer but also provides cooling during use. It also has a stabilizing effect as a medium and as a current bypass during quenching.

ところでセラミックス超電導体は超電導状態が破れると
絶縁体となり、表面に複合した安定化金属層まで熱又は
電気が伝達しにくい為クエンチが起き易く、特に交流通
電においてはヒステリシス損による発熱が生じる為、セ
ラミックス超電導々体のクエンチ対策は、その実用化に
向けて極めて重要な課題であった。
By the way, when the superconducting state of a ceramic superconductor is broken, it becomes an insulator, and it is difficult for heat or electricity to be transferred to the composite stabilizing metal layer on the surface, so quenching easily occurs.Especially when AC current is applied, heat generation occurs due to hysteresis loss, so ceramics Countermeasures against quenching of superconductors have been an extremely important issue for their practical application.

又上記の安定化金属層は内部の脆弱なセラミックス超電
導体を補強する作用も果すものであるが、この安定化金
属には熱伝導性のよい高純度金属材料が用いられ、しか
も超電導体への反応が高温度に加熱してなされる為、上
記加熱処理の際にセラミックス超電導体と安定化金属層
との間に大きな熱膨張差が生じてセラミックス超電導体
に割れが生じ、又上記加熱処理によって安定化金属層は
強度が低下して、その結果例えばコイルに巻回する時の
張力によって容易に伸び変形して内部のセラミックス超
電導体層に割れが生じて臨界電流密度(J、)等の特性
が著しく低下してしまうという問題があった。
The above-mentioned stabilizing metal layer also has the function of reinforcing the fragile ceramic superconductor inside, but this stabilizing metal is made of a high-purity metal material with good thermal conductivity, and it also has the effect of reinforcing the fragile ceramic superconductor. Since the reaction is carried out by heating to a high temperature, a large difference in thermal expansion occurs between the ceramic superconductor and the stabilizing metal layer during the heat treatment, causing cracks in the ceramic superconductor. The strength of the stabilizing metal layer decreases, and as a result, for example, it is easily stretched and deformed by the tension applied when it is wound around a coil, causing cracks in the internal ceramic superconductor layer, which deteriorates characteristics such as critical current density (J,). There was a problem in that the value decreased significantly.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる状況に鑑みなされたものでその目的とす
るところは、超電導特性並びに機械的強度に優れたセラ
ミックス超電導々体の製造方法を提供することにある。
The present invention was devised in view of the above circumstances, and an object thereof is to provide a method for manufacturing a ceramic superconductor having excellent superconducting properties and mechanical strength.

即ち本発明は、セラミックス超電導体又はその前駆物質
、安定化金属、及び耐熱性高強度金属の各々のシート状
体を、所望順序で交互に所望数積層し、この積層体をそ
のまま又は金属材による外被を施したのち、所望形状に
伸延加工し、次いでこの伸延加工材に所定の加熱処理を
施すことを特徴とするものである。
That is, the present invention alternately laminates a desired number of sheets of each of a ceramic superconductor or its precursor, a stabilizing metal, and a heat-resistant high-strength metal in a desired order, and then laminates this laminate as it is or with a metal material. After applying the outer cover, the material is stretched into a desired shape, and then the stretched material is subjected to a predetermined heat treatment.

本発明方法は、セラミックス超電導体又はその前駆物質
のシート状体と安定化金属シート及び耐熱性高強度金属
シートとを交互に積層し、この積層体をそのまま又はこ
れに金属材による外被を施したのち、これを所望形状に
伸延加工し、得られた伸延加工材に所定の加熱処理を施
すもので、而して得られた酸化物超電導々体は、酸化物
超電導体に安定化金属シート及び耐熱性高強度金属シー
トが層状に分布した構造の導体であって、熱的、電気的
、機械的性質に優れた導体である。
The method of the present invention involves alternately laminating sheet-like bodies of ceramic superconductors or their precursors, stabilizing metal sheets, and heat-resistant high-strength metal sheets, and using this laminate as it is or with an outer covering made of a metal material. After that, this is stretched into a desired shape, and the resulting stretched material is subjected to a prescribed heat treatment. It is a conductor with a structure in which heat-resistant, high-strength metal sheets are distributed in layers, and is a conductor with excellent thermal, electrical, and mechanical properties.

本発明方法において、シート状体となすセラミックス超
電導体しては、前記したような種々系のセラミックス超
電導体が広く適用され、又上記セラミックス超電導体の
前駆物質としては、セラミックス超電導体となし得る原
料物質からセラミックス超電導体に合成されるまでの中
間体、例えばセラミックス超電導体構成元素の酸化物の
混合体又は共沈混合物又は酸素欠損型複合酸化物又は上
記構成元素の合金等でこれらの前駆物質は酸素含有雰囲
気中で加熱処理することにより酸化物超電導体に反応す
るものである。
In the method of the present invention, the various types of ceramic superconductors described above are widely used as the ceramic superconductor formed into a sheet-like body, and the precursor of the ceramic superconductor is a raw material that can be made into a ceramic superconductor. These precursors are intermediates in the synthesis of ceramic superconductors from substances, such as mixtures or co-precipitated mixtures of oxides of the constituent elements of ceramic superconductors, oxygen-deficient composite oxides, or alloys of the above-mentioned constituent elements. It reacts with oxide superconductors by heat treatment in an oxygen-containing atmosphere.

上記セラミックス超電導体又はその前駆物質をシート状
体(以下セラミックス超電導体シートと略記)に成形す
る方法としてはドクターブレード法、押し出し法、スク
リーン印刷法等の通常の方法が適用され、成形に当って
はセラミックス超電導体又はその前駆物質にバインダー
を配合しておくと得られるシート状成形体は可撓性が付
与されて好ましいものである。
Conventional methods such as doctor blade method, extrusion method, screen printing method, etc. are applied to form the above ceramic superconductor or its precursor into a sheet-like body (hereinafter abbreviated as ceramic superconductor sheet). It is preferable that a binder is blended with a ceramic superconductor or its precursor to give a sheet-like molded body with flexibility.

本発明方法においてセラミックス超電導体シートに積層
させる安定化金属シートには、セラミックス超電導体と
非反応性で且つ導電性並びに熱伝導性に優れた金属が用
いられ、例えばAg、Ag−Pd、Ag−Au、Ag−
Cu、Ag  Mg。
In the method of the present invention, a metal that is non-reactive with the ceramic superconductor and has excellent electrical conductivity and thermal conductivity is used for the stabilizing metal sheet laminated on the ceramic superconductor sheet, such as Ag, Ag-Pd, Ag- Au, Ag-
Cu, Ag Mg.

Ag−P t、Ag−1r、Au、Au−N i、Au
−Cu、Au−Ag−Cu、Au−Pd−Ag。
Ag-Pt, Ag-1r, Au, Au-Ni, Au
-Cu, Au-Ag-Cu, Au-Pd-Ag.

Au−1r、PL、PL−1r%Pt−Pd、Pd、P
d−Ni、Pd−Co、Ni−Cr、Ni−Cr−Co
、Ni−Fe5Ni−Fe−Co。
Au-1r, PL, PL-1r%Pt-Pd, Pd, P
d-Ni, Pd-Co, Ni-Cr, Ni-Cr-Co
, Ni-Fe5Ni-Fe-Co.

Fe−Cr5Fe、Ni−Cr (SUS)等が好適で
ある。
Fe-Cr5Fe, Ni-Cr (SUS), etc. are suitable.

本発明方法において、上述のセラミックス超電導体シー
ト又は安定化金属シートに積層させる耐熱性高強度金属
シートには、例えばNi、Cr、Mo、W等の金属及び
その合金が耐熱性及び強度に優れる上、熱膨張係数が安
定化金属より低く、安定化金属とセラミックス超電導体
との熱膨張差を緩和できて好適である。
In the method of the present invention, the heat-resistant, high-strength metal sheet to be laminated on the above-mentioned ceramic superconductor sheet or stabilized metal sheet includes metals such as Ni, Cr, Mo, and W, and alloys thereof, which have excellent heat resistance and strength. It is preferable that the thermal expansion coefficient is lower than that of the stabilizing metal, and the difference in thermal expansion between the stabilizing metal and the ceramic superconductor can be alleviated.

次に本発明方法にて用いる積層体の構成をその断面図を
参照して具体的に説明する。
Next, the structure of the laminate used in the method of the present invention will be specifically explained with reference to its cross-sectional view.

第1図イに示した積層体は、安定化金属シート1上にセ
ラミックス超電導体シート2、その上に耐熱性高強度金
属シート3を順次積層したものの側断面図である。同図
口に示した積層体は、上記積層体を金属枠体4に装入し
たものである。
The laminate shown in FIG. 1A is a side sectional view of a ceramic superconductor sheet 2 on a stabilized metal sheet 1, and a heat-resistant high-strength metal sheet 3 laminated thereon in this order. The laminate shown at the front of the figure is one in which the above laminate is placed in a metal frame 4.

第2図イに示した積層体は安定化金属シート間にセラミ
ックス超電導体シートと耐熱性高強度金属シートを交互
に配置し積層したものである。又同図口に示した積層体
はセラミックス超電導体シート間に安定化金属シートと
耐熱性高強度金属シートを交互に配置し積層したもので
、前者の積層体は耐クエンチ性を重視し、後者は電流容
量を重視した積層体である。
The laminate shown in FIG. 2A is a stacked structure in which ceramic superconductor sheets and heat-resistant high-strength metal sheets are alternately arranged between stabilizing metal sheets. The laminate shown at the top of the figure is a stack of ceramic superconductor sheets with stabilizing metal sheets and heat-resistant high-strength metal sheets arranged alternately.The former laminate emphasizes quench resistance, while the latter is a laminate with emphasis on current capacity.

第3図イ〜ハに示した積層体は、断面円形のもので、同
図イに示したものは、安定化金属シート1上に高強度耐
熱性金属シート3を、その上にセラミックス超電導体シ
ート2を順次積層したのち、この積層体を渦巻状に巻回
し、この壱同体を金属円筒5内に装入したものである。
The laminates shown in FIGS. 3A to 3C have a circular cross section, and the one shown in FIG. After the sheets 2 are laminated one after another, this laminated body is wound in a spiral shape, and this one body is charged into a metal cylinder 5.

又同図口に示した積層体は安定化金属シート1、セラミ
ックス超電導体シート2、耐熱性高強度金属シート3を
それぞれ円筒状に成形し、この円筒状体を同心円状に重
合したものである。又同同人に示した積層体は同図口に
示した積層体の中心部位を空洞となしたものである。
The laminate shown at the beginning of the figure is made by forming a stabilized metal sheet 1, a ceramic superconductor sheet 2, and a heat-resistant high-strength metal sheet 3 into a cylindrical shape, and then polymerizing these cylindrical bodies concentrically. . Also, the laminate shown in the same person is the same as the laminate shown in the opening of the same figure, with a hollow in the center.

これらの積層体は、プレス、押出し、圧延、スェージン
グ、引抜き等の加工法により所望形状の複合線材に加工
され、次いで所定の加熱処理が施されてセラミックス超
電導々体に反応がなされる。
These laminates are processed into composite wires of a desired shape by processing methods such as pressing, extrusion, rolling, swaging, and drawing, and then subjected to a predetermined heat treatment to react to the ceramic superconductor.

本発明方法において耐熱性高強度金属シートは斗 むくの材料である必要はなく、第各図イ〜ハに示したよ
うに穴あき板6やネット材7等通気性をもたせたもので
もよく、むしろ通気性をもたせることにより加熱処理工
程でのOt供給や熱伝導効果が改善され好ましいもので
ある。又これらの耐熱性高強度金属シートには予めAu
、Ag、PL等の貴金属を被覆しておくと酸化物超電導
体と接触しても上記導体が耐熱性高強度金属と反応して
劣化するようなことがなく好ましいものである。
In the method of the present invention, the heat-resistant high-strength metal sheet does not need to be a solid material, and may be made of a perforated plate 6 or a net material 7, etc., which have air permeability, as shown in Figs. Rather, providing air permeability is preferable because Ot supply and heat conduction effects in the heat treatment process are improved. In addition, these heat-resistant, high-strength metal sheets are coated with Au in advance.
It is preferable to cover the conductor with a noble metal such as , Ag, or PL, since the conductor will not react with the heat-resistant high-strength metal and deteriorate even if it comes into contact with the oxide superconductor.

又積層体の最外層に加工性のよい安定化金属シートを配
置しておくことにより、金属製枠体等を用いずにそのま
ま伸延加工することができる。
Furthermore, by placing a stabilized metal sheet with good workability in the outermost layer of the laminate, stretching processing can be performed as is without using a metal frame or the like.

本発明方法において、セラミックス超電導体シートはセ
ラミックス超電導粉体とバインダーとを混練してペース
ト状体となし、これを安定化金属シート又は耐熱性高強
度金属シートに直接塗布又は溶射して成形しても差支え
ない。
In the method of the present invention, the ceramic superconductor sheet is formed by kneading ceramic superconducting powder and a binder to form a paste, which is then directly applied or thermally sprayed onto a stabilized metal sheet or a heat-resistant high-strength metal sheet. There is no problem.

上記においてバインダーを用いて成形したセラミックス
超電導体シートは、伸延加工前又は加熱処理前に脱バイ
ンダー処理を施しておく必要がある。
The ceramic superconductor sheet formed using a binder in the above process needs to be subjected to binder removal treatment before stretching or heat treatment.

本発明方法において伸延加工後の積層体の加熱処理は酸
素含有雰囲気中にて800〜1000’Cの温度に加熱
してなされるもので、その目的はセラミックス超電導体
前駆物質のセラミックス超電導体への反応及び焼結、父
上記焼結体への酸素供給、結晶構造の調整等である。
In the method of the present invention, the laminate after drawing is heated to a temperature of 800 to 1000'C in an oxygen-containing atmosphere, and the purpose is to transform the ceramic superconductor precursor into a ceramic superconductor. These include reaction and sintering, supply of oxygen to the sintered body, and adjustment of crystal structure.

〔作用] 本発明方法においては、セラミックス超電導体、安定化
金属及び耐熱性高強度金属の各々のシート状体を積層し
、この積層体を伸延加工及び加熱処理してセラミックス
超電導々体となすので、伸延加工に際しては各々の金属
シートが圧力媒体として作用するので酸化物超電導体層
が緻密化してJ。
[Function] In the method of the present invention, sheet-like bodies of a ceramic superconductor, a stabilizing metal, and a heat-resistant high-strength metal are laminated, and this laminate is stretched and heat-treated to form a ceramic superconductor. During the drawing process, each metal sheet acts as a pressure medium, so the oxide superconductor layer becomes dense.

等の特性が向上する。又加熱処理に際しては安定化金属
層とセラミックス超電導体層の熱膨張差が耐熱性高強度
金属層により緩和されて熱膨張差によってセラミックス
超電導体層に割れが入ることがない。
etc. characteristics are improved. Further, during the heat treatment, the difference in thermal expansion between the stabilizing metal layer and the ceramic superconductor layer is alleviated by the heat-resistant high-strength metal layer, so that the ceramic superconductor layer does not crack due to the difference in thermal expansion.

又得られるセラミックス超電導々体は耐熱性高強度金属
層により高強度が維持されて、取扱い時やコイル巻時に
セラミックス超電導層に割れを生じることがない、又セ
ラミックス超電44体内には安定化金属が層杖に分布し
ているので熱的、電気的伝導性が良好でクエンチが防止
され高電流を通電することができる。
In addition, the resulting ceramic superconductor maintains high strength due to the heat-resistant high-strength metal layer, and the ceramic superconductor layer does not crack during handling or coil winding. is distributed in the layer, so it has good thermal and electrical conductivity, prevents quenching, and allows high current to flow.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例1 B izsrgcacuto、の組成の仮焼成粉をバイ
ンダーと混練してペースト杖となし、このペースト状物
を厚さ2MのAgシート上に厚さ1■塗布した0次いで
このペースト状物上に0.11IIIiφの穴が重大率
30%であけられた厚さ1ffIaIのPtをメンキし
たNi製テープを積層し、この積層体を渦巻状に巻回し
、この巻回体を内径14mm、外径16閣のAg製パイ
プに装入して第3図イに示したのと同じ断面構造の積層
体を作製した。
Example 1 A pre-fired powder having the composition of Bizsrgcacuto was kneaded with a binder to form a paste cane, and this paste was applied to a thickness of 1 mm on a 2M thick Ag sheet. Pt-plated Ni tape with a thickness of 1ffIaI with holes of 0.11IIIiφ drilled at a criticality rate of 30% was laminated, and this laminated body was wound in a spiral shape, and the wound body was wound with an inner diameter of 14 mm and an outer diameter of 16 mm. A laminated body having the same cross-sectional structure as shown in Figure 3A was prepared by charging it into a pipe made of Ag.

而して得られた積層体を脱バインダー処理したのち、圧
延、スェージング、引抜き加工を施して0.2閣φの複
合線材となした0次いでこの複合線材を酸素気流中にて
890″C5H加熱処理してセラミックス超電導々体を
製造した。
After removing the binder from the obtained laminate, it was subjected to rolling, swaging, and drawing to obtain a composite wire of 0.2mm diameter.Then, this composite wire was heated to 890"C5H in an oxygen stream. A ceramic superconductor was produced by processing.

実施例2 Y B a xc u20q−x組成の仮焼成粉をバイ
ンダーと混練してペースト状物となした。一方外径20
国φ、肉厚1ffiIIのAgパイプの外周上に前記ペ
ースト状物を厚さ約0.5 m塗布した。その上に、第
4図(II)に示したように、AuメツキしたSUS製
の厚さ0.25mmのネットを巻きつけた後外径23.
5■φ、肉厚l■のAgパイプに挿入して第3図(ハ)
に示したと同じ断面構造のビレットを作製しこのように
して得られた積層体を脱バインダー処理した後、引抜き
加工して外径2鵬φの複合線となした。次いで酸素気流
中で910 ’CX20hr加熱処理してセラミックス
超電導々体を製造した。
Example 2 A pre-fired powder having a composition of YBa xc u20q-x was kneaded with a binder to form a paste. On the other hand, outer diameter 20
The paste-like material was applied to a thickness of about 0.5 m on the outer periphery of an Ag pipe having a country φ and a wall thickness of 1 ffiII. As shown in FIG. 4 (II), a net made of Au-plated SUS with a thickness of 0.25 mm was wrapped around it, and the outer diameter was 23 mm.
Insert it into an Ag pipe with a diameter of 5 mm and a wall thickness of 1 mm as shown in Figure 3 (c).
A billet having the same cross-sectional structure as shown in Figure 1 was prepared, and the thus obtained laminate was treated to remove the binder and then drawn into a composite wire having an outer diameter of 2 φ. Next, a ceramic superconductor was produced by heat treatment at 910'CX for 20 hours in an oxygen stream.

比較例1 実施例1において、N+テープを積層しなかった他は実
施例1と同し方法によりセラミックス超電導々体を製造
した。
Comparative Example 1 A ceramic superconductor was manufactured in the same manner as in Example 1 except that the N+ tape was not laminated.

比較例2 実施例2において、S tJ Sネットを積層しなかっ
た他は実施例2と同じ方法によりセラミックス超電導々
体を製造した。
Comparative Example 2 A ceramic superconductor was manufactured in the same manner as in Example 2, except that the S tJ S net was not laminated.

斯くの如くして得られた各々のセラミックス超電導々体
について、臨界温度(T、)及びJcを測定した。結果
は第1表に示した。
The critical temperature (T, ) and Jc of each of the ceramic superconductors thus obtained were measured. The results are shown in Table 1.

第1表 * 液体窒素(77K)中、無6n場下で測定した。Table 1 * Measured in liquid nitrogen (77K) without 6n field.

第1表より明らかなように本発明方法品(実施例1)は
、J、が高い値のものとなった。これはセラミックス超
電導体層が緻密化したこと、耐熱性高強度金属層により
内部の酸化物超電導体層が保護されたこと、安定化金属
層がセラミックス超電導体層部に層状に分布して冷却が
効率よくなされたことによるものである。
As is clear from Table 1, the product produced by the method of the present invention (Example 1) had a high value of J. This is because the ceramic superconductor layer has become denser, the internal oxide superconductor layer is protected by the heat-resistant high-strength metal layer, and the stabilizing metal layer is distributed in layers in the ceramic superconductor layer to facilitate cooling. This is because it was done efficiently.

これに対し比較方法品(比較例1)は、耐熱性高強度金
属が積層されていない為に、加熱処理時の熱膨張差或い
は取扱い時の曲げ応力等によりセラミックス超電導体層
に割れが入り、その結果J。
On the other hand, in the comparison method product (Comparative Example 1), since the heat-resistant high-strength metal is not laminated, the ceramic superconductor layer cracks due to the difference in thermal expansion during heat treatment or bending stress during handling. As a result, J.

が低い値のものとなった。had a low value.

〔効果〕〔effect〕

以上述べたように、本発明方法によれば超電導特性並び
に機械的強度に優れたセラミックス超電導々体が得られ
、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, a ceramic superconductor having excellent superconducting properties and mechanical strength can be obtained, and it has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明方法にて用いる積層体の構成例を示
す断面説明図、第4図は上記積層体の構成要素となる耐
熱性高強度金属シートの実施例を示す平面図である。 1・・・安定化金属層、  2・・・セラミックス超電
導体層、 3・・・耐熱性高強度金属層。
Figures 1 to 3 are cross-sectional explanatory diagrams showing an example of the structure of a laminate used in the method of the present invention, and Figure 4 is a plan view showing an example of a heat-resistant high-strength metal sheet that is a component of the laminate. . 1... Stabilizing metal layer, 2... Ceramic superconductor layer, 3... Heat resistant high strength metal layer.

Claims (1)

【特許請求の範囲】[Claims] セラミックス超電導体又はその前駆物質、安定化金属、
及び耐熱性高強度金属の各々のシート状体を、所望順序
で交互に所望数積層し、この積層体をそのまま又は金属
材による外被を施したのち、所望形状に伸延加工し、次
いでこの伸延加工材に所定の加熱処理を施すことを特徴
とするセラミックス超電導々体の製造方法。
Ceramic superconductor or its precursor, stabilizing metal,
A desired number of sheets of heat-resistant, high-strength metal and heat-resistant high-strength metal are alternately laminated in a desired order, and this laminated body is stretched as it is or after being coated with a metal material, into a desired shape, and then this stretched A method for manufacturing a ceramic superconductor, which comprises subjecting a processed material to a predetermined heat treatment.
JP1259851A 1989-10-04 1989-10-04 Manufacture of ceramics superconductive conductor Pending JPH03122917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1259851A JPH03122917A (en) 1989-10-04 1989-10-04 Manufacture of ceramics superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1259851A JPH03122917A (en) 1989-10-04 1989-10-04 Manufacture of ceramics superconductive conductor

Publications (1)

Publication Number Publication Date
JPH03122917A true JPH03122917A (en) 1991-05-24

Family

ID=17339859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1259851A Pending JPH03122917A (en) 1989-10-04 1989-10-04 Manufacture of ceramics superconductive conductor

Country Status (1)

Country Link
JP (1) JPH03122917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709049B2 (en) 1999-12-03 2004-03-23 Nippon Cable System Inc. Opening and closing device for pull-cable type sunroof
JP2013041776A (en) * 2011-08-18 2013-02-28 Sumitomo Electric Ind Ltd Reinforcement-type superconducting wire rod and superconducting apparatus having reinforcement-type superconducting wire rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709049B2 (en) 1999-12-03 2004-03-23 Nippon Cable System Inc. Opening and closing device for pull-cable type sunroof
JP2013041776A (en) * 2011-08-18 2013-02-28 Sumitomo Electric Ind Ltd Reinforcement-type superconducting wire rod and superconducting apparatus having reinforcement-type superconducting wire rod

Similar Documents

Publication Publication Date Title
US5232908A (en) Method of manufacturing an oxide superconductor/metal laminate
US20030032560A1 (en) Superconducting article having low AC loss
EP0631331A1 (en) Method of preparing high-temperature superconducting wire
US20030130128A1 (en) Method of fabricating fine high temperature superconducting composites
JPH03122917A (en) Manufacture of ceramics superconductive conductor
JP4013280B2 (en) Structure having wire rod wound in coil, method for manufacturing the same, and spacer
WO2003050826A1 (en) Metal base material for oxide superconductive thick film and method for preparation thereof
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JPH05334921A (en) Ceramic superconductor
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JP2583311B2 (en) Manufacturing method of oxide superconducting conductor
JPH06333728A (en) Bi-base oxide superconductor for current lead and manufacture thereof
JPH0494014A (en) Ceramic superconductive conductor
JPH06251929A (en) Manufacture of oxide superconducting coil
JPH0518778B2 (en)
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JPH01143108A (en) Manufacture of ceramics superconductive wire
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer
JPS63289723A (en) Manufacture of superconducting wire
JPH08222051A (en) Manufacture of oxide superconductive current lead
US6451742B1 (en) High temperature superconducting composite conductor and method for manufacturing the same
JPH09263972A (en) Oxide superconducting laminated body
JPH0721856A (en) Method for manufacturing superconductive wire
JPH04196015A (en) Ceramic superconductive wire